
Chen et al. Fixed Point Theory and Applications 2014, 2014:35
http://www.fixedpointtheoryandapplications.com/content/2014/1/35

RESEARCH Open Access

General split equality problems in Hilbert
spaces
Rudong Chen*, Jie Wang and Huiwen Zhang

*Correspondence:
chenrd@tjpu.edu.cn
Department of Mathematics, Tianjin
Polytechnic University, Tianjin,
300387, China

Abstract
A new convex feasibility problem, the split equality problem (SEP), has been
proposed by Moudafi and Byrne. The SEP was solved through the ACQA and ARCQA
algorithms. In this paper the SEPs are extended to infinite-dimensional SEPs in Hilbert
spaces and we established the strong convergence of a proposed algorithm to a
solution of general split equality problems (GSEPs).
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1 Introduction
In the present paper, we are concerned with the general split equality problem (GSEP)
which is formulated as finding points x and y with the property:

x ∈
∞⋂
i=

Ci and y ∈
∞⋂
j=

Qj, such that Ax = By, (.)

where Ci and Qj are two nonempty closed convex subsets of real Hilbert spaces H and
H, respectively, H also is a Hilbert space, A : H → H, B : H → H are two bounded
linear operators.
It generalizes the split equality problem (SEP), which is to find x ∈ C, y ∈ Q such that

Ax = By [], as well as the split feasibility problem (SFP). When B = I , the SEP becomes
a SFP. As we know, the SEP has received much attention due to its applications in im-
age reconstruction, signal processing, and intensity-modulated radiation therapy, see for
instance [–].
To solve the SEP, Byrne andMoudafi put forward the alternating CQ-algorithm (ACQA)

and the relaxed alternating CQ-algorithm (RACQA). For an exhaustive study of ACQA
and RACQA, see for instance [, ]. The approximate SEP (ASEP), which is only to find
approximate solutions to SEP, is also proposed and solved through the simultaneous iter-
ative algorithm (SSEA), the relaxed SSEA (RSSEA) and the perturbed SSEA (PSSEA) by
Byrne and Moudafi, see for example [, ].
This paper aims at a study of an iterative algorithm improved by Eslamian [] for the

GSEP in the Hilbert space. We show the strong convergence of the presented algorithms
to a solution of the GSEP, and we obtain an algorithm which strongly converges to the
minimum norm solution of the GSEP.
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2 Preliminaries
For the sake of simplicity, we will denote by H a real Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed convex subset of H . Let T : H �→ H
be an operator on H . Recall that T is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖,
∀x, y ∈ H . A typical example of nonexpansivity is the orthogonal projection PC from H
onto a nonempty closed convex subset C ⊆ H defined by ‖x – PCx‖ =min‖x – y‖, y ∈ C.
It is well known that PCx is characterized by the relation

PCx ∈ C, 〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C.

Lemma . Let S = C ×Q in RN × RM = RI , where I =N +M. Define

G =
[
A –B

]
, w =

[
x
y

]
, and so G∗G =

[
A∗A –A∗B
–B∗A B∗B

]
,

then w∗ =
[ x∗
y∗

]
solves the SEP if and only if w∗ solves the fixed point equation PS(I –

γG∗G)w∗ = w∗.

Lemma . Let H be a Hilbert space. Then for any given sequence {xn} in H , any given
sequence {λn}∞n= of positive numbers with

∑∞
n= λn =  and for any positive integer i, j with

i < j,

∥∥∥∥∥
∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλj‖xi – xj‖.

Lemma. Let H be aHilbert space. For every x and y in H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . Let C be a nonempty closed convex subset of H , and let T : C → C be a non-
expansive mapping with Fix(T) = ∅. Then T is demiclosed on C, that is, if xn ⇀ x ∈ C and
xn – Txn → , then x = Tx.

Lemma . Assume {an} is a sequence of nonnegative real numbers such that an+ ≤ ( –
γn)an + δn where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a)

∑∞
n= γn =∞;

(b) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . Let {tn} be a sequence of real numbers that does not decrease at infinity, in the
sense that there exists a subsequence {tnj}j≥ of {tn} such that

{tnj} < {tnj+} for all j ≥ .

Also consider the sequence of the integers {τ (n)}n≥n defined by

τ (n) =max{k ≤ n|tk < tk+}.
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Then {τ (n)}n≥n is a nondecreasing sequence verifying limn→∞ τ (n) =∞, and for all n ≥ n,
the following two estimates hold:

tτ (n) ≤ tτ (n)+, tn ≤ tτ (n)+.

3 Main results
Let Ci ⊆ RN and let Qi ⊆ RM be closed, nonempty convex sets, and let A, B be J ×N and
J ×M real matrices, respectively. Let Si = Ci ×Qi. Define

G =
[
A –B

]
, w =

[
x
y

]
,

then

G∗G =

[
A∗A –A∗B
–B∗A B∗B

]
.

The problem (.) can also be formulated as finding w ∈ S =
⋂+∞

i= Si with Gw =  or with
minimizing the function ‖Gw‖ over w ∈ S [].

Proposition . w∗ =
[ x∗
y∗

]
solves the GSEP (.) if and only if

w∗ ∈
+∞⋂
i=

PSi
(
I – λn,iG∗G

)
w∗.

Proof Assume that there existsw∗ satisfyingw∗ ∈ ⋂+∞
i= PSi (I –λn,iG∗G)w∗, then for any i ∈

[, +∞), we havew∗ = PSi (I–λn,iG∗G)w∗.We use x and y to expressw∗ = PSi (I–λn,iG∗G)w∗:

x∗ = PCi

(
x∗ – λn,iA∗(Ax∗ – By∗)), (.)

y∗ = PCi

(
y∗ + λn,iB∗(Ax∗ – By∗)). (.)

By Lemma ., for any i ∈ [, +∞), there exist x∗ ∈ Ci and y∗ ∈ Qi, such that Ax∗ = By∗.
Therefore, there exist x∗ ∈ ⋂+∞

i= Ci and y∗ ∈ ⋂+∞
i= Qi, such that Ax∗ = By∗, that is to say, w∗

solves GSEP (.).
Assume thatw∗ solves GSEP (.), such thatGw∗ = , that is, for any i ∈ [, +∞), we have

x∗ ∈ Ci and y∗ ∈ Qi, such that Ax∗ = By∗. Substituting Ax∗ = By∗ into (.) and (.), we
obtain for any i ∈ [, +∞), w∗ = PSi (I – λn,iG∗G)w∗. Therefore, w∗ solves w∗ ∈ ⋂+∞

i= PSi (I –
λn,iG∗G)w∗. �

Theorem . Assume that the GSEP has a nonempty solution set �. Suppose that f is a
self k-contraction mapping of H , k ∈ (, ), and let {wn} be a sequence generated by

wn+ = αnwn + βnf (wn) +
∞∑
i=

γn,iPSi
(
I – λn,iG∗G

)
wn, n≥ , (.)

where αn+βn+
∑∞

i= γn,i = . If the sequences {αn}, {βn}, {γn,i}, and {λn,i} satisfy the following
conditions:

(i) limn→∞ βn =  and
∑∞

n= βn =∞,
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Chen et al. Fixed Point Theory and Applications 2014, 2014:35 Page 4 of 8
http://www.fixedpointtheoryandapplications.com/content/2014/1/35

(ii) lim infn→∞ αnγn,i > , for each i ∈N ,
(iii) {λn,i} ⊂ (, L ), for each i ∈N , where L = ρ(G∗G),

then the sequence {wn} strongly converges to w∗, where w∗ = P�f (w∗), w∗ =
[ x∗
y∗

]
.

Proof We first prove that {wn} is bounded. Let z ∈ �; actually, by Lemma ., z ∈ � equals
the fixed point equation z = PSi (I – λn,iG∗G)z. Note that for each i ∈ N , {λn,i} ⊂ (, L ),
where L = ρ(G∗G), then the operator PSi (I – λn,iG∗G) is nonexpansive. We also know that
f is a k-contraction mapping, then

‖wn+ – z‖ =

∥∥∥∥∥αnwn + βnf (wn) +
∞∑
i=

γn,iPSi
(
I – λn,iG∗G

)
wn – z

∥∥∥∥∥
≤ αn‖wn – z‖ + βn

∥∥f (wn) – z
∥∥ +

∞∑
i=

γn,i
∥∥PSi

(
I – λn,iG∗G

)
wn – z

∥∥
≤ αn‖wn – z‖ + βn

∥∥f (wn) – z
∥∥

+
∞∑
i=

γn,i
∥∥PSi

(
I – λn,iG∗G

)
wn – PSi

(
I – λn,iG∗G

)
z
∥∥

≤ αn‖wn – z‖ + βn
∥∥f (wn) – z

∥∥ +
∞∑
i=

γn,i‖wn – z‖

= ( – βn)‖wn – z‖ + βn
∥∥f (wn) – z

∥∥
≤ ( – βn)‖wn – z‖ + βn

∥∥f (wn) – f (z)
∥∥ + βn

∥∥f (z) – z
∥∥

≤ ( – βn)‖wn – z‖ + βnk‖wn – z‖ + βn
∥∥f (z) – z

∥∥
=

(
 – ( – k)βn

)‖wn – z‖ + ( – k)βn


 – k
∥∥f (z) – z

∥∥
≤ max

{
‖wn – z‖, 

 – k
∥∥f (z) – z

∥∥}
.

Then, from the upper deduction we have ‖wn – z‖ ≤max{‖wn– – z‖, 
–k ‖f (z) – z‖} and

‖wn+ – z‖ ≤ ( – βn)‖wn – z‖ + βn
∥∥f (wn) – z

∥∥
≤ max

{
‖wn – z‖, 

 – k
∥∥f (z) – z

∥∥}
≤ · · ·
≤ max

{
‖w – z‖, 

 – k
∥∥f (z) – z

∥∥}
.

We can conclude that {wn}, {f (wn)} are bounded.
Furthermore, from (.) and Lemma . we get

‖wn+ – z‖ =

∥∥∥∥∥αnwn + βnf (wn) +
∞∑
i=

γn,iPSi
(
I – λn,iG∗G

)
wn – z

∥∥∥∥∥


=

∥∥∥∥∥αn(wn – z) + βn
(
f (wn) – z

)
+

∞∑
i=

γn,i
(
PSi

(
I – λn,iG∗G

)
wn – z

)∥∥∥∥∥
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≤ αn‖wn – z‖ + βn
∥∥f (wn) – z

∥∥ +
∞∑
i=

γn,i
∥∥PSi

(
I – λn,iG∗G

)
wn – z

∥∥

– αnγn,i
∥∥PSi

(
I – λn,iG∗G

)
wn –wn

∥∥
≤ αn‖wn – z‖ + βn

∥∥f (wn) – z
∥∥ +

∞∑
i=

γn,i‖wn – z‖

– αnγn,i
∥∥PSi

(
I – λn,iG∗G

)
wn –wn

∥∥
= ( – βn)‖wn – z‖ + βn

∥∥f (wn – z)
∥∥

– αnγn,i
∥∥PSi

(
I – λn,iG∗G

)
wn –wn

∥∥.

It follows that

αnγn,i
∥∥PSi

(
I – λn,iG∗G

)
wn –wn

∥∥

≤ ‖wn – z‖ – ‖wn+ – z‖ + βn
∥∥f (wn) – z

∥∥. (.)

In order to show that {wn} → w∗, we consider two cases.
Case : Suppose that {‖wn –w∗‖} is a monotone sequence. Since ‖wn –w∗‖ is bounded,

‖wn –w∗‖ is convergent. Take the limit on both sides for (.), because limn→∞ βn =  and
lim infn→∞ αnγn,i > , and we get limn→∞ ‖PSi (I – λn,iG∗G)wn –wn‖ = , ∀i ∈ N .
We first prove there exists a unique w∗ ∈ �, such that w∗ = P�f (w∗). Since P� is nonex-

pansive and f is a self k-contraction mapping, we get

∥∥P�(f )(w) – P�(f )(w)
∥∥ ≤ ∥∥f (w) – f (w)

∥∥ ≤ k‖w –w‖;

therefore, there exists a unique w∗ ∈ �, such that w∗ = P�f (w∗).
Next, we show that {wn} → w∗. Using Lemma ., we get

∥∥wn+ –w∗∥∥ =

∥∥∥∥∥αnwn + βnf (wn) +
∞∑
i=

γn,iPS
(
I – λn,iG∗G

)
wn –w∗

∥∥∥∥∥


=

∥∥∥∥∥αn
(
wn –w∗) + βn

(
f (wn) –w∗) + ∞∑

i=

γn,i
(
PS

(
I – λn,iG∗G

)
wn –w∗)∥∥∥∥∥



≤
∥∥∥∥∥αn

(
wn –w∗) + ∞∑

i=

γn,i
(
PS

(
I – λn,iG∗G

)
wn –w∗)∥∥∥∥∥



+ βn
〈
f (wn) –w∗,wn+ –w∗〉

≤ ( – βn)
∥∥wn –w∗∥∥ + βn

〈
f (wn) – f

(
w∗),wn+ –w∗〉

+ βn
〈
f
(
w∗) –w∗,wn+ –w∗〉

≤ ( – βn)
∥∥wn –w∗∥∥ + βnk

∥∥wn –w∗∥∥∥∥wn+ –w∗∥∥
+ βn

〈
f
(
w∗) –w∗,wn+ –w∗〉

≤ ( – βn)
∥∥wn –w∗∥∥ + βnk

{∥∥wn –w∗∥∥ +
∥∥wn+ –w∗∥∥}

+ βn
〈
f
(
w∗) –w∗,wn+ –w∗〉.

http://www.fixedpointtheoryandapplications.com/content/2014/1/35


Chen et al. Fixed Point Theory and Applications 2014, 2014:35 Page 6 of 8
http://www.fixedpointtheoryandapplications.com/content/2014/1/35

By induction, we obtain

∥∥wn+ –w∗∥∥ ≤ ( – βn) + βnk
 – βnk

∥∥wn –w∗∥∥ +
βn

 – βnk
〈
f
(
w∗) –w∗,wn+ –w∗〉

=
 – βn + βnk

 – βnk
∥∥wn –w∗∥∥ +

β
n

 – βnk
∥∥wn –w∗∥∥

+
βn

 – βnk
〈
f
(
w∗) –w∗,wn+ –w∗〉

≤
(
 –

( – k)βn

 – βnk

)∥∥wn –w∗∥∥

+
( – k)βn

 – βnk

{
βnM

( – k)
+


 – k

〈
f
(
w∗) –w∗,wn+ –w∗〉}

≤ ( – ηn)
∥∥wn –w∗∥∥ + ηnδn,

where ηn = (–k)βn
–βnk , δn = { βnM

(–k) +


–k 〈f (w∗) – w∗,wn+ – w∗〉} and M = sup{‖wn – w∗‖,
n≥ }.
Since limn→∞ βn = ,

∑∞
n= βn = , we have

∑∞
n= ηn = ∞. Next, we will prove

lim supn→∞ δn ≤ . Actually, βnM
(–k) →  (since limn→∞ βn = ), so we just need to prove

lim supn→∞〈f (w∗) –w∗,wn –w∗〉 ≤ . Take a subsequence {wnk } in {wn}, such that

lim
n→∞

〈
f
(
w∗) –w∗,wnk –w∗〉 = lim sup

n→∞
〈
f
(
w∗) –w∗,wn –w∗〉.

Since {wnk } is bounded, there exists a subsequence {wnkj} converging weakly to v. Suppose
that wnk ⇀ v and λn,i → λi ∈ (, 

‖G∗G‖ ), according to Lemma ., v ∈ �. Since v ∈ � and
w∗ = P�f (w∗),

lim sup
n→∞

〈
f
(
w∗) –w∗,wn –w∗〉 = lim

n→∞
〈
f
(
w∗) –w∗,wnk –w∗〉

=
〈
f
(
w∗) –w∗, v –w∗〉 ≤ ,

as desired.
Therefore,

∑∞
n= ηn = ∞ and lim supn→∞ δn ≤  hold. All conditions of Lemma . are

satisfied. Therefore ‖wn+ –w∗‖ → , wn → w∗.
Case : If {‖wn –w∗‖} is not a monotone sequence, we could define an integer sequence

{τ (n)} by

τ (n) =max
{
k ≤ n :

∥∥wk –w∗∥∥ ≤ ∥∥wk+ –w∗∥∥}
.

It is easy to see that {τ (n)} is nondecreasing and when n → ∞ we get τ (n) → ∞. For all
n≥ n we obtain ‖wτ (n) –w∗‖ < ‖wτ (n)+ –w∗‖. Then {‖wτ (n) –w∗‖} is amonotone sequence
and according to Case , we have limn→∞ ‖wτ (n) –w∗‖ =  and limn→∞ ‖wτ (n)+ –w∗‖ = .
Finally, from Lemma ., we get

 ≤ ∥∥wn –w∗∥∥ ≤max
{∥∥wn –w∗∥∥,∥∥wτ (n) –w∗∥∥} ≤ ∥∥wτ (n)+ –w∗∥∥ → , n→ ∞.

Therefore, the sequence {wn} converges strongly to w∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/35
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For every n ≥ , w∗ ∈ � solves the GSEP if and only if w∗ solves the fixed point
equation w∗ = PSi (I – λn,iG∗G)w∗, i ∈ N . Actually, we have proved limn→∞ ‖wn – PSi (I –
λn,iG∗G)wn‖ =  and wn → w∗. Then w∗ = PSi (I – λn,iG∗G)w∗, i ∈N , that is, w∗ ∈ � solves
the GSEP.
Therefore, the sequence {wn} strongly converges to w∗ = P�f (w∗). This completes the

proof. �

Corollary . We define a sequence {wn} iteratively

wn+ = αnwn +
∞∑
i=

γn,iPSi
(
I – λn,iG∗G

)
wn, n≥ , (.)

where αn +
∑∞

i= γn,i ⊂ (, ). If {αn}, {γn,i}, {λn,i} satisfy the following conditions:
(i) limn→∞(αn +

∑∞
i= γn,i) =  and

∑∞
n=( – αn –

∑∞
i= γn,i) = ∞,

(ii) lim infn→∞ αnγn,i > , for each i ∈N ,
(iii) {λn,i} ⊂ (, L ), for each i ∈N , where L = ρ(G∗G),

then {wn} converges strongly to a point w∗ which is the minimum norm solution of
GSEP (.).

Proof Let f =  in (.), then we get (.). We have proved wn+ → w∗ = P�f (w∗) in Theo-
rem .. Then,

〈
f
(
w∗) –w∗, z –w∗〉 = 〈

f
(
w∗) – P�f

(
w∗), z – P�f

(
w∗)〉 ≤ .

Hence, 〈f (w∗) –w∗, z –w∗〉 ≤ . Since f = , then 〈–w∗, z –w∗〉 ≤ , for all z ∈ �, that is,

∥∥w∗∥∥ ≤ ∣∣〈w∗, z
〉∣∣ ≤ ∥∥w∗∥∥ · ‖z‖ ⇒ ∥∥w∗∥∥ ≤ ‖z‖.

Thus, w∗ is the minimum norm solution of GSEP (.). This completes the proof. �

Let {Ti}∞i= :H →H be a countable family of nonexpansive mappings with
⋂∞

i= F(Ti) = ∅
and let T :H →H be a nonexpansive mapping. Consider the variational inequality prob-
lemof finding a commonfixed point of {Ti}with respect to a nonexpansivemappingT is to

find x∗ ∈
∞⋂
i=

F(Ti), such that
〈
x∗ – Tx∗,x∗ – x

〉 ≤ , ∀x ∈
∞⋂
i=

F(Ti). (.)

It is easy to see that (.) equals the following fixed point problem:

find x∗ ∈
∞⋂
i=

F(Ti), such that x∗ = P⋂∞
i= F(Ti)Tx

∗. (.)

Letting Ci = F(Ti), Qj = F(PF(Tj)T), A = I , B = I , then the upper problem (.) is trans-
formed into GSEP (.):

find x ∈
∞⋂
i=

Ci and y ∈
∞⋂
j=

Qj, such that Ax = By.

Therefore, GSEP (.) equals (.). Hence, we have the following result.

http://www.fixedpointtheoryandapplications.com/content/2014/1/35
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Theorem . If αn +βn +
∑∞

i= γn,i =  and the sequences {αn}, {βn}, {γn,i}, and {λn,i} satisfy
the following conditions:

(i) limn→∞ βn =  and
∑∞

n= βn =∞,
(ii) lim infn→∞ αnγn,i > , for each i ∈N ,
(iii) {λn,i} ⊂ (, L ), for each i ∈N , where L = ρ(G∗G),

the sequence {wn} defined by (.) converges strongly to a point w∗ which solves the following
variational inequality with w∗ ∈ �:

〈
f
(
w∗) –w∗, z –w∗〉 ≤  for all z ∈ �.

Proof We know from the proof of Theorem . that the sequence {wn} defined by (.)
converges strongly to w∗ = P�f (w∗), which solves the GSEP. Also since GSEP (.) equals
(.), w∗ solves the variational inequality problem (.). Since w∗ = P�f (w∗), by (.) and
(.), we have 〈f (w∗) – w∗, z – w∗〉 ≤ . Actually, since f is a self k-contraction mapping,
k ∈ (, ), then f is also a nonexpansive mapping. That is to say, the condition in (.),
that T is a nonexpansive mapping, is satisfied. Therefore, {wn} defined by (.) converges
strongly to a solution of 〈f (w∗) –w∗, z –w∗〉 ≤ . This completes the proof. �
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