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1 Introduction

Anti-branes in warped throat geometries are an important ingredient in many models of

supersymmetry breaking in string theory. In string phenomenology they represent a generic

way of uplifting a given anti-de Sitter (AdS) compactification to a de Sitter (dS) one with

small cosmological constant [1]. In holography they are used to construct non-compact flux

backgrounds dual to dynamical supersymmetry breaking mechanisms in field theories [2–

4]. Recently, anti-branes in flux compactifications have also been used to construct non-

extremal black hole microstates [5, 6]. Over the past few years there has been an extensive

body of work aimed at constructing explicit solutions for the geometry sourced by these

anti-branes, and to study their dynamics with full backreaction taken into account.

It is by now well established that if one tries to construct a solution that describes

smeared anti-branes placed in a background with positive brane charge dissolved in fluxes

by treating the anti-branes as a small perturbation of a supersymmetric solution, one always

encounters a singularity coming from a divergent energy density of certain magnetic fluxes.

This has been found for anti-D3 branes in Klebanov-Strassler (KS) [7–10], for anti-M2

branes [11–13] in the Cvetic-Gibbons-Lu-Pope (CGLP) solution [14], as well as for anti-D2

branes in the A8 and CGLP backgrounds [15–17]. Moreover, it has been shown for anti-D3

branes in KS [18–20] and for anti-D6 branes in a massive type IIA background [21–24] that

these singularities are not an artifact of treating the anti-branes as small perturbations,

but survive in the fully back-reacted geometry. Moreover, despite the fact that the singular

solution corresponding to smeared anti-D3 branes in KS passes some non-trivial tests [25–

27], it does not appear possible to resolve this singularity by polarizing the anti-D3 branes

into D5 branes [28], or by cloaking it with a black hole horizon [29–31]. Similarly, the

aforementioned massive type IIA singularity cannot be cured by polarizing the anti-D6

branes into D8 branes [32].

In this paper we study the solution and the dynamics of fully back-reacted anti-M2

branes in the CGLP background [14]. This background is dual to a supersymmetric N = 2

(2+1)-dimensional theory obtained by a mass-deformation of the world-volume theory of

M2 branes at the tip of a cone over V5,2 = SO(5)/SO(3). This field-theory deformation

corresponds in supergravity to deforming the cone over V5,2 to a Stenzel space, which has

a finite-sized S4 at the tip.

Hence, the CGLP background is the M2-brane analogue of the Klebanov-Strassler solu-

tion [33]. The addition of probe anti-M2 branes to the CGLP geometry has been considered

by Klebanov and Pufu [34] as a way to construct the dual of a long-lived metastable non-

supersymmetric state in the field theory. The supergravity solution corresponding to the

anti-M2 branes (smeared over the four sphere at the tip of the cone) has been constructed

later in [11, 12], by treating the anti-M2 perturbation as a small, first-order deformation of

the supersymmetric CGLP background. While this solution has the expected UV proper-

ties to correspond to a metastable state, the energy density of the four-form flux diverges

in the infrared, near-brane region.

The purpose of this paper is three-fold: first, we want to establish that the singular-

ity of the perturbative solution for anti-M2 branes in the CGLP background does not go
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away when one constructs the fully back-reacted solution. This is another piece of evi-

dence supporting the idea that the singularities of anti-brane solutions are not artefacts of

perturbation theory.

It is crucial hence to address the question of whether this singularity is physical or not,

by searching for an explicit mechanism that can resolve it and this is the second purpose

of our paper. To be more precise, we examine the possible resolution of this anti-M2

singularity by polarization into M5 branes [35]. Klebanov and Pufu have shown in [34]

that probe M2 branes that are localized at the north pole of the S4 at the bottom of the

CGLP solution can polarize into M5 branes wrapping an S3 inside this S4. The solutions

that we construct have the anti-M2 branes smeared on the S4 in the CGLP infrared,

and hence cannot be used to directly determine whether the singularity is cured by this

polarization channel.

However, as it is well-known from the extension of the Polchinski-Strassler analysis [36]

to M2 branes [35], these branes can have two polarization channels, corresponding to M5

branes in orthogonal planes. For M2 branes localized on the CGLP infrared S4, these

channels correspond to the Klebanov-Pufu M5 brane and to a transverse M5 brane that

wraps the contractible S3 of the CGLP solution at a finite distance away from the tip.

Since this polarization channel is not wiped out by smearing the anti-M2 branes on the S4,

we can use our fully-back-reacted solution to calculate its polarization potential. Much like

for fully back-reacted anti-D3 branes [28], we will find that the smeared anti-M2 branes do

not polarize into this channel.

The third purpose of this paper is to use the polarization potential for the smeared

anti-M2 branes in order to calculate that of localized anti-M2 branes, both in the trans-

verse channel as well as into the Klebanov-Pufu (KP) channel.1 On general grounds, the

polarization potential for M2 branes into M5 branes has three terms [35]:2 one propor-

tional to r6, which is always positive, one proportional to r4, which is negative and which

comes from the flux that forces the polarization to happen, and one proportional to r2,

which is the same as the potential felt by mobile M2 branes in the background. This latter

contribution is zero if one considers the anti-M2 branes as probes moving on the S4 in the

infrared of CGLP [34], and this reflects the fact that there is no preferred position for these

anti-M2 branes on the S4 due to the space isometry. However, once one places a stack of

(back-reacted) anti-M2 branes at a given point on the S4 this symmetry is broken and one

expects other anti-M2 branes to feel a non-trivial force.

To compute the polarization potential for the KP channel one first needs to realize

that the transverse polarization potential is the sum of two contributions, which have very

different holographic origins: one term comes from giving a supersymmetric mass to the

fermions on the (anti) M2 brane world-volume and to their bosonic partners, and is a

perfect square. The second contribution comes from traceless boson bilinears (and can

1As we will see in section 6, one can relate the smeared and the localized polarization potentials by

considering a region in the parameter space where the Schwarzschild radii of the flux and the anti-M2

branes are larger than the radius of the blown-up 4-sphere.
2Throughout the Introduction, the coordinate r will denote the coordinate distance from the brane

sources.

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
3

therefore be called an L = 2 contribution) [35]. This contribution can in principle be given

by any traceless symmetric 8 × 8 matrix, mij , sandwiched between the eight scalars, φi,

of the M2 branes (φimijφ
j), but when the anti-M2 branes are all localized at one point

on the S4, symmetry dictates that only two such terms can exist, and only one of the two

is relevant for the polarization potential. This allows us in turn to disentangle the “susy”

and the L = 2 contributions to the transverse polarization potential, and to use them

to reconstruct the polarization potential for the KP channel. A striking surprise awaits:

this potential has an r2 term that is the negative of a perfect square. Thus, if one places

two stacks of anti-M2 branes at the bottom of the CGLP background, the force between

these two stacks is always repulsive, independently of the parameters that determine the

solution asymptotically. Hence, the theory on the world-volume of these anti-M2 branes is

tachyonic!

This result, which contradicts the expectations one might have formed by naively

extrapolating the “giant inflaton” arguments of [37],3 has several unexpected consequences.

First, it implies that the singularity of the localized anti-M2 brane solution [13] is

worse than one might have thought. Indeed, if one imagines putting together many anti-

M2 branes and holding them by force, one can expect that these anti-M2 branes will develop

an AdS4 × S7 throat, perhaps perturbed with some fluxes. Our result shows that other

anti-M2 branes placed in this throat are repelled towards its UV, and hence this throat is

unstable to fragmentation.

Second, if one imagines placing a stack of anti-M2 branes inside the CGLP solution, the

world-volume theory on these anti-M2 branes develops a tachyon. Note that this tachyon

cannot be seen in the first-order perturbative description of the anti-M2 branes that uses

their Born-Infeld-like brane action. This tachyon rather comes from terms in this action

that are quadratic in the transverse magnetic fields, which the Born-Infeld action does

not see.

Third, this negative mass also has the potential to destabilize the metastable minimum

found in [34] in the probe analysis. Indeed, the infrared expansion of the M5 potential in

the probe limit only has r6 and r4 terms, and the existence of a metastable vacuum comes

from the interplay between these terms and the curvature of the S4. Adding another

negative term in the game can completely wipe out this metastable vacuum. However,

as we will discuss in section 8, the tachyon will not destroy the vacua that correspond to

polarizing the anti-M2 branes into multiple M5 branes, although it will probably introduce

new instabilities for these vacua.

The paper is organized as follows. In section 2 we present the supersymmetric solutions

corresponding to self-dual (anti-self dual) fluxes and M2 (M2) branes. In section 3 we

show that the solution that interpolates between the CGLP ultraviolet and smeared anti-

M2 branes in the infrared is singular. In section 4 we discuss the basic features of brane

polarization in asymptotically AdS geometries. In section 5 we compute the polarization

potential for smeared anti-M2 branes in the CGLP background. In section 6 we extend

the calculation to find the potential for localized sources. In section 7 we discuss in detail

3For more details see section 8.
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Figure 1. Anti-M2 branes smeared over (left) and localized at a point (right) on the 4-sphere at

the apex of the 8-dimensional Stenzel space.

the approximations used, and we conclude in section 8. Further technical details and

discussions are left to the appendices.

2 Supergravity solutions on a Stenzel space

In this section we start with a short review of the supersymmetric flux solution first con-

structed by Cvetic-Gibbons-Lu-Pope (CGLP) in [14], based on a warped Stenzel space [38].

We also discuss the most general supersymmetric solutions with self-dual (SD) and anti-

self-dual (ASD) fluxes on Stenzel background and show that only the former admits a

regular solution.

2.1 Stenzel Ansatz

Let us start with a presentation of the 11d supergravity Ansatz of [14]. It describes the most

general M2-like solution that preserves both the SO(1, 2) Poincaré symmetry of the M2

brane world-volume and the isometry of the internal Stenzel space. This solution describes

both M2 brane charge dissolved in the fluxes, as well as M2-brane sources smeared on

the S4 at the tip of the Stenzel space. The difference between smeared and localized M2

sources is illustrated in figure 1. In this section and the following ones we will only analyze

smeared sources; those interested in the physics of localized sources will have to wait until

section 6.

One can parametrize the eleven-dimensional metric in the familiar M2-form:

ds2
11 = e−2zdxµdxµ + ezds2

8 , (2.1)

where the 8-dimensional metric has the most general structure consistent with the isome-

tries of the original Stenzel metric:

ds2
8 = e2γ(dρ2 + ν2) + e2β

3∑
i=1

σ̃2
i + e2α

3∑
i=1

σ2
i . (2.2)

We refer the reader to [14] for the definitions of the seven angular one-forms. The functions

α, β, γ, as well as the 11d warp function ez in (2.1), depend only on the radial coordinate

ρ. For the deformed Stenzel space the 3-cycle spanned by σ̃i shrinks at the apex, while the
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4-cycle corresponding to the remaining four 1-forms attains a fixed size (we will return to

this issue later in the paper). The Ansatz for the 4-form flux is:

G4 = dK ∧ dx0 ∧ dx1 ∧ dx2 + F4 , where

F4 = d
(
f · σ̃1 ∧ σ̃2 ∧ σ̃3 + h · εijkσi ∧ σj ∧ σ̃k

)
(2.3)

= f ′ · dρ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + h′ · εijkdρ ∧ σi ∧ σj ∧ σ̃k

+
1

2
(4h− f) · εijkν ∧ σi ∧ σ̃j ∧ σ̃k − 6h · ν ∧ σ1 ∧ σ2 ∧ σ3 .

Here f , h and K are all functions of ρ and ′ denotes the ρ-derivative. As usual, we will refer

to the component of the 4-form flux G4 in (2.3) that is extended along the time direction

as the electric component, and to F4 as the magnetic component. Departing from the

conventions adopted in [14] and in follow-up papers, we will omit an overall factor of m in

the definition of F4 by absorbing it in f and h.

An explicit relation between K(ρ) and the functions appearing in the form F4, f(ρ)

and h(ρ), can be derived using the G4 equation of motion:

d ?11 G4 = −1

2
G4 ∧G4 . (2.4)

We get:4

K ′ = 6e−3(α+β+2z)
(
h(f − 2h)− P

)
. (2.7)

Here P is an integration constant related (but necessarily not proportional) to possible

brane sources as we will review shortly.

In this paper we are interested in the most general solution of the form (2.1), (2.2)

and (2.3). Integrating over the angles and the space-time coordinates, the 11d supergravity

action becomes (up to an overall factor) a functional, L = −1
2G

ab(φ)φa
′φb
′ − V (φ), of six

ρ-dependent functions:

φa(ρ) =
(
α(ρ), β(ρ), γ(ρ), z(ρ), f(ρ), h(ρ)

)
. (2.8)

The kinetic term of this Lagrangian is [14]:

Gab φ
a′ φb

′
= −6e3(α+β)

(
α′

2
+ 3α′β′ + β′

2
+ (α′ + β′)γ′ − 3

4
z′

2
)

(2.9)

+
1

2
e−α−3(β+z)

(
e4αf ′

2
+ 12e4βh′

2)
,

4The 8d space orientation is given by

?8 dρ = e3(α+β)ν ∧ σ1 ∧ σ2 ∧ σ3 ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 , (2.5)

and for the 11d orientation we set:

?11 F4 = e−3z ?8 F4 ∧ dx0 ∧ dx1 ∧ dx2 . (2.6)

With these conventions the flux will be self-dual for a supersymmetric solution with mobile M2’s and anti

self-dual for anti-M2’s (see later on).
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while the potential terms come from a superpotential W via:

V (φ) =
1

8
Gab

∂W

∂φa
∂W

∂φb
, (2.10)

with two possible solutions for W :

W (φ) = −3e2(α+β)(e2α + e2β + e2γ)∓ 6e−3z
(
h(f − 2h)− P

)
. (2.11)

The fact that two different superpotentials (with different signs in (2.11)) reproduce the

same potential tells us that there are two possible supersymmetric solutions of the EOMs:

one with mobile M2’s and self-dual (SD) 4-form flux, and the other with mobile anti-M2’s

and anti-self-dual (ASD) flux. Notice that the constant P should therefore be different for

the two possibilities. We will denote the “−” option in (2.11) by WSD, and the “+” by

WASD. The two solutions are (potentially) supersymmetric, but preserve different sets of

supercharges.5

Let us provide more details about the solutions derived from the two superpotentials

WSD and WASD. By using a standard and useful notation (see for example [28, 41]) we

introduce a set of six functions ξa (a = α, β, . . . , h) dual to the modes φa, such that the first-

order equations coming from supersymmetry can be written in the following general form:

ξa = 0 where ξa ≡ Gabφb
′ − 1

2

∂W

∂φa
. (2.12)

In what follows we will use the obvious notations ξ+
a and ξ−a for ξa’s defined with W = WSD

and W = WASD respectively. We present the explicit form of these functions for the

superpotentials (2.11) and the metric (2.9) in appendix A.

The functions ξa’s defined in (2.12) do not vanish for a general non-supersymmetric

solution. In fact they satisfy an additional set of first-order ODEs [19, 28]:

ξa
′ = −1

2

[
∂Gbc

∂φa
ξbξc +

∂Gbc

∂φa
∂W

∂φb
ξc +Gbc

∂2W

∂φa∂φb
ξc

]
, (2.13)

which is trivially solved by ξa = 0 for a supersymmetric solution. Throughout this paper

we will only need three equations, one for the warp function and two for the flux:

ξ−f
′

= 2e−3(α+β+z)h ξ−z −
1

2
eα−βξ−h ,

ξ−h
′

= 2e−3(α+β+z)(f − 4h) ξ−z − 6e3(β−α)ξ−f + 2eα−βξ−h , (2.14)

ξ−z
′

= −K ′e3zξ−z −
e3z

4

(
12e3(β−α)ξ−f

2
+ eα−βξ−h

2)
.

The explicit form of the remaining equations for our Ansatz is relegated to appendix B.

We will return to the (non-supersymmetric) second-order equations of motion later in this

section.

5Strictly speaking, there is a possibility that the first-order equations correspond only to fake supersym-

metry, like in [39, 40], but this is irrelevant to our discussion.
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2.2 Solutions with SD and ASD fluxes

In this subsection we would like to study the most general solutions emerging from the

set of eight first-order equations in (2.12). We will also comment on the charges of these

solutions.

Clearly, for φa = α, β or γ we have ξ+
a = ξ−a , since these fields do not appear in the

flux part of the superpotential (2.11). Solving the three first-order ODEs, ξa = 0, for these

metric functions leads to the Stenzel metric (see (2.31) of [14]). In doing so, one has to fix

three integration constants. One constant is related to the possible shift ρ→ ρ+const (the

only remnant of the ρ-reparametrization invariance of the Lagrangian), other constant has

to take a specific value6 in order to avoid a singularity for small ρ and, finally, the third

constant corresponds to an arbitrary overall rescaling of the 8d metric. In our notations

the final result is:

e2ᾱ =
33/4

2
ε3/2

(
2 + cosh(2ρ)

)1/4
cosh ρ

e2β̄ =
33/4

2
ε3/2

(
2 + cosh(2ρ)

)1/4 sinh2 ρ

cosh ρ
(2.15)

e2γ̄ =
37/4

2
ε3/2

(
2 + cosh(2ρ)

)−3/4
cosh3 ρ ,

where the bar in ᾱ, β̄ and γ̄ stands for the background (or GCLP) value and ε is the

deformation parameter measuring the size of the blown up S4 at ρ = 0.7 For large ρ all of

the functions in (2.15) behave as e
3
2
ρ ∼ r2, where r is the radial coordinate with which the

metric on the singular, ε = 0, Stenzel space (or alternatively far away from the deformed

apex) takes an explicit conic form dr2 + r2ds2
V (5,2).

2.2.1 Self-dual flux and M2-branes

Contrary to the metric ξ’s, the three remaining ξ functions depend on the choice of sign

in (2.11). As we have already mentioned earlier, for WSD and WASD the 4-form flux F4

in (2.3) has to be self- and anti-self-dual respectively. In other words, the equations ξ+
f = 0

and ξ+
h = 0 are equivalent to F4 = ?8F4 in our notations. The most general solution is:

f(ρ) = C1
3 cosh2 ρ− 1

cosh3 ρ
+ C2 cosh ρ(cosh2 ρ− 3) (2.16)

h(ρ) =
C1

2 cosh ρ
− C2

2
cosh3 ρ .

For the UV asymptotics to be that of the regular M2 background (meaning e−
9
2
ρ ∼ r−6

decay of the warp function), one has to set C2 = 0. Adhering to the conventions of [14] we

define the remaining constant as:

C1 = −
√

3

9
M , (2.17)

where the flux parameter M is the same as m in [14] and the follow-up papers.

6We disagree on this point with [14] where this constant is fixed “without loss of generality”.
7In the notations of [14] one has ε = 2

5
6 /3

2
3 and for [34] the identification is ε = 2/3

7
4 .
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The magnetic flux F4 and M are related by (see for example (42) of [34]):

8π2

3
√

3
· M

(2πlP)3
=

1

(2πlP)3

∫
S4

F4 ≡ M̃ , (2.18)

where M̃ is a dimensionless quantity used in [34], which Dirac quantization fixes to be an

integer. The only reason we use the non-integer M in this paper is because it does not

appear explicitly in (2.3), but rather directly in the flux functions h and f .8

The Maxwell charge of the 4-form (2.3) is:9

QMaxwell
M2 (ρ) =

1

(2πlP)6

∫
V5,2, ρ=const

?11G4 =
32π4

(2πlP)6

(
P − h(ρ)

(
f(ρ)− 2h(ρ)

))
. (2.19)

Since at ρ = 0 the space is perfectly smooth, the only possible contribution to the Maxwell

charge comes from the M2 sources smeared over the S4 at the (blown up) tip. Denoting

the number of the M2 sources by NM2 and reading f(0) and h(0) from (2.16) and (2.17)

we get:

P =
M2

54
+

(2πlP)6

32π4
NM2 . (2.20)

With this assignment for P , the asymptotic values of the Maxwell charge are:

QMaxwell
M2 (0) = NM2 and QMaxwell

M2 (∞) =
M̃2

4
+NM2 . (2.21)

For NM2 = 0 these results were first observed in [44]. It was also noted there that since

the UV Maxwell charge has to be integer, M̃ (defined in (2.18)) is necessarily even.10

2.2.2 Anti self-dual flux and anti-M2 branes

Anti-self dual flux, F4 = − ?8 F4, is obtained from requiring ξ−f = 0 and ξ−h = 0. This time

the general solution is:

f(ρ) =
2

cosh3 ρ

(
− C̃1 + C̃2(3 cosh4 ρ+ 1)

)
(2.22)

h(ρ) =
1

cosh ρ

(
C̃1

sinh2 ρ
+ C̃2(cosh2 ρ+ 1)

)
.

8Note also that the parameter m used in [34] is different from the one used here and in [14]:

27
√

3

4
m[34] = m[14] = M .

9In deriving this result one might use:∫
ν ∧ σ1 ∧ σ2 ∧ σ3 ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 =

16

3
π4.

This result follows from the asymptotic form of Stenzel metric (see, for instance, (14) of [42]) and the fact

that Vol(V5,2) = 27π4/128, as was originally derived in [43]. Notice also that the 32π4 numerical factor

in (2.19) is different from the one in [11], but matches all other references.
10In general, the Maxwell charge, though conserved, is not quantized. It interpolates smoothly between

the two integer asymptotic values. The fully detailed analysis of the Maxwell, brane and (quantized) Page

charges in Stenzel geometry appears in [45] and [46].
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Regularity in the IR requires C̃1 = 0, as otherwise both the flux blows up and the resulting

warp function e3z behaves as ρ−6 for small ρ leading to a naked singularity at ρ = 0.

The C̃2 mode destroys instead the UV asymptotics. For large ρ, the ξ−z = 0 equation

(see (A.2)) implies that e3z ∼ e−
5
2
ρ, in contrast to the asymptotically-AdS solution which

has e3z ∼ e−
9
2
ρ. With both types of fluxes, the UV- or the IR-divergent one, we can

add mobile anti M2’s at the tip, though this obviously will not cure the corresponding

singularities.

What we find is conceptually different from the type IIB conifold-based story [33].

There, the solution with imaginary anti-self dual flux11 is not really different from its

self-dual counter-part. Instead, the two solutions are trivially related by the sign flip of

the B-field, B2 → −B2. The two solutions are everywhere regular and supersymmetric,

though, they preserve different supercharges.

The Stenzel space does not have an analogous Z2 symmetry and as a consequence the

SD and the ASD flux equations produce completely different results. In particular, both

ASD solutions turn out to be singular, either in the IR or the UV. This aspect of Stenzel

ASD fluxes has been overlooked in the literature.

3 Absence of a regular solution with anti-M2 branes and asymptotic

self-dual flux

In this section we would like to demonstrate that there is no solution of the second-order

equations of motion with regular fluxes that interpolates between the following two asymp-

totic solutions derived from the superpotential (2.11):

• Anti-M2’s smeared over the 4-sphere at the tip with some amount of IR regular anti-

self dual (ASD) flux, described by eq. (2.22) with C̃1 = 0 (plus some amount of IR

regular self-dual flux) and

• The CGLP background with M units of self-dual (SD) flux (described by eq. (2.16)

with C2 = 0) in the UV.

A similar calculation has been carried out in [19] for anti-D3’s in the Klebanov-Strassler

geometry, where it was shown that starting with anti-D3 smeared at the KS tip one ends

up with IASD flux all the way to the UV, unless the flux is allowed to be singular in the IR.

The output of this section is strictly speaking of no immediate importance for our main

conclusions in the paper. The reader can skip this section without losing the thread of the

upcoming arguments.

We will pursue the following strategy. We will first write down the flux regularity

conditions, and then will use them to identify the lowest ρ powers in the Taylor expansions

of the ξ− functions. Plugging this into the ξ−z,f,h
′

equations we will finally argue that ξ−f
and ξ−h vanish identically, implying that the flux remains ASD all the way to the UV.

To proceed we have to elaborate first on the near-apex (small ρ) behavior of the 8d

metric. For a general N = 0 solution one cannot rule out any leading order terms in the

11Satisfying ?6G3 = −iG3, where the complex 3-form flux is defined as G3 ≡ F3 − ig−1
S H3.
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expansion of the functions α, β and γ in (2.2). We, however, do not want to ruin the

topological structure of Stenzel space (2.2). In order words, independently of the fluxes

and the source backreaction, the 8d metric should describe a regular space at the tip, since

otherwise the source (and therefore the brane) interpretation will be, strictly speaking,

meaningless. In practical terms it means that the 3-sphere should shrink smoothly at

ρ = 0. A simple calculation shows that it happens if and only if both eα and eγ approach

constant values at ρ = 0, while eβ−γ = ρ + . . . at small ρ. Throughout the paper we

will insist on this behavior. There are no further restrictions on the three functions. In

particular, the sizes of the 4-sphere and of the U(1) fibre in ν are free parameters.12

Next, the warp factor e3z should behave like ρ−2 near the tip, where the coefficient

of proportionality is fixed by the number of smeared anti-M2’s. If this does not happen

we cannot interpret the small-ρ region of the geometry as having anything to do with the

backreaction of smeared anti-M2 branes. Note that in this section we insist on this behavior

for the warp factor and on having no divergent magnetic flux. In section 5 we will relax

these assumptions.

We now can derive the conditions for flux regularity. A straightforward calculation

leads to the following results for the IR behavior of the magnetic flux density:13

Fρσ̃σ̃σ̃F
ρσ̃σ̃σ̃ ∼ f ′2e−4z−6β−2γ Fρσσσ̃F

ρσσσ̃ ∼ h′2e−4z−4α−2β−2γ (3.1)

Fνσσ̃σ̃F
νσσ̃σ̃ ∼ (f − 4h)2e−4z−2α−4β−2γ FνσσσF

νσσσ ∼ h2e−4z−6α−2γ .

Thus the IR regularity implies that the Taylor expansions of the functions f(ρ) and h(ρ)

have to be of the form:

f(ρ) = 4h(0) + f(3) · ρ3 + . . . and h(ρ) = h(0) + h(1) · ρ+ . . . . (3.2)

From this it follows that K ′e3z = O(ρ−1) and we can also derive the restrictions on the

IR Taylor expansions of the functions ξ−z , ξ−f and ξ−h . Let us denote by nz, nf and nh the

lowest powers in the expansions. Then:

nz > 2 , nf > 1 , nh > 3 . (3.3)

The last piece of information that we need is the behavior of the metric functions for

small ρ. As we just pointed out, there is no topological restriction on the (constant) value

of eα(ρ) at ρ = 0. The equations of motion, however, imply that eβ−α = ρ + O(ρ2). Let

us show how this works: using the restrictions on the metric and warp functions we just

described, one can demonstrate that all three functions ξ−α , ξ−β and ξ−γ start with ρ2. We

will introduce the notation eβ−α = t · ρ + . . ., where t is the constant we are interested

in. The ξ−γ
′

equation (the only one in (A.1) with no flux functions involved) implies that

t = 1 or t = 5/7. On the other hand, the ξ−α
′ − ξ−β

′
holds if and only if t = 1. To arrive at

this result it is important to notice that by virtue of (3.2) and (3.3) the flux functions in

12We believe that the regularity of the 8d metric at ρ = 0 can be consistently derived from the supergravity

equations of motion, although the full analysis appears to be difficult.
13For simplicity we omit here the subscript indices of the 1-forms σi=1,2,3 and σ̃i=1,2,3.
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this equation can contribute only at the ρ3 order. One may further show that t = 1 is also

consistent with the remaining ξ−α
′
+ ξ−β

′
equation.

We are now in a position to demonstrate that starting from (3.3) one finds only the

trivial ξ−f = ξ−h = 0 solution. In other words, the flux of the solution with nonsingular

infrared will remain ASD all the way to the UV and can never become SD as in the CGLP

background. To show this we need to use equations (2.14). The last equation holds only if

one of the two conditions is satisfied:

nz − 1 = 2nf + 1 > 2nh − 3 or nz − 1 = 2nh − 3 > 2nf + 1 (3.4)

Carefully inspecting the equations for ξ−f
′

and ξ−h
′

and using (3.4), we observe that ξ−z is

subleading in both equations. For small ρ we get:

ξ−f
′
= − 1

2ρ
ξ−h + . . . , ξ−h

′
= −6ρ3ξ−f +

2

ρ
ξ−h + . . . , (3.5)

where + . . . stands for higher order terms. Solving this we arrive at ξ−f ∼ ρ2, ξ−h ∼ ρ2.

The latter is however in contradiction with (3.3). We conclude that both ξ−f and ξ−h have

to be zero.

We conclude, therefore, that there is no solution with a non-singular infrared flux that

interpolates between a solution with smeared anti-M2’s and ASD flux in the IR and the

SD background of CGLP in the UV.

4 Basics of brane polarization

The main problem that we will address in the next sections is the study of the dynamics

of anti-M2 branes at the tip of the CGLP geometry, with the purpose of checking whether

the singular anti-M2 solution is resolved by brane polarization, as suggested by the probe

analysis of [34].

Before doing this, we review in this section some basic aspects of brane polarization

in curved spacetimes, with the purpose of collecting a number of known facts that will be

crucial when we will address the polarization of anti-M2 branes in the CGLP background

in section 5. None of the material presented in this section is new, and a reader familiar

with this subject can jump directly to the next section, although it might be helpful in

understanding the logic we will follow in the rest of the paper.

We start with a short review of the Polchinski-Strassler (PS) mechanism, namely the

polarization of D3 branes into D5 or NS5 branes in the supergravity dual of the mass-

deformed N = 4 4d SYM. We will then consider the extension of this analysis to the

mass-deformed 3d N = 8 theory on the volume of M2 branes, which is relevant for our

discussion in the next section.

4.1 The polarization of D3-branes in AdS5 × S5 (Polchinski-Strassler)

We start by considering the low-energy world-volume theory of a stack of N D3 branes.

The SO(6) isometry of the five-sphere in the dual AdS5 × S5 geometry corresponds to the

R-symmetry of gauge theory and rotates its six real scalars. In N = 1 language these
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scalars combine into complex scalar components of three chiral multiplets, Φ1,2,3. Each of

the three chiral superfields has a fermion component, a Weyl spinor λi=1,2,3. Together with

a fourth spinor, λ4, the gaugino of the vector multiplet, they transform as a 4 under SU(4),

the “fermionic version” of SO(6). Giving arbitrary masses m1,2,3 to the chiral superfields

results in an N = 1 theory, while N = 2 requires m1 = m2 and m3 = 0. At the same

time, adding a mass term m′ for λ4 necessarily breaks all of the supersymmetries, since

this fermion field has no scalar superpartner.

It was first noticed by Girardello, Petrini, Porrati and Zaffaroni (GPPZ) in [47] that

the mass deformation of the boundary theory, which corresponds to a three-form flux per-

turbation of the AdS5×S5 gravity dual, leads to a spacetime with an IR naked singularity,

caused by the backreaction of this three-form on the metric.

It was argued later by Polchinski and Strassler in [36] that the singularity is cured

by “polarizing” via the Myers effect [48] the D3 branes into spherical 5-branes shells that

stabilize themselves at a fixed position in AdS5 “shielding” effectively the IR singular

region. This observation was confirmed in a probe limit calculation ignoring the D5’s

(or NS5’s) backreaction on the geometry, which amounts to keeping the portion of the

D3 brane charge carried by the D5’s smaller compared to the total D3 charge, n � N .

The “polarization” potential consists of three terms with different powers of r, the radial

distance “orthogonal” to the D3’s,14 of the form

VD5/NS5 = â2 · nr2 + â3 · r3 + â4 ·
r4

n
+ . . . , (4.1)

where the labeling for the coefficients is chosen for later convenience, and the dots stand

for subleading O(n−2) terms, which can be neglected for r ∼ n.

For sufficiently large D3 charge, n, these terms are detailed-balanced, and one can safely

ignore other terms in the 1/n expansion. The large-n condition amounts to n2 � g2
sN and

thus does not contradict the n � N requirement. The three terms have the following

origin:

• The n−1 · r4 term, represents the mass difference between a stack of n D3 branes

dissolved in a 5-brane wrapped on an S2 inside the S5 and the same stack of D3

branes without the 5-brane. Since 3-brane and 5-brane masses add in quadratures,

this term is always positive.

• The r3 term comes from the C6 term in the WZ action of the D5 brane (or the B6

in the action of the NS5 brane). One can easily show that it is determined by the

EOM of the RR 5-form in the AdS5 × S5 background, which is equivalent to:

d
(
Z−1(?6G3 − iG3)

)
= 0 , (4.2)

where G3 is the complex 3-form flux (see footnote 11) and Z is the warp function.

Since the 3-from in (4.2) is both closed and co-closed, it can be fixed from its UV

14We use r to denote a generic coordinate distance to the D3’s or M2-branes. It will later be identified

with a radial or angular coordinate on the S3 (in the case of D3) or S4 (in the case of M2) according to the

different polarisation channels.
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asymptotics, where it is, in turn, uniquely determined by the three masses m1, m2

and m3. The 3-form then gives rise to the cubic term in the polarization potential,

and is independent of the value of the warp factor.

• The n · r2 term is the leading order term in the large n expansion. It comes from the

imperfect cancellation between the electric repulsion and the gravitational attraction

that the n D3 branes feel inside the perturbed AdS5. In the supersymmetric PS

solution this term can be computed by finding the superpotential that gives the r4

and r3 terms and observing that the full potential can be calculated from this super-

potential. This term can also be evaluated by computing explicitly the backreaction

of the three-forms on the metric, dilaton and five-form [49]. When supersymmetry

is broken, this term can receive two additional contributions, one from the gaugino

mass and one from a traceless mass term for the scalar bilinears [36, 49, 50], which

corresponds to an L = 2 five-sphere harmonic in the bulk.

4.2 The polarization of M2-branes in AdS4 × S7

We now review the perturbed AdS4 × S7 solution dual to the mass-deformed N = 8 M2-

brane theory originally studied in [35]. From the point of view of N = 2 supersymmetry in

three dimensions, this theory has four hypermultiplets. Turning on four arbitrary masses

for these hypermultiplets (m1, m2, m3 and m4) preserves four supercharges. When the

masses are equal the supersymmetries get enhanced to 16 [51–53].

The 4-form flux perturbation dual to the hypermultiplet masses leads to a naked

singularity in the IR [51] which gets resolved by the polarization of the M2 branes into

M5 branes [35].15 Unlike the AdS5 example, this has been confirmed in [52, 53] by finding

a fully back-reacted solution. To calculate the polarization potential for the probe M5

brane with a non-zero M2 charge one may use either the M5 probe action of [56] in the

(perturbed) M2 geometry (as done in [35]) or reduce both the solution and the probe to 10

dimensions along one of the M2 world-volume directions, and calculate the potential of the

resulting D4 brane using the DBI action of the latter (as done in [34]). Both approaches

yield the same polarization potential

VM5 = a2 · nr2 + a4 · r4 + a6 ·
r6

n
+ . . . , (4.3)

where the . . . stands for the subleading O(n−2) terms. The origin of the terms in this

potential is analogous to the origin of the terms in the PS potential.

• The n−1·r6 term is the difference between the mass of a stack of n M2 branes dissolved

into an M5 brane wrapping a three-sphere and the mass of the same stack without

the M5 brane. Again, since the masses of M2 and M5 branes add in quadratures,

this term is always positive.

15The interpretation of the Myers effect from the perspective of the M2 brane theory was not available

until the precise understanding of the field content carried out by [54]. The appearance of the fuzzy 3-spheres

in the mass deformed theory was then consequently confirmed in [55].
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• The r4 term can be traced to the expansion of the equation of motion for four-form

field strength in a background sourced by M2 branes:

d
(
Z−1

M2(?8F4 − F4)
)

= 0 , (4.4)

where ZM2 is the M2 warp factor and F4 is the magnetic part of the 4-from flux. This

equation is very similar to the equation the gives the r3 term in the PS potential (4.2).

If instead of a background sourced by M2 branes we had perturbed around a solution

sourced by anti-M2 branes, this equation would become

d
(
Z−1

M2
(?8F4 + F4)

)
= 0 . (4.5)

Since the combination Z−1
M2

(?8F4 +F4) is closed and co-closed, it only depends on the

UV data, and is independent of the value of ZM2.

• The n · r2 term comes again from the imperfect cancellation of the gravitational

attraction and the electric repulsion that the n M2 branes feel in the perturbed

geometry. In a supersymmetric solution this term can also be fixed by demanding

that the full potential comes from a superpotential [35]. When supersymmetry is

broken this term can receive an additional contribution from a traceless mass term

for the scalar bilinears, which corresponds to an L = 2 harmonic in the bulk.

Since all the terms in the polarization potential are independent of the location of

the M2 branes that source the solution, this allows us to find the polarization potential

of all the N2 M2 branes that source the geometry to polarize into M5 branes by breaking

them into N5 bunches of n M2 branes each, and treating each shell as a probe in the

background sourced by the other shells. The full potential is therefore given by replacing

n in equation (4.3) by N2/N5 and multiplying with an overall factor of N5. The potential

for all the M2 branes to polarize into a single M5 brane is then given by formally taking

N5 = 1, which, despite being out of the range of validity of the calculation, agrees with

the formula driven from the fully-back-reacted solution [52, 53]. More details of this can

be found in section V.B of [36] and in section IV of [35].

This concludes our brief review of brane polarization in mass-deformed theories. We

will now address the main problem of the paper, namely the study of the polarization of

anti-M2 branes in the CGLP supersymmetric background.

5 The polarization of anti-M2 branes in the CGLP geometry

Let us now study the possible polarization of NM2 anti-M2 branes immersed in the CGLP

background [14] with M units of self-dual flux, that we reviewed in section 2.2.16 Our goal

is to study M5 brane polarization in a fully back-reacted anti-M2 geometry.

16In what follows we will always assume that NM2 � M̃2, since otherwise the solution will not have

positive M2 charge at infinity. Note that for anti-D3’s in Klebanov-Strassler such an assumption is not

necessary, because the positive charge dissolved in the fluxes will always dominate asymptotically.
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R1,2︷ ︸︸ ︷ S3︷ ︸︸ ︷ S4︷ ︸︸ ︷ ρ︷︸︸︷
0 1 2 3 4 5 6 7 8 9 10

smeared M2 × × × · · · ∼ ∼ ∼ ∼ ·
localized M2 × × × · · · · · · · ·

transverse M5 × × × × × × · · · · ·
Klebanov-Pufu M5 × × × · · · × × × · ·

Table 1. Directions along which the branes extend (×) or are smeared (∼).

For clarity, it is useful to review the various configurations that we will consider: as

depicted in figure 1, the original un-polarized anti-M2 branes can be either smeared over

the non-vanishing S4 at the tip of the CGLP solution (preserving therefore the symmetry

of this solution), or can be fully-localized at a point on this S4. With obvious Santa Claus

bias, we will refer to this point as the North Pole. The only possible polarization channel

of the smeared M2 branes is into M5 branes wrapping the shrinking S3 at finite distance

away from the tip. We refer to this channel as the “transverse channel”. When the branes

are localized they can also polarize into M5 branes that wrap an S3 inside the S4 at the tip,

and we refer to this as the Klebanov-Pufu (KP) channel.17 These notations are summarized

in table 1.

Our strategy is to compute the polarization potential of the anti-M2 branes using the

same logic as [35, 36]: we smear the anti-M2 branes and consider a region where the solution

is of anti-M2 brane type. We then examine the perturbations of this region by transverse

fluxes and metric modes that come from gluing it to the asymptotic region. We then

calculate the potential for the smeared anti-M2 branes to polarize into M5 branes in the

transverse channel. This section is devoted to the calculation of the polarization potential

for this channel, while section 6 is devoted to the polarization potentials of localized anti-M2

branes.

5.1 General approach

Let us assume that one has already constructed a fully-back-reacted solution describing

NM2 localized unpolarized anti-M2 branes in an asymptotically-CGLP geometry. Since

near the North Pole the metric of the Stenzel space looks like R8, the backreaction of

the anti-M2 branes should result in a “small” AdS4 × S7 throat with the radius fixed by

NM2. However, this throat will not be a “clean” throat, since the gluing to the asymptotic

CGLP solution will alter its UV region, and will introduce non-normalizable modes. In

particular, the self-dual (SD) flux of the CGLP solution will leak into the anti-M2 throat

and try to polarize the anti-M2 branes into M5 branes, much as one expects from the probe

computation in [34]. It is very important to stress that this picture is also valid when the

sources are smeared and the anti-M2 dominated region is no longer of the AdS4×S7 form.

17Note that unlike (p,q) 5-branes which couple to a combination of C6 and B6, here there is a single type

of coupling to A6 and therefore these two channels are possible.
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Our strategy is to describe the physics of polarizing back-reacted anti-M2 branes using

the Polchinski-Strassler method applied to M2 branes [35] that we reviewed in section 4.2.

As we will show in the next subsections, we will recover this way precisely the same form

and the same physical interpretation of the polarization potential as in (4.3).

We begin by considering a region where the solution with unpolarized branes has anti-

M2 character, in that its electric field and warp factor are such that a probe anti-M2 brane

will feel (almost) no force. Since ASD flux is mutually supersymmetric with the anti-M2’s,

this field can in principle be arbitrarily large.18 Our strategy is to treat the SD flux coming

from the gluing to the CGLP region as a perturbation on the anti-M2 solution, exactly as

described in section 4.2.

When the anti-M2 branes are smeared on the Stenzel tip the full solution will have

SO(5) isometry, and will be “anti-M2 dominated” between two constant-radial-coordinate

hypersurfaces at ρ1 and ρ2. In general the fluxes that cause brane polarization become

stronger in the infrared and (unless one takes brane polarization into account) give a naked

singularity of GPPZ/Pope-Warner type [47, 51]. The infrared hypersurface at ρ = ρ1 is

where the energy of these SD fluxes becomes stronger than that of the anti-M2 branes and

the solution loses its anti-M2 character. Moreover, as we discussed in section (2.2.2), the

ASD flux will also have a singular solution in the infrared, see (2.22). We thus define ρ1

such that for ρ > ρ1 the energy density of the SD is small, and the one of the ASD flux is

finite.

The ultraviolet hypersurface at ρ = ρ2 is where the anti-M2 dominated region is glued

to the CGLP asymptotics. As we will discuss in the next section, when the anti-M2 branes

are localized, the IR and UV boundaries of the brane dominated region will no longer be

constant-ρ hypersurfaces, but will get an angular dependence. For the sake of clarity, we

postpone the evaluation of these scales and the discussion of the range of validity of our

calculations to section 7. Our first purpose is to calculate the polarization of a shell of

M5 branes with anti-M2 charge dissolved in it at a radius ρ? satisfying ρ1 � ρ? � ρ2, as

depicted schematically in figure 2. To do this we will solve the equations of motion in this

region order by order in an expansion in the SD flux parameter, MSD.

5.2 The flux expansion

We now apply the general strategy detailed above to compute the flux and the warp factor

in the anti-M2-dominated region perturbed with SD flux. Remarkably, to compute the

polarization potential in the transverse channel we will only need the leading-order expres-

sion of the modes ξ−f , ξ−h and ξ−z . Since we consider smeared anti-M2’s, the unperturbed

solution, at zeroth-order in the flux expansion parameter MSD is not AdS4 × S7 but a

warped geometry with ASD flux.

To find this geometry one needs to solve ξ−a = 0 for a = z, f, h, and it may appear

that the only regular solution to these three equations is the warped Stenzel metric (2.15)

with ASD flux described in equation (2.22). However, this conclusion is a bit too hasty:

18Although, as we will explain in section 7, it turns out that its coefficients will be much smaller than

M̃ ∼Ml−3
P .
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Figure 2. In the interval ρ1 < ρ < ρ2 (marked in light grey) the energy of the SD flux is

small compared to that of the electric flux of the anti-M2 branes and therefore can be treated

perturbatively. The (UV) scale where this anti-M2 region is “glued” to the (self-dual) CGLP

solution is ρ2, and the (IR) scale where the backreaction of the SD flux becomes important is

ρ1. When the M2 sources are localized these slicings will be deformed and will have a non-trivial

angular dependence.

the vanishing of ξ−z , ξ−f and ξ−h does not imply that the remaining ξ-functions, ξ−α , ξ−β and

ξ−γ , are zero as well. The second-order equations in (B.1) have six integration constants.

We have already explained in section 2 how to fix the three constants of the SUSY solution

for which ξ−α , ξ
−
β , ξ

−
γ = 0. Intuitively one can use the other three constants to construct

a new solution that smoothly approaches the Stenzel metric functions (2.2) both in the

UV and in the IR. In fact, this is equivalent to finding a new Ricci flat metric within the

Ansatz (2.2). Abusing notation, we will continue to refer to this new metric as “Stenzel”

and to the large S4 at its tip as the “Stenzel tip”. This new metric does not have to be

Kähler19 and for our purposes we will not need to know its exact form,20 but just the

leading-order expansion of the function eβ−α = ρ+ . . ..

We now have to find the zeroth-order solution for the warp function. It follows from

the ξ−z = 0 equation in (A.2) that:

e3z0 = 6

∫ ∞
ρ

dρ̄ e−3(α0+β0)
(
hASD(fASD − 2hASD)− P

)
, (5.1)

where we use 0 subscripts to distinguish between the Stenzel solution (2.15) and our zeroth-

order functions, and the parameter P is proportional to the number of anti-M2 branes,

NM2. One can readily check that for zero h and f , e3z0 ∼ ρ−2 + . . ., as expected. As we

have explained in the previous section, in general, the ASD flux does not have to vanish in

the brane-dominated region. Therefore, for sufficiently small ρ the contribution of the IR

19A similar calculation for the conifold has been done in [57, 58].
20The proof of this fact is identical to the (slightly more complicated) proof we presented in section 3

(see the paragraph below (3.3)), and we will not repeat it here.
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singular ASD flux will alter this behavior of the warp function. This corresponds to the

ρ� ρ1 region on figure 2.

We now perturb this solution with SD flux. For this we will need to turn on the modes

ξ−a , which are strictly zero for a solution with only ASD flux. At first order in MSD we

only have to solve the equations for ξ−f
′

and ξ−h
′

in (2.14), since the metric functions and

ξ−z remain the same. Note that this is equivalent to solving (4.5) in the brane dominated

region. These equations reduce to:

ξ−f
′
= −1

2
coth ρ ξ−h , ξ−h

′
= −6 tanh3 ρ ξ−f + 2 coth ρ ξ−h , (5.2)

where we have explicitly used the Stenzel value of eβ−α = tanh(ρ), although, as we men-

tioned earlier, only eβ−α = ρ+. . . is relevant for the conclusions. Note that we have already

encountered these equations in section 3.

The solution of (5.2) is:

ξ−f
MSD

= b1 cosh3 ρ+ b2
cosh4 ρ− 1

cosh ρ
, (5.3)

ξ−h
MSD

= −6b1 sinh2 ρ cosh ρ− 2b2
sinh2 ρ(3 cosh4 ρ+ 1)

cosh3 ρ
,

where we have explicitly factored out MSD in order to make b1 and b2 independent of the

expansion parameter. Notice that from the definition of ξ−f and ξ−h in (A.2) it is clear

that the MSD parameter corresponds to the SD part of the magnetic flux divided by the

number of the anti-M2’s.

In the next section we will need only the small-ρ expansion of this solution, which is:

ξ−f
MSD

= b1 +O(ρ2) ,
ξ−h
MSD

= (−6b1 − 8b2)ρ2 +O(ρ4) . (5.4)

We now look for the solution at orderM2
SD. One of the remarkable results of the next

section is that to compute the polarization potential for M5 branes we will only need to

know ξ−z at second order in MSD, and no other metric ξ−’s. Hence, the only equation we

need to solve at order M2
SD is the last equation in (2.14).

Finding an explicit expression for ξ−z
′

is unlikely since the warp function e3z0 is itself

written in terms of an unsolvable integral. We, however, only need a leading term in the

Taylor expansion for small ρ. To find this term we first have to notice that the K ′e3z factor

in the ξ−z equation multiplies ξ−z which is already of the second order, and so we can use

the zeroth-order equation ξ−z = 0 to replace K ′0e
3z0 by −3z′0. The ξ−z

′
equation can then

by rewritten as: (
e−3z0ξ−z

)′
= −1

4

(
12e3(β0−α0)ξ−f

2
+ eα0−β0ξ−h

2)
. (5.5)

This leads to the final result:

e−3z0ξ−z
M2

SD

= −
(
3b21 + 6b1b2 + 4b22

)
ρ4 + . . . . (5.6)
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Here we omitted a homogeneous part of the solution proportional to e3z0 , since it corre-

sponds to a non-physical singularity.

We will use this expression to estimate the polarization potential in the upcoming

section.

5.3 The polarization potential

In this section we use the result obtained above to compute the polarization potential for

all the smeared anti-M2 branes to polarize into M5 branes wrapping the shrinking S3 of

the Stenzel geometry at a finite radius (see table 1). As in [35, 36], we will first compute

the action of a probe M5 brane with anti-M2 charge n in the back-reacted throat geometry

sourced by the rest of the anti-M2 branes and described in detail in section 4. We will

then argue that the potential for this probe M5 brane is independent of the location of

the anti-M2 branes that source the solution, and hence this potential give the fully-back-

reacted polarization potential in the transverse channel, both for smeared and for localized

anti-M2 branes. Finally, in section 6 we will use this result to infer the M5 potential in the

Klebanov-Pufu channel in the geometry of localized sources.

There are two ways of computing the potential of a probe M5 with anti-M2 charge in

a certain eleven-dimensional supergravity background. The first is to use directly the M5

action of Pasti, Sorokin and Tonin, [56], as was done, for instance, in [35]. The second

is to reduce both the background and the probe to type IIA string theory, compute the

potential of the resulting probe (a D4 brane with F1 charge dissolved in it) in the resulting

background, and then reinterpret this as the potential for the M2-M5 polarization. This was

done for example in [34]. The two approaches give the same answer, but given the relative

complexity of the Pasti-Sorokin-Tonin action, we find it more instructive to compute the

potential using the second approach.

5.3.1 The IIA reduction of the 11-dimensional background

Our strategy is to reduce both the background of section 2 and the M5-M2 probe to type

II string theory along one of the M2 world-volume coordinates, say x2. The M5-M2 probe

becomes a D4 brane wrapping the shrinking Stenzel S3 with n anti-F1 strings dissolved in

it. Reducing the background of section 2 gives the 10d metric, dilaton and B-field:

ds2
10 = e−3zdxµdxµ + ds2

8 , eφ = e−
3
2
z , B2 = Kdx0 ∧ dx1 , (5.7)

where the eight-dimensional Stenzel metric was given in (2.2) and the function K(ρ) ap-

pears in (2.7). In order to compute the polarization potential we only need the IIA R-R

four-form field strength with legs on the shrinking S3: F4 = f ′dρ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + . . .. The

other components (denoted by . . .) can be computed straightforwardly from (2.3). The

forms that enter in the polarization potential are given by:

C3 = f σ̃1 ∧ σ̃2 ∧ σ̃3 + . . .

d(C5 +B2 ∧ C3) = dx0 ∧ dx1 ∧ (KF4 + e−3z ?8 F4) (5.8)

= dx0 ∧ dx1 ∧
[(
Kf ′ − 6e−3(α−β+z)h

)
dρ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + . . .

]
.
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5.3.2 The probe action

In order to compute the potential governing the polarization of anti-F1 strings into a D4

brane wrapping the shrinking Stenzel 3-cycle, we start from the action describing a D4

brane with a non-trivial world-volume electric field:

SD4 =

∫
R1,1

LD4 = µ4

∫
R1,1×S3

[
−e−φ

√
−det(gab + 2πl2sFab)+(C5+2πl2sF2∧C3)

]
, (5.9)

where 2πl2sF2 = 2πl2sF2 +B2 and F2 is the electric field:

2πl2sF2 = E dx0 ∧ dx1 . (5.10)

Plugging in the metric, the dilaton and the forms computed in the previous subsection,

and integrating over the 3-sphere we find the Lagrangian density:

LD4(E) = µ4VS3

[
− e3β+ 3

2
z
√
e−6z − (E +K)2 + Ef

+

∫ ρ

0
dρ̄
(
2e3(β−α)ξ−f + (K − e−3z)f ′

)]
. (5.11)

Here VS3 stands for the 3-sphere volume, VS3 =
∫
σ̃1 ∧ σ̃2 ∧ σ̃3. In deriving this formula we

performed an integration by parts and used the definition of ξ−f in (A.2).

The fundamental string charge of the D4 brane (which corresponds in eleven dimensions

to the M2 charge of the M5 brane) is the momentum conjugate of the world-volume electric

field:

n ≡ −∂LD4(E)

µF1∂E
, (5.12)

where the minus sign is introduced for later convenience, and µF1 appears in the definition

because the fundamental string coupling to the B-field is given by µF1

∫
B.

To compute the potential of this D4 brane we need to find the Hamiltonian corre-

sponding to this action, and to do this we begin by expressing E in terms of n using (5.12):

E +K = e−3z

(
1 +

(l−3
P VS3)2e6β+3z

(n+ l−3
P VS3 f)2

)−1/2

. (5.13)

The Hamiltonian is then given by the Legendre transform:

HD4(n) = −nE − LD4(E) = −(n+ l−3
P VS3 f)

[
e−3z

(
1 +

(l−3
P VS3)2e6β+3z

(n+ l−3
P VS3 f)2

)1/2

−K
]

−l−3
P VS3

∫ ρ

0
dρ̄
(
2e3(β−α)ξ−f + (K − e−3z)f ′

)
. (5.14)

Note that in deriving this expression we have used the fact that µ4/µF1 = l−3
P . The

fact that resulting Hamiltonian depends only on the eleven-dimensional Planck scale, lP,

and is independent of the compactification radius l11, confirms the validity of this approach

to compute the M2-M5 polarization potential. Note also that in our conventions the flux

functions f and h have dimension (length)3 as evident from (2.20) and (2.7). This is
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different from the conventions of most of the literature, where f and h are dimensionless

(see the remark below (2.3)).

Up to order M2
SD and n−1, the polarization potential, V = −H(n), is:

V = (e−3z−K) ·n+2l−3
P VS3

∫ ρ

0
e3(β0−α0)ξ−f dρ̄ +

1

2
(l−3

P VS3)2e6β0 · 1
n

+O(n−2,M3
SD) , (5.15)

where the 0 index denotes the zeroth-order (no SD flux) solution. In deriving this result

we omitted the (K−e−3z)f ′ in the second line of (5.14). We explain the reason at the very

end of this subsection.

Keeping only the lowest terms in the ρ Taylor expansion of all the functions, the

potential has the expected M2-M5 form (4.3):

V = na2ρ
2 + a4ρ

4 +
a6

n
ρ6, (5.16)

where:

a2 = −2

3
lim
ρ→0

(
1

ρ2

∫ ρ

0
e−3(α0+β0+z0)ξ−z dρ̄

)
,

a4 = 2(l−3
P VS3) lim

ρ→0

(
1

ρ4

∫ ρ

0
e3(β0−α0)ξ−f dρ̄

)
, (5.17)

a6 =
1

2
(l−3

P VS3)2 lim
ρ→0

(
1

ρ6

∫ ρ

0
e6β0dρ̄

)
.

Using the explicit results of the previous subsection for ξ−f and ξ−z , we can now express

these constants in terms of the parameters b1 and b2 introduced in (5.4):

a2 =
M2

SD

3
e−6α0(0) ·

(
3b21 + 6b1b2 + 4b22

)
,

a4 =
MSD

2
l−3
P VS3 · b1 , (5.18)

a6 =
1

2
(l−3

P VS3)2e6α0(0) .

The first thing to observe about this potential is that its terms are detailed-balanced:

at the radius where any two of its terms are equal, the remaining term is also of the same

order. Indeed, the coefficients b1 and b2 are by construction MSD independent, and it is

easy to see that the geometric mean of the first and the third term is always of the order

of the second one. It is also easy to see that at the detailed-balance scale,

ρ2
? ∼ nMSDl

3
P , (5.19)

all the terms of order O(n−2) and/or O(M3
SD) and higher that we ignored can be safely

ignored.

It is also straightforward to verify that the potential (5.16) has no (local) mini-

mum away from ρ = 0. The condition for having the minimum is a4 < 0 and a2
4 −

3a2a6 > 0. While the former might be achieved by b1 < 0, the second is equivalent to
5
4b

2
1 + 3b1b2 + 2b22 < 0 which does not hold for any real b1 and b2. We thus conclude that
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one of the possible polarization channels, the transverse channel, is absent for smeared

anti-M2 branes.

Before closing the section, let us explain why in going from (5.14) to (5.15) we have

ignored the (K − e−3z)f ′ term in the potential. We know for example from equation (5.6)

that ξ−z receives corrections at second order in theMSD expansion. From the definition of

ξ−z in (A.2), one can see that (K − e−3z) is also of orderM2
SD. Nevertheless, this does not

imply that this term is of the same order as the ρ2 term in (5.16). Indeed, a closer look at

the Taylor expansion of f ′ reveals that the lowest term comes from its ASD part (2.22),

f ′ ≈ 3(C̃1 + C̃2)ρ+ . . . and hence the (K−e−3z)f ′ contribution to (5.16) starts with a term

of order ρ4. Since the ρ4 term in (5.16) is by construction of orderMSD, the (K − e−3z)f ′

contribution is indeed negligible if C̃1 + C̃2 is of order one or lower. In section 7 we show

that we work indeed in this regime.

6 Localized versus smeared sources

Having computed the smeared M2 brane polarization potential in the transverse channel,

we will now try to use this calculation to learn about the polarization of anti-M2 branes

localized at the North Pole on the 4-sphere (see figure 1). As we discussed in section 5 and

as one can see from table 1, these branes have two polarization channels: the transverse one,

corresponding to M5 branes wrapping the shrinking S3, and the Klebanov-Pufu channel,

corresponding to M5 branes wrapping an S3 inside the 4-sphere.

6.1 The transverse channel

To proceed, it is worth recalling one of the main results of [36]: the polarization poten-

tial (4.1) is independent of the actual value of the D3-brane warp factor, and hence it is

the same regardless of the positions of the D3 branes that source the geometry. The proof

of this statement involves a few steps. First, one notices that the closed (and co-closed)

3-from Z−1(?6G3− iG3) in (4.2) is fixed uniquely by its asymptotic UV value and is there-

fore independent of the warp factor Z, which encodes the information about the source

distribution. This guarantees that the r3 term in the potential is Z-independent. Next, one

argues that the same observation holds for the r4 term, which measures the 5-brane mass

increment and is proportional to the square of the volume (in un-warped coordinates) of

the sphere on which the 5-brane is wrapped.21 Finally, the r2 term is also Z-independent

— this can be seen either by invoking supersymmetry, or by realizing that this term comes

from non-normalizable AdS modes corresponding to boson masses.

One can make exactly the same argument about the polarization potential of anti-M2

branes into M5 branes. As explained in section 4.2 the r4 term comes from the self-dual

four-form Z−1(?8F4 + F4), which is closed and co-closed (4.4) and therefore independent

of the value of the warp factor Z. The r6 term is proportional to the square of the volume

of the sphere that the M5 branes wrap, and is again Z-independent. Finally, the r2 term

encodes the boson masses, and it also Z-independent. These results have far-reaching

21The extra factors of Z cancel each other leaving a warp-function independent contribution, see (62)

of [36] and (29a) of [35].
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consequences for understanding brane polarization, as they indicate that one can use the

probe calculation to find the polarization potential of all the M2 branes that make up the

solution, by splitting them in several bunches n M2 branes and finding the polarization

action of each bunch in the background sourced by the other bunches.

One can now apply these results to argue that the polarization potential of localized

CGLP anti-M2-branes in the transverse channel is the same as that of smeared anti-M2

branes: to do this one should first remember that the asymptotic value of Z−1(?8F4 +F4),

and hence the r4 term in the potential, is uniquely determined by the fermion masses in

the theory on the two-branes [35]. In our solution, these four masses are determined by

the gluing of the anti-M2-dominated region to the CGLP geometry at the hypersurface

at ρ = ρ2. Similarly, the r2 terms in the potential corresponds to boson masses in the

two-brane theory and are also determined by the gluing at this hypersurface.

As we mentioned before, when the anti-branes are localized, this hypersurface will not

be at constant ρ any more, but rather will acquire some non-trivial angular dependence. In

general, one expects this to affect the (co)closed self-dual 4-form (4.5) and the metric, and

hence to modify the ρ4 and ρ2 terms in the potential. However, as we will discuss in detail

in section 7, this modification becomes negligible when the gluing scale ρ2 is much larger

than the size of the blown-up Stenzel 4-sphere, and this can be easily achieved by properly

tuning the free parameters of the solution: NM2, M̃ and the 4-sphere radius. In this limit

the transverse-channel polarization potential for localized anti-M2 branes is exactly that

of smeared sources, given in (5.16)–(5.18), which has no minimum at a finite ρ.22 From

now on we will assume that we work in this limit.

6.2 The Klebanov-Pufu channel

Having obtained the polarization potential of localized back-reacted branes in the trans-

verse channel, we can now use the physics of brane polarization to obtain the back-reacted

polarization potential in the Klebanov-Pufu channel [34].

To do this we first need to use some convenient coordinates near the localized sources.

The Stenzel space is defined by:
5∑
i=1

z2
i = ε2. (6.1)

In terms of xi ≡ Re(zi) and yi ≡ Im(zi) it translates into:

5∑
i=1

x2
i −

5∑
i=1

y2
i = ε2 and

5∑
i=1

xiyi = 0 . (6.2)

At the North Pole of the 4-sphere we have x1 = ε and y1 = 0, while the remaining eight

parameters (x2, . . . , x5, y2, . . . , y5) provide a good set of R8 coordinates in the vicinity of the

pole. These branes break the isometry group of Stenzel space from SO(5) down to an SO(4)

which simultaneously rotates (x2, . . . , x5) and (y2, . . . , y5). There are three invariants of

22On the other hand, we are assuming that polarisation, if it happens at all, occurs in the region ρ > ρ1.

Otherwise this mechanism would not cure the singularity, and the anti-M2 solution is clearly unphysical.
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this rotation group:

θ2 ≡
5∑
i=2

x2
i ,

5∑
i=2

xiyi and ρ2 =
5∑
i=2

y2
i , (6.3)

the last one being the Stenzel radial coordinate we are used to.

Our strategy is to first consider certain polarization channels where the scale of brane

polarization is smaller than the size of the four-sphere23 and therefore the anti-M2 branes

at the North Pole can be treated as anti-M2 branes in R8. Since we are in a region where

the anti-M2 branes dominate the geometry, the region where polarization will happen will

be a small AdS4 × S7 around the CGLP tip North Pole, and we can therefore use all

the techniques for studying M2-brane polarization discussed in section 4.2 to compute the

polarization potential for all channels.

In particular, we know that when the four fermion masses of the M2 brane theory are

equal, the M2 branes polarize into M5 branes wrapping three-spheres. Hence, the SO(4)

symmetry of the solution implies that this small AdS4×S7 is perturbed with equal fermion

masses. By itself this perturbation would be supersymmetric, and give rise to a potential

that is a perfect square, both for the transverse channel and for the KP channel. However,

as we discussed in section 5.3, the polarization potential receives also a non-supersymmetric

contribution from a traceless boson mass bilinear, which corresponds to an L = 2 term on

the S7. Hence, the generic polarization potential in the transverse channel can be written as

V T(ρ) = V T
SUSY(ρ) + V T

L=2(ρ) , (6.4)

while the potential in the Klabanov-Pufu channel can be written as

V KP(θ) = V KP
SUSY(θ) + V KP

L=2(θ) . (6.5)

As discussed above and as shown explicitly in [35, 52, 53], the supersymmetric polarization

potential is the same in the two channels:

V KP
SUSY(x) = V T

SUSY(x) . (6.6)

The story is a bit more subtle for the non-supersymmetric L = 2 contribution to the

potential. The SO(4) isometry of the configuration constrains it to be a combination of

only two harmonics. Indeed, (6.3) lists all possible SO(4) invariant quadratic combinations

of xi’s and yi’s, while the traceless requirement further implies that the coefficients of ρ2

and θ2 sum up to zero:

VL=2 = µdiag · (ρ2 − θ2) + µoff-diag ·
5∑
i=2

xiyi . (6.7)

Since for the transverse channel we have x2,3,4,5 = 0, while for the KP channel y2,3,4,5 = 0,

we can see that the off-diagonal contribution drops off, and therefore the two channels will

receive equal and opposite contributions:

V KP
L=2(ρ) = µdiagρ

2, V KP
L=2(θ) = −µdiagθ

2. (6.8)

23As we will explain in section 7, this can be easily achieved by increasing the M5 dipole charge of the

polarizing shell.
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We are now able to extract the polarization potential for the KP channel from (5.16),

by writing

V T (ρ) = a2ρ
2 + a4ρ

4 + a6ρ
6 = ρ2

(
√
a6ρ

2 +
a4

2
√
a6

)2

−
(
a2

4

4a6
− a2

)
ρ2, (6.9)

which combined with (6.4), (6.5), (6.6) gives

V KP(θ) = θ2

(
√
a6θ

2 +
a4

2
√
a6

)2

+

(
a2

4

4a6
− a2

)
θ2 ≡ a6θ

6 + a4θ
4 + ã2θ

2. (6.10)

The coefficient of the θ2 term, which cannot be captured in the probe approximation

used in [34], is therefore

ã2 =
a2

4

2a6
− a2 = −3

4
e−6α0(0) ·

(
b1 +

4

3
b2

)2

. (6.11)

This is a most striking result: for any value of b1 and b2, and therefore irrespective of

the way the anti-M2 region is glued to CGLP, the quadratic term in the potential that

describes the polarization of anti-M2 branes into M5 branes wrapping the S3 inside the

Stenzel S4 tip is never positive. As we discussed in section 4, this term also gives the force

felt by a probe anti-M2 brane in the background sourced by a stack of anti-M2 branes

localized on the Stenzel tip. Equation (6.11) implies that this force is always repulsive24

and hence anti-M2 branes at the bottom of the CGLP solution are tachyonic! This is the

main result of our paper.

7 Range of validity

In this section we discuss the approximations we have used in getting to our result, and its

range of validity. In the absence of an explicit fully back-reacted solution that has CGLP

asymptotics and anti-M2 branes in the infrared, we have used the fact that there should

exist a region where the physics is dominated by the anti-M2 branes. There are several ways

to try to define such a region, perhaps the most precise one is to require that the energy of

the self-dual (SD) magnetic four-form fluxes be smaller than that of the electric four-form

sourced by the anti-M2 branes. This allows one in turn to treat the fluxes as a perturbation

around a BPS anti-M2 solution, and to argue that they satisfy equation (4.5), which is the

key formula that allows one to compute the polarization potential of the fully-back-reacted

branes. Another way to think about this region is as the region where a probe anti-M2

brane will feel (almost) no force because of the gravitational-electromagnetic cancellation

in its action. Note that in this region the total magnetic F4 flux is not necessarily small:

this flux can have both a self-dual and an anti-self-dual (ASD) component, and the latter

corresponds to BPS anti-M2 charge dissolved in the fluxes and a priori can be arbitrarily

large.

24To be pedantic, there is of course a measure-zero possibility that b1 = − 4
3
b2 and hence this force is

zero. However, it is hard to see why such a miraculous cancelation will happen in a non-supersymmetric

solution.
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When the branes are smeared, this region, shown in grey in figure 2, is bounded in

the infrared by a hypersurface at ρ1, where the backreaction of the SD fluxes becomes

dominant, and in the ultraviolet by a hypersurface at ρ2, where the anti-M2-dominated

region is glued to the CGLP solution.

To understand the origin of the hypersurface at ρ1, we should remember that both

in Polchinski-Strassler [36] and in mass-deformed M2 branes [35], the naive pre-brane-

polarization solution has an infrared singularity [47, 51] which comes from the backreaction

of the polarizing fluxes and which is excised by brane polarization. As we will argue in

appendix C, when the harmonic function of the unpolarized branes goes like Q/r∆, the

backreaction of polarizing fields of strength F modify it with a term of order F 2/r2∆−2.

This backreaction does not dominate the infrared for smeared anti-D3 branes in KS [28],

which have ∆ = 1, and it clearly dominates the infrared of localized anti-M2 branes in

CGLP, whose harmonic function will diverge as 1/r6. The story is more subtle for smeared

anti-M2 branes, where ∆ = 2 and therefore both the zeroth order warp factor and its

F 2 correction have the same infrared growth. We have explicitly checked that, unlike

for anti-D3 branes in KS, higher-order corrections in F do give rise to more divergent

terms. Nevertheless, in the brane-dominated region, these corrections to the warp factor

are subleading compared to the fields of the anti-M2 brane.

In addition to the SD flux, the ASD flux of the supersymmetric anti-M2 CGLP solution

can also cause infrared trouble. To see this, recall that the Stenzel BPS anti-M2 solution

with ASD flux is very different from the BPS Stenzel M2 solution with SD flux constructed

in [14], as the ASD flux either gives a singular infrared or a singular ultraviolet. Since we

do not have the full solution it is hard to say precisely how much ASD flux we will have,

and how strong it will be. However, we can estimate the strength of this flux and show

that it does not affect the polarization potential.

To do this, we first consider the C̃1 (infrared divergent) mode in equation (2.22). By

analogy with (2.21), the Maxwell charge in the deep IR (near the sources) and at infinity

will be equal to:25

QMaxwell
M2

(0) = −NM2 and QMaxwell
M2

(∞) =
M̃2

4
−NM2 . (7.1)

We expect the full solution to differ in the UV from the CGLP one only by normaliz-

able modes, which, as one can see from equation (2.16) and the discussion that follows

it, suggests that the flux functions, f(ρ) and h(ρ), will exponentially vanish in the UV.

Comparing (2.19) and (7.1) we see that one can only reproduce the right charge in the UV

if P ∼ M̃2/4−NM2. On the other hand, in order for the Maxwell charge near the anti-M2

branes to be −NM2, the flux functions in the IR must give an order M̃2 contribution to

25As argued in [34], the brane-flux annihilation of anti-M2 branes at the tip reduces the flux by two units

and leaves behind (M̃ − 1−NM2) M2 brane sources. It is straightforward to see from (2.21) and (7.1) that

the asymptotic Maxwell charge remains the same during this process. There is a subtlety regarding the

exact change in the flux in the brane/flux transition, but, as pointed out in the end of [34], this concerns

only O(1) quantities suppressed in the large M̃ limit.
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the Maxwell charge (2.19):

32π4

(2πlP)6
· hIR(fIR − 2hIR) ≈ M̃2

4
. (7.2)

To find the leading IR behavior of the flux functions one has to solve (5.4) using

the definitions of ξ−f and ξ−h in (A.2). The homogeneous part of the resulting solution is

precisely the ASD flux of (2.22), which dominates the small ρ expansion of the fluxes. If one

now substitutes f(ρ) ≈ 2(−C̃1 +4C̃2)+ . . . and h(ρ) ≈ C̃1ρ
−2 into the left hand side of (7.2)

one finds that it can never be positive. This implies that a nonzero C̃1 gives a positive

Maxwell charge near the anti-M2 branes, and indicates that C̃1 is very small. Thus, the

IR-singular mode of the ASD flux does not affect the ρ� ρ1 region of the solution.

The C̃2 (UV divergent) mode of the ASD flux is a bit more tricky. At the ρ = ρ2

gluing hypersurface the “incoming” CGLP solution has only SD fluxes, and one may hope

that there will be no ASD flux on the anti-M2 dominated side and hence the effects of

C̃2 on the polarization potential will be negligible. However, it may also happen that the

nonlinearity of the equations of motion on the gluing surface will generate such a term and,

while we cannot estimate its value in the absence of a fully-backreacted solution, it seems

reasonable to assume that this flux will be of the same order as the incoming SD flux.

When ρ2 is large (which is the regime we have used in the previous section) the ASD mode

proportional to C̃2 diverges exponentially and hence the only way to match the fluxes on

the gluing hypersurface is if C̃2 is exponentially suppressed as Me−ρ2 . To summarize, both

C̃1 and C̃2 are small and cannot impact our calculation in any way. This is precisely what

we used in the last paragraph of section 5.

Another validity condition for our calculation is that the radius where the three terms

in the polarization potential are detailed-balanced, ρ?, be smaller than ρ2, such that polar-

ization takes place inside the anti-M2 dominated region. An even more stringent condition,

necessary if one is to be able to relate the transverse and the KP polarization potentials,

is that ρ? be smaller than the size of the large four-sphere, such that the polarization

potential (5.16) describes the physics in a region near the localized anti-branes where the

un-warped geometry can be approximated by R8 and therefore the AdS4×S7 polarization

analysis of [35] can be applied.

It is easy to see that we can always make ρ? small by considering the polarization

potential of the anti-M2 branes into multiple M5. Indeed, as we discussed in section 4.2,

the potential for all the anti-M2 branes to polarize into one M5 brane is given by simply

replacing n by the total number of anti-M2 branes, NM2, in equation (4.3). If one considers

instead the polarization into NM5 coincident M5 branes, each carrying NM2/NM5 units of

anti-M2 charge, the full polarization potential is obtained by replacing n with NM2/NM5

in equation (4.3), and multiplying the potential by an overall factor of NM5. This will

effectively lower ρ? by a factor of NM5, and will therefore always allow us to bring ρ?
within the desired range. Note that increasing the M5 charge of the polarization shell does

not affect the ρ2 term in the potential, and hence the conclusion that the anti-M2 branes

are tachyonic is robust.

– 28 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
3

The other important assumption we have made in obtaining the transverse-channel

polarization potential of localized branes from that of smeared branes is that the ρ4 and ρ2

terms of that potential are independent of the position of the branes. As we explained in sec-

tion 4.2, these terms can be related directly to non-normalizable modes in the ultraviolet of

the brane-dominated region and, when one studies brane polarization in AdS4×S7 [35], one

fixes a-priori the values of these non-normalizable modes in terms of the mass-parameters

of the dual theory. This ensures that the ρ4 and ρ2 terms in the polarization potential are

independent of the position of the branes.26

However, for anti-M2 branes in CGLP, the UV boundary conditions for the anti-M2

throat “reside” at the ρ = ρ2 hypersurface where this throat is glued to the asymptotically-

CGLP solution of [14]. If the anti-M2 branes are localized on the S4, this hypersurface will

be deformed and will not be at constant ρ any more. Hence, the boundary conditions for

the closed and co-closed 4-form Z−1(?8F4 +F4) and for the L = 2 modes that enter the ρ2

terms will change, and therefore the polarization potential will be modified.

To ensure that this effect is small we have to work in a region of parameters where ρ2

is much larger than the distance over which the anti-M2 branes move, which is of order

the size of the tip (lε = ε3/4) and therefore the effect of moving the anti-M2 branes will be

suppressed by a positive power of lε/ρ2.

To see that one can always do this, one should first remember that our problem has

only three free parameters:27 the CGLP magnetic flux, M̃ , the number of anti-M2 branes,

NM2, and the size of the un-warped Stenzel tip, lε = ε3/4. In the absence of supersymmetry-

breaking, each of these parameters comes with its own scale: if one sets M̃ to zero and

considers (BPS) anti-M2 branes in a Stenzel space, the full solution will be warped R2,1

times Stenzel, with the warp factor given by the harmonic function sourced by the anti-M2

branes. This solution will be controlled by two scales: the Schwarzschild radius of the

anti-M2 branes and lε, the size of the Stenzel tip. Similarly, the BPS CGLP solution with

BPS M2-branes is controlled by three parameters, lε and the “Schwarzschild radii” of the

M2 branes and of the flux, which can be dialed at will.

Even if we do not have the exact fully-back-reacted anti-M2 solution, it is clear that the

position of the hypersurface where the anti-M2 region is glued to CGLP, ρ2, is determined

by a balance between the anti-M2 branes and the CGLP flux, M , and that increasing

the number of anti-M2 branes pushes this surfaces to larger values of ρ2. This can be

done while still keeping NM2 �M2 such that the charge at infinity remains positive. The

situation is shown on figure 3. On the other hand, the size of the tip, lε, will not enter in

this balance, and therefore can be set to be much smaller than ρ2. This ensures that the

physics at the gluing surface is not affected by moving the anti-M2 branes at the tip, and

hence that the smeared and localized polarization potentials in the transverse channel are

the same.

26The ρ6 term comes from the M5 branes of the polarizing shell wrapping a 3-sphere, and is independent

by construction of the position of the anti-M2 branes.
27For the CGLP solution with no sources (NM2,M2 = 0) the ε parameter is not physical and can be

gauged away. However, when branes are present, this parameter acquires a physical meaning, much like in

Klebanov-Strassler [59].
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Figure 3. For anti-M2 branes localized on the 4-sphere the gluing between the brane-dominated

and the asymptotically-CGLP regions will not be at constant ρ2. However, we can always push

this hypersurface away from the tip (arrows pointing right) by increasing NM2, and push it towards

the tip (arrows pointing left) by increasing M . If the size of the tip is much smaller than ρ2, then

localizing the branes will not affect this surface.

It is important to note that one can go to the regime of parameters where ρ2 > lε
without affecting the other assumptions we made about the polarization radius ρ? and the

IR cut-off ρ1.

8 Conclusions

We have studied the dynamics of anti-M2 branes placed at the bottom of a supersymmetric

background with M2 brane charge dissolved in flux (the CGLP solution of [14]) taking into

account the full backreaction of the anti-branes on the ambient geometry. We proved that

the anti-M2 solution has a singularity in the energy density of the four-form flux, confirming

the linearised analysis of [11]. We then looked for a resolution of such singularity by brane

polarization, as suggested by the probe picture of Klebanov and Pufu [34], in which the

anti-M2 branes expand into one or more M5 branes wrapping an S3 inside the S4 in the

infrared. Since our starting point was a solution for anti-M2 branes smeared on the S4,

we could not compute directly the polarization potential for the Klebanov-Pufu channel,

so we first computed the potential for polarization into M5 branes wrapping the shrinking

S3 of the CGLP geometry, at a finite distance from the tip. We found that the potential

has no minimum away from the tip, signaling that the breaking of supersymmetry alters

qualitatively the phase structure of the supersymmetric M2-M5 polarization [35]. This

happens because of the contribution of L = 2 modes, corresponding to traceless boson

bilinears in the world-volume of the anti-M2’s, which break supersymmetry.

We then argued that, at least in some region of the parameter space, the polarization

potential for smeared anti-M2 branes is not sensitive to the position of the sources, and

is thus the same as the potential for localized anti-M2 branes expanding into M5 branes

on the shrinking S3. This in turn allowed us to extract the L = 2 mode that enters into

the r2 term of the polarization potential of localized anti-M2 branes and thus to explicitly

compute the potential for polarization of localized back-reacted anti-M2 branes in the

Klebanov-Pufu channel. To our great surprise, we found that this potential has an θ2 term

that is never positive. Since this term is the same as the force acting on a mobile anti-M2

– 30 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
3

Figure 4. The naive polarization potential one derives ignoring the anti-M2 backreaction [34] (first

graph), the potential one obtains by (incorrectly) assuming that backreaction will give rise to an

attractive force between the anti-branes (second graph) and the two possible corrected potentials

obtained by including the anti-M2 tachyon. If θ? is larger than θcurv, than the tachyonic −θ2
mode can wipe out the local minimum (third graph). We can reduce θ? by considering polarization

into multiple M5 branes, guaranteeing this way a metastable minimum at the θ = θ? scale (fourth

graph). As we explain in the text, the tachyonic mode can greatly change the physics of this

metastable vacuum, by opening up new instability directions.

brane placed in the background sourced by the other anti-M2 branes, this implies that

anti-M2 branes at the bottom of the CGLP background repel each other, and hence that

the world-volume theory of CGLP anti-M2 branes has a tachyon. This in turn would imply

that the putative AdS4 × S7 throat sourced by anti-M2 branes localized at the bottom of

CGLP background would be unstable to fragmentation.

It is very important to understand the end-point of this tachyonic instability. As we

show in figure 4, the brane-flux annihilation potential comes with two scales: θ?, where

the three terms in the North-Pole potential (6.10) are detailed balanced, and θcurv, where

the curvature of the sphere begins to have an important effect and pulls the M5 branes

over the equator triggering this way brane-flux annihilation. Clearly when θ? is larger

than θcurv there is no metastable minimum, and the branes undergo immediate brane-

flux annihilation. This happens for example in [34] when the number of anti-M2 branes

polarizing into a shell with M5 dipole charge one is larger than 5.4% of M .

Our analysis tells us that anti-M2 branes repel at distances smaller than the size

of the four-sphere, and hence that the brane-flux annihilation potential differs from the

one calculated using the probe approximation [34] by a negative contribution. Indeed, if

one ignores backreaction, the North Pole expansion of the probe potential begins with a

negative term of order θ4 [34], while we find that this expansion should begin instead with

a negative term of order θ2. Still, since we only trust our calculations at the scale θ?, we

cannot say what is the functional form of this negative contribution at the scale θcurv, and

hence we cannot determine conclusively whether the metastable vacuum with all anti-M2

branes polarized into one M5 brane gets destabilized or not.

Nonetheless, M2 branes can also polarize into multiple M5 branes and, as we explained

in section 4.2, this reduces θ? by the square root of the number of M5 branes. Hence, by

increasing the M5 dipole charge of the polarization shell we can arrange for θ? to become

much smaller than θcurv. Since at this scale the polarization potential has three terms and

since the θ2 term is negative and the θ6 term is positive, this guarantees that this potential
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will have a metastable minimum. Hence, the tachyon we find, while potentially-dangerous

for the metastable vacua with small M5 dipole charge, will not wipe out the metastable

vacua that have a large M5 dipole charge.

However, the presence of the tachyon does not bode well for the stability of such vacua.

Indeed, the tachyon of the M2 branes translates into a tachyon for the two-form field on the

M5 worldvolume, which indicates that the whole configuration is unstable. Furthermore,

if one calculates the potential for one anti-M2 brane to shoot out of the polarization shell,

the near-shell solution is dominated by the anti-M2 branes, and therefore this potential

will be repulsive.

The metastable shell with a large M5 dipole charge can also decay by peeling out M5

shells that brane-flux annihilate. To see how this can happen, consider the fluctuation

where one of the M5 branes gets more anti-M2 charge than its friends. Since shells with

larger anti-M2 charges have larger equilibrium radii (5.19), this overcharged M5 brane will

be driven to a larger value of θ. Furthermore, as the anti-M2 branes in its world-volume

repel the anti-M2 branes in the remaining M5 branes, the force driving it to larger values

of θ increases, and this M5 brane will therefore have the tendency to slide over the equator

triggering brane-flux annihilation.28

Thus, our analysis indicates that there exist metastable back-reacted anti-M2 shells

with a large M5 dipole charge. Nevertheless, the presence of an anti-M2 tachyon makes the

physics of these vacua very different than the one expected from the probe approximation.

These shells can decay by shooting out anti-M2 branes, by rapid brane-flux annihilation

caused by the peeling out of charged M5 shells, as well as by the fragmentation of the

AdS4 × S7 throat sourced by the anti-M2 branes.

Perhaps the most important question our calculation raises is whether the tachyon

we find is just an accidental feature of anti-M2 branes in CGLP, or is a more generic

characteristic of all anti-branes in backgrounds of opposite charge. The fact that anti-

brane singularities do not appear to be cloakable by regular event horizons [29–31] points

towards the latter option.

It would be very exciting if one could extend our calculation and establish whether

anti-D3 branes in Klebanov-Strassler [2] are also tachyonic. Their back-reacted polarization

potential in the transverse channel was calculated in [28], both for smeared and for local-

ized branes, and it was found that this potential has no metastable minimum. However,

extracting the back-reacted KPV polarization potential from the transverse one is not as

straightforward as for anti-M2 branes, essentially because, as we explained in section 4.1,

the Polchinski-Strassler polarization potential can have two supersymmetry-breaking terms

compatible with the symmetry of the problem: an L = 2 mode and a gaugino mass. Since

the second term is absent for anti-M2 branes, knowing the terms of the M2 transverse po-

larization potential had enough information to allow us to calculate the other polarization

potential. However, to do this for anti-D3 branes in KS one needs first to disentangle the

two supersymmetry-breaking contributions, which is more subtle. We plan to report on

this in upcoming work.

28Note that this would not happen if antibranes attracted; as argued in [37] this attraction would push

multiple nearby shells to merge and form a single shell.
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Notice that the anti-brane repulsion we found seems to contradict the result of [37],

where it was argued that branes in backgrounds of opposite charge should attract (see

also [60]). The intuition behind this claim was that anti-branes should create a cloud of

flux of opposite charge around them, which in turn screens their negative charge making

the electromagnetic repulsion weaker than the gravitational attraction. Our explicit cal-

culations fail to see such a screening effect, but rather show that the cloud sourced by

the anti-branes would have more charge than mass, and hence repel other anti-branes. Of

course, since our calculations are valid in the regime when the inter-brane separation is

smaller than the size of the cloud sourced by the anti-branes, they test some very non-

linear dynamics, which the arguments of [37, 60], valid in the regime where the inter-brane

distance is larger than the size of cloud, do not take into account.

It would be very interesting to try to reproduce our tachyonic instability via a more

direct first-principles calculation, and to see whether it is also exists in different regimes

of parameters than the one we consider here. If this tachyonic mode is generic, it would

point towards a very basic feature of the interaction between branes and fluxes of opposite

charge.
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A Explicit form of the ξa equations

Here we summarize the expressions for ξa’s that follow from their definition in (2.12) and

the explicit form of the superpotential and the kinetic term in (2.11) and (2.9) respectively.

For the metric functions α, β and γ we have:

ξ+
α = ξ−α = 3e2α+4β − 3(2α′ + 3β′ + γ′)e3(α+β) + 3e2(α+β+γ) + 6e4α+2β,

ξ+
β = ξ−β = 6e2α+4β − 3(3α′ + 2β′ + γ′)e3(α+β) + 3e2(α+β+γ) + 3e4α+2β,

ξ+
γ = ξ−γ = −3(α′ + β′)e3(α+β) + 3e2(α+β+γ), (A.1)
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while the dual modes for the warp function and the fluxes are given by:

ξ+
z =

9

2
e3(α+β)

(
z′ − 1

3
e3zK ′

)
,

ξ+
f =

1

2
e3(α−β−z)(f ′ + 6e3(β−α)h

)
,

ξ+
h = 6e−α+β−3z

(
h′ +

1

2
eα−β(f − 4h)

)
,

ξ−z =
9

2
e3(α+β)

(
z′ +

1

3
e3zK ′

)
, (A.2)

ξ−f =
1

2
e3(α−β−z)(f ′ − 6e3(β−α)h

)
,

ξ−h = 6e−α+β−3z

(
h′ − 1

2
eα−β(f − 4h)

)
.

B Explicit form of the ξ′a equations

The first-order equations of motion for the modes ξ±a follow directly from (2.13), from the

explicit form of the metricGab, and from the superpotentials in (2.9) and (2.11) respectively.

To find the polarization potential we only needed the equations for the flux modes and for

the warp function (2.13). Here we give for completeness the remaining equations. Together

with (2.13) and the definition of the ξa modes (A.1), (A.2), they form a system of twelve

first-order differential equations which is equivalent to the equations of motion derived

from the one dimensional action defined by (2.9) and (2.11). The remaining three ξ−a
′

equations are:

ξ−α
′
+ ξ−β

′
=

1

2
e−3(α+β)

(
ξ−α

2
+ ξ−β

2
+ 5ξ−γ

2
+

4

3
ξ−z

2
)
− e−α−β+2γ

(
ξ−α + ξ−β + 5ξ−γ

)
+

2

3
e−3(α+β)ξ−z

(
ξ−z − 3e3(α+β+z)K ′

)
,

ξ−α
′ − ξ−β

′
=
(
2eα−β − e−α+β

)
ξ−α +

(
eα−β − 2e−α+β

)
ξ−β + 36he3(−α+β)ξ−f

−(f − 4h)eα−βξ−h +

(
6e3(−α+β+z)ξ−f

2 − 1

6
eα−β+3zξ−h

2
)
,

ξ−γ
′

= e−α−β+2γ
(
ξ−α + ξ−β + 5ξ−γ

)
. (B.1)

The six equations for ξ+
a
′

are:

ξ+
α
′
+ ξ+

β
′

=
1

2
e−3(α+β)

(
ξ+
α

2
+ ξ+

β
2

+ 5ξ+
γ

2
+

4

3
ξ+
z

2
)
− e−α−β+2γ

(
ξ+
α + ξ+

β + 5ξ+
γ

)
+

2

3
e−3(α+β)ξ+

z

(
ξ+
z + 3e3(α+β+z)K ′

)
,

ξ+
α
′ − ξ+

β
′

=
(
2eα−β − e−α+β

)
ξ+
α +

(
eα−β − 2e−α+β

)
ξ+
β − 36he3(−α+β)ξ+

f

+(f − 4h)eα−βξ+
h +

(
6e3(−α+β+z)ξ+

f
2 − 1

6
eα−β+3zξ+

h
2
)
,

ξ+
γ
′

= e−α−β+2γ
(
ξ+
α + ξ+

β + 5ξ+
γ

)
(B.2)
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and

ξ+
f
′

= −2e−3(α+β+z)h ξ+
z +

1

2
eα−βξ+

h ,

ξ+
h
′

= −2e−3(α+β+z)(f − 4h) ξ+
z + 6e3(β−α)ξ+

f − 2eα−βξ+
h , (B.3)

ξ+
z
′

= K ′e3zξ+
z −

e3z

4

(
12e3(β−α)ξ+

f
2

+ eα−βξ+
h

2)
.

C The infrared backreaction of the polarizing fields

In this appendix we give a simple and intuitive argument that allows us to find the infrared

divergence caused by the backreaction of the forms that trigger brane polarization on the

metric warp factor. We also show why the far infrared region is so different than in the

smeared anti-D3 setup, giving a brane-dominated region that does not extend all the way

to ρ = 0.

As we discussed in great detail above, one has to exclude the ρ� ρ1 part of geometry

from the brane dominated region, since for small ρ the flux becomes singular. For anti-

D3’s smeared over the blown-up 3-sphere of the warped conifold, we also have to allow flux

singularity in the IR, since otherwise the flux remains IASD all the way to the UV [19].

The situation there, nevertheless, differs from the setup discussed in this paper. First, the

IASD flux on the conifold is the same as the ISD one up to a sign of the B-field (see the

end of section 2.2.2), and so it can be regular both in the UV and in the IR of the anti-D3

throat. Second, the GPPZ-like singularity of the ISD flux in the throat is not strong enough

to distort the leading order behavior of the warp function. To be more precise, it produces

only a ρ−1 correction to the warp function, which is subleading to the un-perturbed ρ−2

solution.

Let us provide a simple intuitive argument for that statement. The quadratic term in

the polarization potential is given by the force felt by a probe brane in the perturbed throat

geometry. In our setup it is given by e−3z−K, see (5.15). For the KS setup, e3z is replaced

by the D3 warp function Z, and K becomes the 5-form flux. At the zeroth order in the

flux expansion Z−1
0 −K0 vanishes. For the sake of generality, let us set Z−1

0 ,K0 ∼ ρ∆ for

small ρ. We will also assume for simplicity that for the (second order) perturbed solution

δZ ∼M2
SDr
−∆+δ and δK ∼ δZ.

Plugging this into Z−1 − K and expanding to the M2
SD order, we see that the first

non-zero contribution is of order ρ∆+δ. Therefore, to obtain an r2 term in the potential,

we need:

δ = 2−∆ . (C.1)

For anti-D3’s smeared over the 3-cycle of the deformed conifold ∆ = 1, and so δ = 1. We

see that the perturbed warp function is small compared to zeroth order one. It means that

the flux singularity in this case is not sufficiently strong to modify the ρ−2 behavior of the

warp function near the source. We learn that the flux perturbation never dominates in the

deep IR.

For our anti-M2 configuration ∆ = 2 implying δ = 0. Thus the perturbation now has

exactly the same near source behavior as the unperturbed warp function, and this is the
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reason why we have to exclude the ρ � ρ1 region, where MSD is not sufficiently small to

trust the expansion.

Let us also mention that the simple formula (C.1) also reproduces correctly the result

for localized D3 branes. In this case ∆ = 4 and δ = −2. Thus, contrary to the smeared

case, for localized D3 branes the flux perturbation completely destroys the brane throat

in the IR, explaining the naked singularity of the GPPZ flow [47]. The solution has been

explicitly computed to the second order in the flux perturbation by Freedman and Minahan

in [49]. Their result is29 a M2r−6 contribution to the warp factor, in nice agreement with

our expectations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[23] J. Bl̊abäck et al., (Anti-)brane backreaction beyond perturbation theory, JHEP 02 (2012) 025

[arXiv:1111.2605] [INSPIRE].

[24] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7 solutions of type-II supergravity,

JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].

[25] I. Bena, G. Giecold, M. Graña and N. Halmagyi, On the inflaton potential from antibranes in

warped throats, JHEP 07 (2012) 140 [arXiv:1011.2626] [INSPIRE].

[26] A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory,

JHEP 05 (2011) 053 [arXiv:1102.1734] [INSPIRE].

[27] A. Dymarsky and S. Massai, Uplifting the baryonic branch: a test for backreacting

anti-D3-branes, arXiv:1310.0015 [INSPIRE].

[28] I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift

Klebanov-Strassler, JHEP 09 (2013) 142 [arXiv:1212.4828] [INSPIRE].

[29] I. Bena, A. Buchel and O.J.C. Dias, Horizons cannot save the landscape,

Phys. Rev. D 87 (2013) 063012 [arXiv:1212.5162] [INSPIRE].
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