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1 Introduction

Cachazo, He and Yuan [1, 2] have recently proposed remarkably compact formulas for the

tree-level scattering amplitudes of gluons and gravitons, valid in any number of spacetime

dimensions. These are expressed in terms of an integral over points on a sphere, which

localises to a sum over (n − 3)! contributions, for n-particle scattering. The localisation

of the integral is associated to the (n− 3)! solutions of the so-called scattering equations.

This will be reviewed in detail in the next section.

In the case of gauge theory, the new formula can be seen as an extension of the four-

dimensional twistor string theory connected prescription developed by Roiban, Spradlin

and Volovich [3], following Witten’s seminal work [4]. For gravity, the four-dimensional

analogue are the expressions inspired by twistor string theory found recently by Cachazo

and Geyer [5] and by Cachazo and Skinner [6]; see also [7–15]. The latter developments

were partly inspired by a surprisingly simple formula for MHV graviton amplitudes found

by Hodges [16].

The new formulas show a deep connection between the scattering amplitudes of gluons

and those of gravitons. Such a connection has been know since the Kawai-Lewellen-Tye

(KLT) relations were proposed [17]. These relations express graviton amplitudes as the

“square” of gauge theory amplitudes. This subject has received renewed attention in recent
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years due to the work of Bern, Carrasco and Johansson (BCJ) [18, 19]. The BCJ double-

copy formula is a prescription to express gravity amplitudes as the “square” of gauge theory

amplitudes based on trivalent graphs. It requires that gauge theory amplitudes satisfy a

type of duality between colour and kinematics that is not manifest in the Lagrangian.

Therefore, it tells us something about gauge theory itself, not just gravity. The loop-level

BCJ proposal remains conjectural.

The goal of this work is to explore the scattering equations which underlie the new

formulas for gluons and gravitons, and to relate them to the BCJ colour-kinematics duality.

We will identify and employ algebraic structures arising from the kinematics in order to

make the BCJ duality manifest. Our inspiration is the case where the duality is better

understood, self-dual gauge theory. As shown by the authors in [20], the duality follows

from the fact that the cubic vertex of the self-dual theory has a kinematic dependence

given by the structure constant of a Lie algebra, mirroring the colour dependence. We

will see that algebraic structures analogous to those of (anti-)self-dual gauge theory can

be associated to each solution of the scattering equations. In particular, we will see that

we have an extension of the concepts of self-dual and anti-self-dual vertices. This offers a

glimpse into the loop-level generalisation of the new formulas. Recently, it has been shown

that certain one-loop amplitudes can be described by these algebraic structures [21, 22].

Since the new formulas of Cachazo, He and Yuan are very reminiscent of string theory

amplitudes, it is not surprising that some objects analogous to those we will deal with have

already made an appearance in that context, especially in recent work with the pure spinor

formalism. Using this formalism, a complete set of tree-level BCJ numerators (which make

the colour-kinematics duality manifest) was presented in [23]. Signs of the BCJ duality

and of the scattering equations closely related to our discussion are found in the one-loop

structure of superstring amplitudes [24]. The scattering equations were also identified

and explored in the recent works [25, 26], where a remarkable correspondence between

superstring and supergravity amplitudes was unveiled. Another stringy context in which

the scattering equations arise, rather surprisingly, is in the high energy limit of closed string

amplitudes [27], as pointed out in [1].

While this work was in progress, the papers [28] and [29] appeared, showing (among

other things) that it is possible to obtain BCJ numerators for each of the contributions to

the gauge theory amplitude corresponding to a solution of the scattering equations. We see

this result as a direct consequence of the fact, proven in [30], that the Parke-Taylor factors

arising from each solution of the scattering equations (to be reviewed next) satisfy the

so-called BCJ relations. Explicit constructions to invert the linear problem and generate

BCJ numerators for amplitudes satisfying the BCJ relations were presented in [31–33]. In

this work, we provide a canonical set of BCJ numerators which can be constructed directly

from the vertex configuration of a trivalent graph, based on algebraic structures naturally

associated to the scattering equations. We hope that this construction and its connections

to the notions of (anti-)self-duality will provide a new insight into the scattering equations.

This paper is organised as follows. In section 2, we will review the scattering equations

and the new formulas for the scattering amplitudes of gravitons, gluons, and also massless

double-coloured scalars, which fit into the same picture [28]. In section 3 we will review
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the colour-kinematics duality. A review of ref. [20], which is our starting point, and the

extension of the algebraic structure discussed there will be presented in section 4. The

main result of this paper, the construction of manifestly BCJ-dual amplitudes, will be

presented in section 5. In section 6, we will give expressions for gravity amplitudes in

terms of trivalent graphs and in terms of the kinematic analogues of colour traces. The

final discussion is in section 7.

2 Review of the scattering equations

The scattering equations at n points are a deceptively simple set of equations, to be solved

for n complex variables σa: ∑
b6=a

ka · kb
σa − σb

= 0, (2.1)

where the ka are the momenta of the external particles. Thus, there are n equations.

However, only n− 3 of these equations are independent.

The significance of these equations to the tree-level scattering of massless particles

has recently been explored by Cachazo, He and Yuan [1, 2, 28]. A first observation about

these equations is that they are invariant under SL(2,C) when the ka satisfy conservation

of momentum. That is, given a particular solution for the σa, an equally good solution is

given by

σ′a =
Aσa +B

Cσa +D
, (2.2)

when AD −BC = 1. Thus we may interpret the σa as points on S2.

Up to this redundancy, there are always (n − 3)! different solutions of the scattering

equations. Of course, the case n = 3 is trivial: one may exploit the SL(2,C) to fix the

locations of the three points; meanwhile, all the kinematic invariants vanish. For n = 4,

after fixing SL(2,C), there is only one variable. Meanwhile, there is one equation to be

solved, which is linear in the remaining variable. Solutions of the scattering equations at

n points may be obtained from the solutions at n − 1 points according to an algorithm

described in [1]; using this algorithm, each individual solution for the (n− 1)-point system

yields n− 3 solutions for the n-point system, for a total of (n− 3)! solutions.

The complete tree-level S-matrices of gauge theory and gravity in D dimensions are

easily written down using the solutions of the scattering equations. The colour-ordered n

point Yang-Mills amplitudes An, and the n-point gravity amplitudes Mn are simply [1, 2]

An =

∫
dnσ

vol SL(2,C)

∏
a

′δ

(∑
b 6=a

ka · kb
σa − σb

)
En({k, ε, σ})
σ12σ23 · · ·σn1

, (2.3)

Mn =

∫
dnσ

vol SL(2,C)

∏
a

′δ

(∑
b 6=a

ka · kb
σa − σb

)
En({k, ε, σ})2, (2.4)

where σab = σa − σb, and∏
a

′δ

(∑
b6=a

ka · kb
σa − σb

)
= σijσjkσki

∏
a6=i,j,k

δ

(∑
b 6=a

ka · kb
σa − σb

)
. (2.5)
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This is independent of the choice of i, j and k; therefore, it is permutation symmetric.

Meanwhile, the object En({k, ε, σ}) is a gauge-invariant function of the polarisations εa of

the particles. Moreover, it is symmetric under permutations of the particles. It is most

easily described in terms of an antisymmetric 2n × 2n matrix Ψ, which is given in block

form as

Ψ =

(
A −CT

C B

)
. (2.6)

The n× n blocks of Ψ are defined by

Aab =


ka · kb
σab

a 6= b,

0 a = b,

(2.7)

Bab =


εa · εb
σab

a 6= b,

0 a = b,
(2.8)

Cab =


εa · kb
σab

a 6= b,

−
∑
c6=a

εa · kc
σac

a = b.
(2.9)

The Pfaffian of Ψ vanishes; however, leaving out two rows i and j (1 ≤ i < j ≤ n) as

well as the corresponding columns i and j yields a matrix Ψij
ij which has a non-vanishing

Pfaffian. Indeed, the object En({k, ε, σ}) appearing in the amplitudes (2.3) and (2.4) is

En({k, ε, σ}) ≡ Pf ′(Ψij
ij) ≡ 2

(−1)i+j

σij
Pf (Ψij

ij). (2.10)

The delta functions appearing under the integral sign in the amplitudes (2.3) and (2.4)

completely localise the integrals. So, in fact, there are no integrations to do, and the

amplitudes can be expressed as a sum over the (n−3)! solutions of the scattering equations.

A Jacobian occurs on integrating over the delta functions. To describe this Jacobian, we

introduce a matrix Φ with components:

Φab =


ka · kb
σ2
ab

a 6= b,

−
∑
c6=a

ka · kc
σ2
ac

a = b.
(2.11)

This matrix, introduced in [5], is closely connected to the Hodges formula for MHV graviton

amplitudes [16]. Because the delta functions (2.5) instruct us to omit rows i, j and k, we

omit these from the Jacobian determinant. In addition, to gauge fix the SL(2,C) we may

fix the position of three points, say σr, σs and σt. As usual, this gauge-fixing procedure

introduces a factor σrsσstσts into the integral. The result is that the Jacobian determinant

is the minor determinant of Φ, omitting rows i, j and k and columns r, s and t. It is
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convenient to introduce the simple notation

det ′Φ =
|Φ|ijkrst

σrsσstσtsσijσjkσki
. (2.12)

The amplitudes are then written as sums over contributions from distinct solutions of the

scattering equations,

An =
∑

solutions

1

σ12σ23 · · ·σn1

Pf ′Ψ

det ′Φ
, (2.13)

Mn =
∑

solutions

(Pf ′Ψ)2

det ′Φ
. (2.14)

The scattering equations are relevant not just for the scattering of spin 1 and spin 2

particles, but also for the scattering of certain massless scalar theories. These are theories

of scalar fields φaa
′

with a double-coloured cubic vertex, where a and a′ transform under

the adjoint of two groups G and G′. Ref. [28] presents an expression for the amplitudes of

particles of spin s, valid for these scalar theories as well as for gluons and gravitons,

A(s)
n =

∑
solutions

(
Tr(T a1T a2 · · ·T an)

σ12σ23 · · ·σn1
+ non-cyclic permutations

)2−s (Pf ′Ψ)s

det ′Φ
. (2.15)

In the scalar case, we can have distinct groups G 6= G′, or simply distinct algebra indices

ar 6= a′r, so that we should substitute(
Tr(T a1T a2 · · ·T an)

σ12σ23 · · ·σn1
+ . . .

)2

→
(

Tr(T a1T a2 · · ·T an)

σ12σ23 · · ·σn1
+ . . .

)(
Tr(T a

′
1T a

′
2 · · ·T a′n)

σ12σ23 · · ·σn1
+ . . .

)
.

(2.16)

The most remarkable property of the solutions of the scattering equations, which leads

to the simplicity of the formulas above, is the so-called KLT orthogonality, discovered in [5]

and proven in [1]. The KLT relations [17, 34], proven in [35, 36], give a graviton amplitude

as a product of two sets of gauge theory colour-ordered amplitudes,

Mn =
∑

P,P ′∈Sn

An(P )SKLT
n (P, P ′)An(P ′), (2.17)

mediated by a momentum kernel SKLT
n dependent on the Mandelstam variables [31]. This

defines a natural inner product (equivalent to the BCJ double-copy to be reviewed later).

The statement of KLT orthogonality is that the Parke-Taylor amplitudes constructed from

solutions of the scattering equations, e.g.

1

σ12σ23 · · ·σn1
, (2.18)

are orthogonal with respect to the KLT inner product when they arise from two different

solutions. To be more specific, in the KLT product above, let An(P ) denote the permuta-

tions of a Parke-Taylor factor with solution I of the scattering equations, and let An(P ′)

denote the permutations of a Parke-Taylor factor with solution J 6= I; then, the product

vanishes. The consequence of this fact is that the expression for gravity amplitudes (2.14)

contains only one sum over solutions of the scattering equations, and not two sums with

mixed contributions, as would in principle arise from the KLT relations.
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3 Review of the colour-kinematics duality

There are two main aspects to the BCJ story: colour-kinematics duality, and the double-

copy relation between gauge and gravity amplitudes. The duality and the double-copy were

first noticed by Bern, Carrasco and Johansson at tree level [18], and were later generalised

by the same authors to loops [19]. Our focus in this paper will be on tree level, and

therefore we will restrict our review to this case for simplicity.

We begin by discussing colour-kinematics duality. This is a property of amplitudes

in gauge theory (with or without supersymmetry). It is always possible to express gauge

amplitudes as a sum over cubic diagrams. One way to achieve this is to begin with Feynman

diagrams, and then to systematically assign diagrams with four point vertices to cubic

diagrams by introducing the missing propagator denominators with a compensating factor

in the numerator. For example,

1

2 3 4

5

6

=

1

2 3 4

5

6

s34 =

1

2 3 4

5

6

s123. (3.1)

We see that this is not unique. In gauge theory, diagrams are associated not only with

a set of propagators and a kinematic numerator, but also with a colour factor. Since the

colour factors are built from the structure constants f̃abc of the gauge group,1 they are

cubic in nature. Thus, we assign contact terms to cubic diagrams by inspecting their

colour structure, and introducing the missing propagators with compensating factors in

the numerators.

We may therefore express any (colour-dressed) n-point amplitude in a gauge theory as

An =
∑

α∈cubic

nαcα
Dα

, (3.2)

where the sum runs over the set of distinct cubic n-point diagrams. Meanwhile, the objects

nα, cα and Dα are the kinematic numerators, colour factors and (total) propagator denom-

inators associated with the diagram α. The statement of colour-kinematics duality is now

simple. Take any triple (α, β, γ) of diagrams such that their colour factors are related by

a Jacobi identity:

cα + cβ + cγ = 0. (3.3)

It is possible to find a set of valid numerators such that

nα + nβ + nγ = 0. (3.4)

Moreover, these kinematic numerators have the same antisymmetry properties as the colour

factors. If, under interchanging two legs, a colour factor changes sign, then so does the

corresponding kinematic factor:

cα → −cα ⇒ nα → −nα. (3.5)

1Following [18, 19], we use a tilde to specify the normalisation f̃abc = Tr([T a, T b]T c).
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Thus, the kinematic structure mirrors the algebraic structure of the colour factors. In

general, such choice of numerators is non-unique, but non-trivial to find. By now, various

algorithms have been described for finding BCJ numerators; see, for example, [23, 31–

33, 37]. We shall discuss below how the scattering equations are naturally associated with

a certain set of numerators.

Before we move on, let us dwell a little on one previous algorithm for finding BCJ nu-

merators. In fact, the algorithm proposed in [32] is particularly relevant for understanding

the scattering equations, as we shall see. The idea of [32] is simple. There are (n − 3)!

linearly independent colour-ordered gauge amplitudes for n points [18, 38–40]. Thus, we

can view the colour-ordered amplitudes as a vector ~A in an (n− 3)!-dimensional space. It

is straightforward to construct another vector in the same space. Indeed, consider a theory

involving a set of massless scalar fields φaa
′

where a and a′ transform under the adjoint of

two groups G and G′. We suppose that these scalar fields interact only through a cubic

vertex, with Feynman rule f̃abcf̃a
′b′c′ . These are exactly the scalar theories considered in

the previous section. We may then construct colour-ordered amplitudes ~θ for this theory,

with respect to the group G, say. Because the analogues of the kinematic numerators in

this scalar theory are, in fact, directly made of the structure constants of the group G′,

they automatically satisfy colour-kinematics duality, so that there are (n−3)! independent

amplitudes. In short, ~θ is an element of the same vector space as the gauge amplitudes
~A. Since there are infinitely many groups to choose from (and different particle labellings

within each group), we can find many vectors living in this space. Indeed we may find a

basis of this space using the scalar amplitudes. Therefore, the gauge amplitudes ~A are a

linear combination of the scalar amplitudes:

~A =

(n−3)!∑
I=1

α(I)~θ(I), (3.6)

where ~θ(I) is the vector of independent colour-ordered amplitudes of the Ith scalar theory.

Now, consider the kth colour-ordered gauge amplitude; denoting the numerator of the

scalar theory by c′, it is given by

Ak =

(n−3)!∑
I=1

α(I)
∑

α∈kth ordered cubic

c
′(I)
α

Dα
=

∑
α∈kth ordered cubic

1

Dα

(n−3)!∑
I=1

α(I)c′(I)α

 . (3.7)

The α-sum runs over the cubic diagrams in the kth colour order. Notice that the gauge

numerators have been expressed as a linear combination of the c′(I); these automatically

satisfy Jacobi identities because they are built from the structure constants f̃a
′b′c′ of the

group G′. In this way, we can always find colour-dual kinematic numerators. However, to

do so we must invert the linear system (3.6) to compute the expansion coefficients α(I).

We will see that the work of Cachazo, He and Yuan [1, 2] provides a canonical choice

for the basis amplitudes, and an explicit formula for the α(I). In particular, the basis is

orthogonal with respect to the natural inner product, the double-copy formula, which we

briefly review below.
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One intriguing aspect of colour-kinematics duality is that it suggests that there exists

an algebraic structure which can be used to directly compute BCJ numerators in gauge

theories, including at loop level, using a procedure analogous to Feynman rules. However,

to date an understanding of this algebraic structure remains elusive, except in the special

case of self-dual Yang-Mills theory in four dimensions [20]. In the self-dual theory, it is

known that the kinematic algebra is an area-preserving diffeomorphism algebra. It was also

shown in [20] that colour-dual kinematic numerators for MHV amplitudes in (full) Yang-

Mills theory can be computed directly from a knowledge of the self-dual theory, using a

particular choice of gauge. As we shall see below, the scattering equations allow us to

extend essentially the same structure to the full theory, in any dimension, and for any

polarisation of the external particles. Since this material is central to this paper, we will

review it in detail in section 4.

The second major aspect of the BCJ story [18, 19] is the double-copy formula which

relates gauge amplitudes and gravitational amplitudes. Given a set of colour-dual kine-

matic numerators nα, valid for an n-point gauge amplitude, there is an associated gravita-

tional amplitude2

(−2)n−3Mn =
∑
α

nαnα
Dα

. (3.8)

That is, the gravitational amplitude is obtained from the gauge amplitude by replacing the

colour factors of the gauge amplitude by another copy of the kinematic numerators. More

generally, we may build a gravitational amplitude using n-point numerators of different

gauge theories. For example, we may construct a gravitational amplitude from one set of

pure Yang-Mills numerators nα and a set of N = 4 super-Yang-Mills numerators ñα. The

result is an amplitude in N = 4 supergravity, given by

(−2)n−3Mn =
∑

α∈cubic

nαñα
Dα

. (3.9)

In fact, only one of the numerators, nα or ñα, needs to satisfy the colour-kinematics duality.

The double-copy formula has been proven at tree level [28, 41]. This procedure is therefore

equivalent to the KLT relations.

At loop level, the colour-kinematics duality remains conjectural. However, it has been

verified in various examples [21, 22, 42–50].

4 Self-duality and the scattering equations

We will start by reviewing the kinematic algebras arising in (anti)-self-dual gauge theory,

and their relation to the colour-kinematics duality [20]. Then we will see that an extension

of these algebras applies more generally in the context of the scattering equations.

4.1 Self-dual and anti-self-dual sectors in four dimensions

Consider four-dimensional gauge theory in light-cone gauge, with light-cone coordinates

(u, v, w, w̄). We will follow the discussion in [20]. The spacetime metric is defined such

2We are fixing the normalisation of gravitational amplitudes according to (2.14).
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that, for any two four-vectors A and B,

2A ·B = AuBv +AvBu −AwBw̄ −Aw̄Bw. (4.1)

We take the polarisation vectors to be

ε+
a = (0, kaw, 0, kau), ε−a = (0, kaw̄, kau, 0), (4.2)

so that they satisfy

ε±a · ε±b = 0, 2ε+
a · ε−b = −kaukbu. (4.3)

The contraction of the polarisation vectors with the momenta determines two antisymmet-

ric bilinear forms of interest,

2ε+
a · kb = kawkbu − kaukbw ≡ Xa,b, (4.4)

2ε−a · kb = kaw̄kbu − kaukbw̄ ≡ X̄a,b, (4.5)

and we have

sab =
Xa,bX̄a,b

kaukbu
. (4.6)

While the latter equation is valid only if ka and kb are on-shell, we can extend the defi-

nitions (4.4)–(4.5) to allow for momenta k which are not massless; for instance X1+2,3 =

X1,3 + X2,3. For clarity, we will use capital Greek letters A,B, . . . to denote off-shell mo-

menta later on.

Let us connect these quantities to the scattering equations. We write a four-vector

with spinorial indices as

kαα̇ =

(
ku kw
kw̄ kv

)
. (4.7)

If the four-vector is on-shell, then this matrix is singular, and it can be written in terms of

two spinors as kαα̇ = λαλ̃α̇. Let us choose these spinors to be

λα =

(
1

σ

)
, λ̃α̇ =

(
ku
kw

)
, where σ =

kw̄
ku

=
kv
kw
. (4.8)

We can now define the spinor products (ε12 = −1)

〈ab〉 = εαβλ(a)
α λ

(b)
β = σa − σb =

X̄a,b

kaukbu
, (4.9)

[ab] = −εα̇β̇λ̃(a)
α̇ λ̃

(b)

β̇
= −Xa,b. (4.10)

From the relation (4.6), or equivalently sab = 〈ab〉[ba], we obtain

Xa,b =
sab

σa − σb
. (4.11)

Notice that, from the definitions (4.4)–(4.5) and from momentum conservation, we have∑
b 6=a

Xa,b = 0,
∑
b 6=a

X̄a,b = 0. (4.12)
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These identities take the form of the scattering equations (2.1). The identity on the left

corresponds to σa = kaw̄/kau, as considered above, while the identity on the right can be

seen as the equivalent statement for its conjugate σ̄a = kaw/kau. So, in four dimensions and

for n > 4, these are always two of the solutions to the scattering equations. In particular,

these two solutions give the single non-vanishing contribution to the MHV and the MHV

amplitudes, respectively; the factor Pf ′Ψ in the expression (2.13) vanishes for the other

solutions with such a choice of polarisations. The n = 4 case, where MHV= MHV, is

special: there is a single solution to the scattering equations, and indeed the two solutions

discussed above are the same, up to an SL(2,C) transformation. To see this, let us fix the

SL(2,C) freedom by performing a transformation such that (σ1, σ2, σ3)→ (∞, 0, 1). Then

σ4 → σ′4 =
(σ1 − σ3)(σ2 − σ4)

(σ1 − σ4)(σ2 − σ3)
. (4.13)

The cross ratio on the right-hand-side is equal to its conjugate (σ̄ replacing σ), since

(σ1 − σ3)(σ2 − σ4)

(σ1 − σ4)(σ2 − σ3)
=
s13

s14

X1,4(σ2 − σ4)

X1,3(σ2 − σ3)
= −s13

s14
, (4.14)

where we used momentum conservation for the second equality, X1,3(σ2 − σ3)

= −X1,4(σ2 − σ4).

The action of SL(2,C) on this type of solution to the scattering equations,

σ → σ′ =
Aσ +B

Cσ +D
, AD −BC = 1, (4.15)

corresponds to the standard action of SL(2,C) on the spinor λ,

λα → λ′α =

(
D C

B A

)(
1

σ

)
= t

(
1

σ′

)
, t = Cσ +D, (4.16)

followed by a rescaling of the other spinor, λ̃α̇ → λ̃′α̇ = t−1λ̃α̇.

Our interest in the quantity XA,B arises from the fact that it is the kinematic part of

the vertex of self-dual gauge theory [51, 52]:

@
@

@@

�
�

��

= (2π)4δ(4)(KA +KB +KC)XA,B f
aAaBaC .

A

B

C (4.17)

Seeing the vertex as part of a trivalent graph, KA,KB,KC correspond to sums of momenta

of the external particles; for instance, if KA = k1 +k2 and KB = k3, then XA,B = X1+2,3 =

X1,3 +X2,3. A basic condition for XA,B to represent a vertex is that we can read it with any

two of the three legs meeting at that vertex, e.g. XA,B = XB,C = XC,A in the figure above.

This is ensured by momentum conservation, and by the fact that X is an antisymmetric

bilinear form.
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Next, we review how this vertex is related to the colour-kinematics duality, as shown

in [20]. The main point is that the vertex XA,B is the structure constant of a Lie algebra.

In particular, it is the Lie algebra of area-preserving diffeomorphisms in the plane w − u,

generated by the vectors

V +
A = −2e−iKA·xε+A · ∂ such that [V +

A , V
+
B ] = iXA,BV

+
A+B. (4.18)

We take the definition (4.2) of the polarisation vectors to extend to off-shell momenta. The

Jacobi identity involving the generators leads to

XA,BXA+B,C +XB,CXB+C,A +XC,AXC+A,B = 0. (4.19)

Therefore, in self-dual gauge theory, we have a single cubic vertex whose kinematic part

satisfies Jacobi identities, exactly like the colour part. This is the simplest manifestation of

the colour-kinematics duality, since the duality is satisfied already by Feynman diagrams.

Now we can write BCJ numerators for self-dual gauge theory. Consider, for instance,

the four-point case. The numerators corresponding to the three channels, associated to the

colour factors

f̃a1a2bf̃ ba3a4 , f̃a2a3bf̃ ba1a4 , f̃a3a1bf̃ ba2a4 , (4.20)

are given by

n12,34 = αX1,2X3,4, n23,14 = αX2,3X1,4, n31,24 = αX3,1X2,4, (4.21)

respectively. We introduced a factor α which is independent of the particle ordering, and

which takes into account overall factors coming from polarisations and their normalisation;

we are not interested in this factor for now. The construction of numerators in general is

straightforward. To give a more elaborate example, consider the seven-point trivalent graph

f̃a1a2bf̃ ba3cf̃ cdef̃da4a5 f̃ea6a7 , (4.22)

whose numerator is

n = αX1,2X1+2,3X4+5,6+7X4,5X6,7. (4.23)

We described how to find BCJ numerators for self-dual gauge theory. However, the

tree-level scattering amplitudes of self-dual gauge theory vanish. They correspond to he-

licity configurations where there is a single external particle with negative helicity, and it

is well known that such amplitudes vanish by Ward identities (for n > 3). To see that

there is a single particle with negative helicity, notice that a self-dual field is generated

perturbatively by positive helicity sources. In a Feynman diagram expansion of the field,

the external legs are the sources and the field itself. If we take the sources to have incoming

momentum, then the field has positive helicity if it is seen as outgoing. However, if we

take it to be incoming, like the sources, then it has negative helicity. Later on, we will

describe how to construct BCJ numerators for any tree-level amplitude from the scattering

equations, by generalisation of the self-dual case.

Let us point out that the S-matrix of self-dual gauge theory is not trivial, that is, there

exist non-vanishing gauge theory amplitudes which rely only on the self-dual vertex. These
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are the one-loop amplitudes where all the particles have positive helicity. Therefore, this

infinite class of amplitudes can be easily shown to possess BCJ numerators, as discussed

in [22].

4.2 Generalisation from the scattering equations

In this section, we will extend the concept of the self-dual vertex discussed above so that

it applies to a generic solution of the scattering equations, independently of the number of

spacetime dimensions.

A natural observation is that solutions still come in pairs in a certain sense. If our

choice of external momenta is such that the Mandelstam variables sab are real-valued, then

the complex conjugate of a solution to the scattering equations is clearly also a solution.

However, it is not clear that one can obtain a relation analogous to (4.6) from those two

conjugate solutions; indeed, generically it is not possible. To be more precise, let us define

these quantities for a given solution σa of the scattering equations as

Xa,b ≡
sab

σa − σb
, X̄a,b ≡ (σa − σb)hahb, (4.24)

and we also set Xa,a ≡ 0. We introduced the quantities ha, which are the analogues of the

pau from the previous section, so that the definition of X̄a,b generalises the relation (4.9).

The ha must obey the constraints

n∑
a=1

ha =

n∑
a=1

σaha = 0, (4.25)

so that we still have ∑
b 6=a

Xa,b = 0,
∑
b 6=a

X̄a,b = 0. (4.26)

We shall impose no other constraints on the ha. The question of whether X and X̄ are

obtained from conjugate solutions is very simple: can X̄a,b, as defined in (4.24), be given by

X̄a,b = sab/(σ̄a − σ̄b) for a solution to the scattering equations denoted by σ̄a? To address

this question, one can try to solve the equations

Xa,bX̄a,b = sabhahb (4.27)

using X̄a,b = sab/(σ̄a− σ̄b). We find numerically that there is no solution for ha in general,

unless the pair of solutions σa and σ̄a admits a four-dimensional interpretation in terms of

projective holomorphic and anti-holomorphic spinors, as in the previous section.3 Hence-

forth, we will consider X̄a,b without assuming that it is in any way related to solutions of

the scattering equations other than the one used in its definition (4.24).

The generalisation (4.24) of the vertices X and X̄ breaks the symmetry between them

encountered in the previous section, but maintains a crucial property: the equations (4.26).

3Notice that this is always the case at five points, since the scattering occurs in a four-dimensional

subspace (due to momentum conservation). Beyond five points, it is only possible generically in four

spacetime dimensions, and there is a single pair of such solutions.
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We shall now see that these equations give the consistency condition for X (or X̄) to behave

like a three-point vertex (4.17). Let us define the “off-shell” version of X as

XA,B =
∑
a∈{A}

Xa,B =
∑
b∈{B}

XA,b =
∑
a∈{A}

∑
b∈{B}

Xa,b, (4.28)

where {A} and {B} are two sets of external particles. The picture is that, for a vertex

like (4.17) in a tree-level graph, we have a partition of the external particles into the three

sets {A}, {B} and {C}. These sets contain the particles connected through the graph to

the lines A, B and C of the vertex, respectively. Then we must have, as a consistency

condition, that the vertex can be read with any two of the three lines,

XA,B = XB,C = XC,A. (4.29)

This is precisely what the scattering equations guarantee. Let us see this in detail,

XA,B =
∑
a∈{A}

∑
b∈{B}

Xa,b = −
∑
a∈{A}

∑
c/∈{B}

Xa,c

= −
∑
a∈{A}

∑
c∈{A}

Xa,c −
∑
a∈{A}

∑
c∈{C}

Xa,c = −XA,C = XC,A. (4.30)

The scattering equations where used in the second equality, first line. From the first to the

second line, we used that the complement of {B} is {A}∪{C}. In the second line, the first

term vanishes because XA,A = 0.

Consider now a partition of the external particles into four sets, {A}, {B}, {C}, {D},
corresponding to the four lines involved in a Jacobi identity. The Jacobi identity for the

vertices X (or X̄) follows directly from (4.29), and therefore from the scattering equations:

XA,BXC,D +XB,CXA,D +XC,AXB,D

= −XA,B(XC,A +XC,B)−XB,C(XA,B +XA,C)−XC,A(XB,A +XB,C) = 0. (4.31)

We have defined objects X and X̄ which can be interpreted as the kinematic part of

cubic vertices, and which obey Jacobi identities. These Jacobi identities imply that we are

dealing with Lie algebras,

[V̂ +
A , V̂

+
B ] = iXA,BV̂

+
A+B, [V̂ −A , V̂

−
B ] = iX̄A,BV̂

−
A+B. (4.32)

The näıve extension of the representation (4.18) doesn’t work; there is in general no set

of vectors ε̂+
a such that 2ε̂+

a · kb = Xa,b, mirroring (4.4). Nevertheless, there are Lie

algebras whose generators V̂ ±A can be associated to lines in a trivalent graph. We will see

in later sections how the elements V̂ ±A can be used to write BCJ numerators for gauge

theory amplitudes.

4.3 Proof of the vanishing of the X-amplitudes

It is now natural to address the following question. The vertices X from the previous

section, corresponding to anti-holomorphic spinor brackets in four dimensions (and their
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off-shell extension) led to BCJ numerators for tree-level self-dual amplitudes. These am-

plitudes vanish, although the individual numerators don’t. So we would like to know what

happens if we consider a certain solution to the scattering equations, σa, and compute the

“amplitudes” constructed uniquely from the vertices X associated to σa, which we can call

the X-amplitudes. We find that they vanish for n ≥ 4, just like in the self-dual case. On

the other hand, we find that the analogous X̄-amplitudes don’t vanish. (For the special

four-dimensional solutions to the scattering equations, the vanishing of the X̄-amplitudes

requires specific values for the ha, corresponding to pau.)

The proof that the X-amplitudes vanish closely follows an argument given by

Cangemi [51]. First, notice that the scattering equations for n particles imply that,

for m ≤ n,
m−1∑
j=1

j∑
s=1

m∑
t=j+1

Xs,tσj,j+1 = (p1 + · · ·+ pm)2. (4.33)

We may prove this result by a simple rearrangement of the summation:

m−1∑
j=1

j∑
s=1

m∑
t=j+1

Xs,tσj,j+1 =
∑

1≤s≤j<t≤m
Xs,tσj,j+1 (4.34)

=
∑

1≤s<t≤m
Xs,tσs,t (4.35)

=
∑

1≤s<t≤m
ss,t (4.36)

=

(
m∑
s=1

ps

)2

. (4.37)

We will begin with a simple example at four points. The colour-ordered X-amplitude is

A(X)(1, 2, 3, 4) = A
(X)
4 =

X1,2X3,4

s12
+
X4,1X2,3

s23
=
σ23 (X1,3 +X2,3) + σ12 (X1,2 +X1,3)

σ12σ23
.

(4.38)

By eq. (4.33), we see that we get the simple result

A
(X)
4 =

p2
4

σ12σ23
. (4.39)

Thus, when p4 is on shell, the amplitude vanishes. We can also consider the case p2
4 6= 0;

for example, this could be a four-point subamplitude of a larger amplitude. Indeed, let us

consider the five-point X-amplitude as a further illustration. The amplitude is

A
(X)
5 =

X1,2X3,4X1+2,3+4

s12s34
+

(
X1,2X1+2,3

s12
+
X2,3X1,2+3

s23

)
X4,5

s123

+

(
X2,3X2+3,4

s23
+
X3,4X2,3+4

s34

)
X5,1

s234
. (4.40)

The last two terms in this expression have the structure of off-shell colour-ordered four-

point subdiagrams, connected to a three-point tree involving particle 5. Meanwhile, the
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m+ 1

1
2

j + 1

K

Q

j

m

j + 2

J

J

Figure 1. Construction of X-amplitudes using Berends-Giele recursion.

first term includes two three-point vertices, which we view as off-shell colour-ordered three-

point subdiagrams, connected to a three-point tree involving particle 5. Thus,

A
(X)
5 =

1

σ12σ34
X1+2,3+4 +

(p1 + p2 + p3)2

σ12σ23

X4,5

s123
+

(p2 + p3 + p4)2

σ23σ34

X5,1

s234
(4.41)

=
1

σ12σ23σ34
(σ23X1+2,3+4 + σ34X1+2+3,4 + σ12X1,2+3+4) (4.42)

=
p2

5

σ12σ23σ34
. (4.43)

Once again, we see that the amplitude vanishes.

We will prove that the X-amplitudes always vanish by induction. These amplitudes

can be constructed recursively in terms of graphs with one leg off shell, using Berends-

Giele recursion [53]; see figure 1. The concept is simple; let us consider a subgraph with

m external legs and a single internal leg (from the point of view of the complete graph),

which we can call m+ 1. This leg is off-shell until the last stage of the recursion, when we

get the complete graph, in which case it is the last remaining external leg. The leg m+ 1

must connect to a three-point vertex. The other legs of this vertex, call them K and Q,

connect to colour-ordered subdiagrams with a single off-shell leg. Let us define this single

off-shell graph, with j on-shell legs and a final leg K off shell to be J(1, 2, . . . , j;K). By

recursion, the object J satisfies

J(1, 2, . . . ,m;m+ 1) =
m−1∑
j=1

J(1, 2, . . . , j;K)J(j + 1, j + 2, . . . ,m;Q)
1

K2

1

Q2
XK,Q. (4.44)

The colour-ordered amplitude may simply be obtained as

A(X)(1, 2, . . . , n) = J(1, 2, . . . , n− 1;n)
∣∣
p2n=0

. (4.45)

We adopt the inductive hypothesis that

J(1, 2, . . . ,m;m+ 1) =
1

σ12σ23 · · ·σm−1,m

(
m∑
s=1

ps

)2

(4.46)
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holds for m+1 ≤ n; this is easily checked for small n, as in the four and five-point examples

above. Now, consider the m+ 2 point case, obtained from the recursion formula:

J(1, 2, . . . ,m+ 1;m+ 2) =
1

σ12σ23 · · ·σm,m+1

m∑
j=1

X1+...+j,(j+1)+...+(m+1)σj,j+1, (4.47)

=
1

σ12σ23 · · ·σm,m+1

(
m+1∑
s=1

ps

)2

, (4.48)

where we have used the identity eq. (4.33). Thus, our inductive hypothesis is proven,

and consequently all the X-amplitudes (with the exception of the three-point case) vanish

identically.

5 BCJ numerators from the scattering equations

In this section, we will show how to construct BCJ numerators based on elements of the

Lie algebras associated to solutions of the scattering equations. We will start by giving

the general idea, and then we will present the complete BCJ numerators. Finally, we will

consider a special SL(2,C) frame in which the numerators simplify, allowing for a simple

proof of their validity.

5.1 Numerators from commutators: the idea

The starting point is a very simple observation. Consider three-point scattering, and take

vectors of the type

Va = e−ika·xεa · ∂, a = 1, 2, 3, (5.1)

as an example. The most natural Lorentz invariant quantity constructed from the vectors is

V1 · [V2, V3] + V2 · [V3, V1] + V3 · [V1, V2]

= −ie−i(k1+k2+k3)·x
(

(ε1 · ε2)(k1 − k2) · ε3 + (ε2 · ε3)(k2 − k3) · ε1

+ (ε3 · ε1)(k3 − k1) · ε2

)
. (5.2)

Indeed, this is the three-point gluon amplitude. The natural generalisation to four points,

in the case of the s12-channel, is

n12,34 = V1 · [V2, [V3, V4]] + V2 · [[V3, V4], V1] + V3 · [V4, [V1, V2]] + V4 · [[V1, V2], V3], (5.3)

which corresponds to the colour factor f̃a1a2bf̃ ba3a4 . Notice how the structure of the com-

mutators reflects the orientation of the vertices. Viewing this quantity as a numerator, it

turns out that the BCJ Jacobi identities follow from the standard Jacobi identities of the

algebra of spacetime vectors,

n12,34 + n23,14 + n31,24 =

= V1 · ([V2, [V3, V4]] + [V3, [V4, V2]] + [V4, [V2, V3]])

+ V2 · ([V3, [V1, V4]] + [V1, [V4, V3]] + [V4, [V3, V1]])

+ V3 · ([V1, [V2, V4]] + [V2, [V4, V1]] + [V4, [V1, V2]])

+ V4 · ([[V1, V2], V3] + [[V2, V3], V1] + [[V3, V1], V2]) = 0. (5.4)
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It is straightforward to generalise this construction for any number of external particles,

so that the Jacobi identities hold. Take the example (5.3). If we substitute Vr by T ar and

the · product by standard matrix multiplication, and then take the trace, we find that each

term reproduces the corresponding colour factor. This will be the general rule. So, the

numerator of the trivalent graph α is

nα =
n∑
a=1

Va ·G(α)
a , (5.5)

where G
(α)
a is the commutator structure of graph α as read from particle a. Let us give

another example, the seven-point graph with colour factor

f̃a1a2bf̃ ba3cf̃ cdef̃da4a5 f̃ea6a7 . (5.6)

Its numerator is

n = V1 · [V2, [V3, [[V4, V5], [V6, V7]]]] + V2 · [[V3, [[V4, V5], [V6, V7]]], V1]

+ V3 · [[[V4, V5], [V6, V7]], [V1, V2]]

+ V4 · [V5, [[V6, V7], [[V1, V2], V3]]] + V5 · [[[V6, V7], [[V1, V2], V3]], V4]

+ V6 · [V7, [[[V1, V2], V3], [V6, V7]]] + V7 · [[[[V1, V2], V3], [V6, V7]], V6]. (5.7)

Our BCJ numerators for gluon amplitudes will be based on the same idea, although

the algebras do not admit this representation in general. The idea described here follows

from the self-dual story that we saw before, and it was presented in [54, 55], where it was

claimed to apply directly to MHV amplitudes, which is a particular case of the analysis to

be presented next. The idea was also presented independently in [37], where it was used

to obtain basis amplitudes in the spirit of [32].

5.2 BCJ numerators from kinematic algebras

We will construct BCJ numerators for each contribution to the gauge theory amplitude

corresponding to a solution of the scattering equations. According to (2.13), each of these

contributions is of the type

Parke-Taylor factor × permutation-invariant factor. (5.8)

The permutation-invariant factor can be pulled out. Therefore, we are really looking for

BCJ numerators reproducing the Parke-Taylor amplitudes,

A(I)
PT =

Tr(T a1T a2 · · ·T an)

σ
(I)
12 · · ·σ

(I)
n1

+ non-cyclic permutations, (5.9)

where I denotes the particular solution to the scattering equations. Below, we will omit

the label I in order to simplify the notation.

The Lie algebras (4.32) associated to each solution of the scattering equations are not

of the same type as the Lie algebra discussed in the subsection above. However, the latter
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will serve as inspiration. First, it will be convenient to define the action of an element of

the Lie algebra on another as, in the case of the X-algebra,

V̂ +
A V̂

+
B = iXA,BV̂

+
A|B. (5.10)

Here, V̂ +
A|B is not itself an element of the X-algebra, but satisfies the property

V̂ +
A|B + V̂ +

B|A = V̂ +
A+B. (5.11)

This is consistent with [V̂ +
A , V̂

+
B ] = iXA,BV̂

+
A+B, and it clearly mirrors the vector algebra

seen above, where (5.10) corresponds to the first part of the vector commutator. Based on

this idea, and further specifying V̂ ±∅|A = V̂ ±A , we define

V̂ +
A|BV̂

±
C|D = iXB,C+DV̂

±
A+B+C|D, (5.12)

V̂ −A|BV̂
±
C|D = iX̄B,C+DV̂

±
A+B+C|D. (5.13)

Moreover, we define a symmetric product ∗ such that

V̂ ±A|B ∗ V̂
±
C|D = 0, V̂ +

A|B ∗ V̂
−
C|D =

{
−2hBhD if KA +KB +KC +KD = 0,

0 otherwise.
(5.14)

where hA =
∑

a∈{A} ha.

The sole goal of these definitions, for our purposes, is to determine objects such as, at

four points,

V̂ −1 ∗ V̂
+

2 V̂ +
3 V̂ +

4 = 2X2,3+4X3,4h1h4 = 2X1,2X3,4h1h4, (5.15)

where we used the scattering equations. If we consider commutators, and recall the condi-

tions (4.25) on the ha, we get

V̂ −1 ∗ [V̂ +
2 , [V̂ +

3 , V̂ +
4 ]] = 2X1,2X3,4h1(h2 + h3 + h4) = −2h2

1X1,2X3,4. (5.16)

We can now consider complete numerators such as

n1−2+,3+4+ = V̂ −1 ∗ [V̂ +
2 , [V̂ +

3 , V̂ +
4 ]] + V̂ +

2 ∗ [[V̂ +
3 , V̂ +

4 ], V̂ −1 ]

+V̂ +
3 ∗ [V̂ +

4 , [V̂ −1 , V̂ +
2 ]] + V̂ +

4 ∗ [[V̂ −1 , V̂ +
2 ], V̂ +

3 ], (5.17)

which satisfy Jacobi identities exactly for the same reason as in (5.4). The extension

of this construction of numerators to n points is straightforward, as pointed out in the

previous subsection.

Regarding numerators where only one of the V̂ ’s is of the (−) type, as in the example

above, there are two important observations to make, which extend to any number of

particles.4 The first is that we do not need to consider a sum over all the particles when

we take V̂a ∗ [commutators]. For instance, in our example,

n1−2+,3+4+ = −4h2
1X1,2X3,4 = 2 V̂ −1 ∗ [V̂ +

2 , [V̂ +
3 , V̂ +

4 ]]. (5.18)

4Notice that (±) does not refer to the polarisation of the external particles. That information is included

in the permutation-invariant factor, as mentioned in (5.8). The labels (±) will be used only in reproducing

the Parke-Taylor factor.
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In general, the sum over all the particles is equivalent to considering only the (−) particle,

up to a factor of two; i.e. for graph α, if r labels the (−) particle, we have

nα,r =

n∑
a=1

V̂a ∗ Ĝ(α)
a = 2V̂ −r ∗ Ĝ(α)

r . (5.19)

We have verified this numerically, but it would be nice to have a proof.

The second observation is that numerators with a single (−) particle contain only X

vertices, apart from an overall factor proportional to h2
r . Therefore, these are the numer-

ators of what we called X-amplitudes. We have proven previously that these amplitudes

vanish, even though the numerators do not. Notice also that, if we only had (+) particles,

the numerators themselves would vanish due to the product ∗.
We now proceed to the main result of this paper. The Parke-Taylor amplitude (5.9)

is obtained with a very simple prescription: we consider numerators of the type described

above but with two (−) particles. Let these particles be r and s. We obtain

APT = αrs
∑

α∈cubic

nα, rscα
Dα

, (5.20)

where the factor αrs, which is independent of the particle ordering, is given by

αrs = −

[
4in(σr − σs)2hrhs(hr + hs)

n∑
a=1

σ2
aha

]−1

. (5.21)

The special dependence of αrs on particles r and s compensates that of the numerators

nα, rs, so that the choice of these particles is irrelevant for APT. We view this fact as an

analogue of choosing arbitrarily two columns/rows to be eliminated in the Pf ′Ψ defined

in (2.10). For two (−) particles, we find the property analogous to (5.19) that

nα,rs =

n∑
a=1

V̂a ∗ Ĝ(α)
a = 2

(
V̂ −r ∗ Ĝ(α)

r + V̂ −s ∗ Ĝ(α)
s

)
. (5.22)

We emphasise that these results do not depend on the values of the quantities ha, as long

as they obey the conditions (4.25).

We conclude that a natural choice of BCJ numerator for graph α in a gauge theory

amplitude is

nα =

(n−3)!∑
I=1

α(I)
rs n

(I)
α, rsΥ

(I), with Υ(I) =
Pf ′Ψ(I)

det ′Φ(I)
, (5.23)

where we reintroduced the label I of each solution to the scattering equations. Since the

factors α
(I)
rs and Υ(I) are independent of the particle ordering, the complete BCJ numerators

nα satisfy the same Jacobi identities as the numerators n
(I)
α, rs.

5.3 Proof of BCJ numerators with reference particle

We have presented above the complete BCJ numerators based on the kinematic algebras.

Their validity has been verified numerically up to eight points. In the following, we will
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use a certain SL(2,C) frame in order to obtain a simpler form of the numerators, which

allows us to prove their validity for any multiplicity. This form of the numerators reduces

to the one described in [20] for MHV amplitudes.

We mentioned above that the numerators obtained with the elements V̂ ±a are, in the

case of one (−) particle, the numerators of an X-amplitude (which vanishes), and, in the

case of two (−) particles, the numerators of a Parke-Taylor amplitude (up to a permutation-

invariant factor). In the case of one (−) particle, there are only X vertices, while in the

case of two (−) particles there is a single X̄ vertex, the rest being X vertices. This is easily

checked by direct inspection. We are interested in the case of two (−) particles, and we

want to choose an SL(2,C) frame such that we force the single vertex X̄ to be attached

to a certain external particle. Let us say that this reference particle is particle n. This is

achieved by taking the limit

σn →∞. (5.24)

In this limit, due to the second condition in (4.25), we must have also hn → 0, so that

σnhn is finite. Therefore, we have

Xn,A → 0, X̄n,A → (σnhn)hA, (5.25)

which leads to the vanishing of all the contributions for which particle n is attached to an

X vertex, rather than the X̄ vertex. It is then trivial to write down the BCJ numerators:

they are the same as for the X-amplitudes, except that one of the vertices — the one at-

tached to particle n — is X̄. Therefore, all the Jacobi identities involving only X vertices

are satisfied. The only additional requirement is that the Jacobi identities involving prop-

agators connected to particle n are also satisfied. If the other three (generically off-shell)

lines connected to such a propagator are A, B and C, we have

X̄n,AXB,C + X̄n,BXC,A + X̄n,CXA,B

→ (σnhn) (hAXB,C + hBXC,A + hCXA,B)

= (σnhn) (hA(XB,C +XB,A) + hB(XC,A +XB,A)− hnXA,B)

= (σnhn) (hAXn,B + hBXA,n − hnXA,B)

→ 0, (5.26)

where we used the condition
∑

a ha = 0 in the third line and the scattering equations in

the fourth line.

We now proceed to prove the validity of these BCJ numerators using Berends-Giele

recursion. The procedure is essentially the same as in section 4.3, except that the final

vertex in the recursion is not X, but X̄. Therefore,

APT(1, 2, . . . , n) = αn

n−2∑
j=1

J(1, 2, . . . , j;K)J(j + 1, j + 2, . . . , n− 1;Q)
1

K2

1

Q2
X̄n,K (5.27)

= αn
1

σ12σ23 · · ·σn−2,n−1

n−2∑
j=1

X̄n,1+...jσj,j+1, (5.28)
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where αn is a proportionality coefficient independent of particle ordering. It is useful to

rearrange the summation on the last line:

n−2∑
j=1

X̄n,1+...jσj,j+1 =
∑

1≤s≤j<n−1

X̄n,sσj,j+1 =

n−2∑
s=1

X̄n,s(σs − σn−1) =

n−1∑
s=1

X̄n,sσs, (5.29)

where we used the equation (4.26) for X̄ in the last equality. In our limit, we can use∑
a σaha = 0 to see that

n−2∑
j=1

X̄n,1+...jσj,j+1 = σnhn

n−1∑
j=1

hsσs = −(σnhn)2, (5.30)

which is a finite quantity. Finally, if we set

αn =
1

σ2
n(σnhn)2

, (5.31)

we obtain the correct Parke-Taylor amplitude in our limit,

APT(1, 2, . . . , n) =
1

σ12σ23 · · ·σn−2,n−1(−σn)σn
. (5.32)

6 Gravity amplitudes and colour-dual traces

In the previous section, we have obtained BCJ numerators for gauge theory amplitudes.

The BCJ double-copy to gravity guarantees that we also obtain expressions for gravity

amplitudes. In particular, we have, from the result (5.23),

(−2)n−3Mn =
∑
α

nαnα
Dα

=

(n−3)!∑
I=1

(n−3)!∑
J=1

α(I)
rs α

(J)
rs Υ(I)Υ(J)

∑
α

n
(I)
α, rsn

(J)
α, rs

Dα
,

Υ(I) =
Pf ′Ψ(I)

det ′Φ(I)
. (6.1)

The BCJ counterpart of KLT orthogonality is

∑
α

n
(I)
α, rsn

(J)
α, rs

Dα
= 0 for I 6= J. (6.2)

This leads to the simplification

(−2)n−3Mn =

(n−3)!∑
I=1

(
Pf ′Ψ(I)

det ′Φ(I)

)2

α(I)
rs

2∑
α

n
(I)
α, rsn

(I)
α, rs

Dα
. (6.3)

Agreement with the expression (2.14) implies that

α(I)
rs

2∑
α

n
(I)
α, rsn

(I)
α, rs

Dα
= (−2)n−3det ′Φ(I). (6.4)
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We have verified this result numerically up to eight points. Therefore, we have obtained a

natural expansion for the Jacobian det ′Φ(I) in terms of trivalent graphs.

The kinematic algebras allow us to perform a different type of squaring to gravity,

proposed in [56]. This is based on the substitution of the standard colour traces of gauge

theory, Tr(T a1T a2 · · ·T an), by kinematic analogues, τ(1,2,...,n), which share the cyclic sym-

metry. The gauge theory amplitude can be written in terms of the “kinematic traces”, or

colour-dual traces [56], as

An =
∑

non-cyclic

Tr(T a1T a2 · · ·T an)A(1, 2, . . . , n)

=
∑

non-cyclic

τ(1,2,...,n) θ(1, 2, . . . , n), (6.5)

where the sums run over non-cyclic permutations of the external labels. Here, θ is a dual

amplitude constructed from the colour-ordered gauge theory amplitude A by replacing all

kinematic numerators with color factors, i.e. ni → ci. We can view θ as the amplitude of

a cubic massless scalar theory with two Lie groups that is colour-ordered with respect to

one of the groups; we mentioned these theories in sections 2 and 3. For these theories, we

actually have the double-colour-dressed amplitude

Θn =
∑

non-cyclic

Tr(T a1T a2 · · ·T an) θ(1, 2, . . . , n). (6.6)

The fact that we can write a gauge theory amplitude in the dual form (6.5) implies that

the gravity amplitude can be written as [56]

(−2)n−3Mn =
∑

non-cyclic

τ(1,2,...,n)A(1, 2, . . . , n). (6.7)

Constructions for valid τ(1,2,...,n)’s were also presented in [32, 57, 58].

From our discussion in the previous section, it is easy to write down canonical expres-

sions for these “kinematic traces”. We use objects constructed from elements of the (+)

and (−) Lie algebras. Let us define, for a given solution to the scattering equations,

τ(1,2,...,n),rs = V̂1 ∗ V̂2V̂3 . . . V̂n + cyclic permutations, (6.8)

where two of the particles are of the (−) type, specifically particles r and s, while the

remaining are (+) particles. We find (numerically up to eight points) that

αrs
∑

non-cyclic

τ(1,2,...,n),rs

σ12 · · ·σn1
= (−2)n−3det ′Φ. (6.9)

Finally, reintroducing the label I for each solution to the scattering equations, we can write

the complete “kinematic traces” as

τ(1,2,...,n) =

(n−3)!∑
I=1

α(I)
rs τ

(I)
(1,2,...,n),rsΥ

(I). (6.10)
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We can also point out that the counterpart of KLT orthogonality in terms of “kinematic

traces” is ∑
non-cyclic

τ
(I)
(1,2,...,n),rs

σ
(J)
12 · · ·σ

(J)
n1

= 0 for I 6= J. (6.11)

For completeness, we also comment on the double-copy of the BCJ numerators corre-

sponding to the X-amplitudes. Just like in the well-known four-dimensional self-dual case,

although the numerators constructed only from X vertices don’t vanish, the double-copy

vanishes. If we consider the expressions (6.2) or (6.11), but take the numerators and the

“kinematic traces” to be constructed with a single (−) particle, rather than two, then the

vanishing holds for any I and J .

7 Discussion

We have shown how the scattering equations can be interpreted as a consistency condition

for a quantity which plays the role of a vertex,

Xa,b =
sab

σa − σb
.

We explored the close relationship of this quantity with four-dimensional self-dual gauge

theory, whose vertex is a particular case of the general story presented here. A crucial

characteristic of the self-dual vertex — the fact that it corresponds to the structure con-

stant of a Lie algebra — was seen to extended to the general case. Moreover, we have

demonstrated that the X-amplitudes, which we defined as “amplitudes” constructed solely

from the X vertex and scalar propagators, always vanish, just like tree-level amplitudes in

the self-dual theory.

Using the X vertex and a companion X̄ vertex, which we defined appropriately, we

were able to put together the elements of the respective Lie algebras in order to construct

BCJ numerators for the scattering amplitudes of gauge theory. An interesting problem

would be to obtain explicit representations for the elements V̂ ±A of these Lie algebras

which reproduce our prescriptions. Nevertheless, the prescriptions have also allowed us to

define the kinematic counterparts of colour traces. Finally, we saw how the double-copy to

gravity, performed either with trivalent graphs or with “kinematic traces”, provides natural

decompositions of the determinant det ′Φ, which arises from the integration measure of the

scattering amplitudes.

The results presented here offer a new insight into the extension to loop level of the

formulas for amplitudes based on the scattering equations. We point out that an object

defined essentially as Xa,b, which satisfies both the Jacobi identities and the scattering

equations, plays a role analogous to a vertex in one-loop superstring amplitudes [24]. In

the case of self-dual gauge theory (and self-dual gravity), it is already known that the

kinematic algebras allow for the construction of one-loop rational amplitudes [22]; and there

is a closely related story for one-loop amplitudes in N = 4 super-Yang-Mills theory [21].
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