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Abstract

A purely electrical sensing scheme is presented that determines the concentration of
macromolecules in solution by measuring the capacitance between planar
microelectrodes. Concentrations of DNA in the ng/mL range have been used in samples
of 1 L volume. The method has been applied to the characterisation of the
dielectrophoretic response of DNA without the need for any chemical modifications. The
influence of electrical parameters like duty cycle, voltage and frequency has been
investigated. The results are in good agreement with data from dielectrophoretic studies
on fluorescently labelled DNA. Extension of the method down to the single molecule level
appears feasible.

PACS: 87.50.ch, 87.80.Fe, 87.85.fK

Introduction
For the construction of systems on the nanometre scale there is a growing need for alternatives

to classical photolithography. A promising approach for this is the exploitation of the self-organ-

ising properties of biological macromolecules, in particular DNA (deoxyribonucleic acid) [1,2].

Double-stranded DNA consists of two DNA single strands which form the double helix. It is sta-

bilised by hydrogen bonds between complementary purine and pyrimidine bases. This coupling

is very specific and allows to address distinct sites on the DNA at a resolution of 0.34 nm (for B-

DNA), i.e. the distance between neighbouring bases. Addressing can easily be accomplished by

chemical means in arbitrary volumes, hence in an extremely parallelised manner. Most methods

for the synthesis and modification of DNA are well established in molecular biology. However,

the characterisation of these constructs and their connection to the macroscopical world are still

demanding. For optical detection fluorescent markers are common. Still, labelling of the mole-
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cules is necessary, and bleaching of the fluorophores leads to artefacts and limits the possible

observation time. Electrochemical sensing calls for chemical modifications, too, either of the tar-

get molecules or of the electrodes [3-5]. Label-free characterisation on surfaces is possible e.g. by

scanning probe microscopy [6,7] and optical methods like surface plasmon resonance and grat-

ing couplers [8,9]. Highly desirable would be a purely electrical detection scheme. This is because

such a principle could be well integrated into lab-on-a-chip systems, neither optical nor mechan-

ical access would be necessary, and geometrical resolution would principally not be restricted as

it is the case with optical methods. Here we present a purely electrical sensing scheme based on

the measurement of capacitance changes between microelectrodes caused by DNA concentration

changes.

These variations in local DNA concentration are also achieved by electrical means applying

dielectrophoresis (DEP). Here an inhomogeneous electrical AC field exerts forces onto macro-

molecules like DNA towards the electrode edges [10-12]. This method is increasingly exploited

for the concentration and alignment of nano-objects like DNA, proteins, nano wires and carbon

nanotubes [13,14]. Whilst it is widely applied as a micro- and nano-tool [15-17] there are only

few studies aimed at a fundamental understanding of molecular DEP [18-21]. Therefore we have

used the presented sensing scheme for quantifying the dielectrophoretic response of DNA. In

contrast to all other known studies on molecular dielectrophoresis of DNA there is no need for

any fluorescent labelling of the sample.

Methods
The electrode chamber has been prepared from commercially available surface acoustic wave res-

onators (R2633, Siemens/Matsushita). Their characteristic frequency of 433.6 MHz lies far away

from the frequencies chosen in this study. Therefore the influence of surface waves can be

neglected here. A quartz substrate of 4 mm length, 1 mm width and 0.5 mm height carries two

pairs of 300 nm thick interdigitated aluminium electrodes. Each electrode consists of 35 fingers

of 800 m length and 2.3 m width leaving an interelectrode gap of 1.7 m (Fig. 1) [22]. A sili-

con rubber gasket of 0.5 mm thickness was trimmed using a CO2 laser plotter (Epilog Laser Leg-

end 24TT) and mounted around the substrate with double-sided adhesive tape. It was sealed with

a cover glass and immersion oil. Fluid samples of 12 L volume were pipetted onto the electrodes

leaving an air-filled space between fluid and gasket. Thus the sample only came into contact with

the electrodes, the quartz substrate and the cover glass. This helped to minimise contaminations

which can easily occur due to the sample's high surface-to-volume ratio.

Dielectrophoresis and impedance measurements have first been combined by Milner et al.

[23] and Suehiro et al. [24] for the characterisation of bacteria. They applied a lock-in amplifier

or an oscilloscope for the determination of phase and amplitude and, hence, impedance. Arnold

[25] used an impedance analyser for studying the DEP behaviour of yeast cells. In the simplest

case the DEP field signal also served as the source signal for the impedance measurement. Alter-

natively, two signal sources were used in order to choose the properties of both signals independ-
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ently. This made it possible to select the measuring frequency for optimal sensitivity. However,

this led to the need for additional electronic circuitry in order to combine both signals.

Usually transformers were used limiting the accessible frequency range as well as the ampli-

tude range. Recently Beck et al. [26] introduced an operational amplifier for this purpose with,

however, similar restrictions. Subsequently both signals had to be separated for impedance deter-

mination calling for additional low-pass filters [23,26] or a properly balanced bridge [25]. Hölzel

and Bier [27] introduced a somewhat different approach by separating DEP and measurement

temporally by switching. They used a frequency variable RLC-meter rendering any additional cir-

cuitry unnecessary. However, sensitivity and DEP amplitude were limited. For a significant

improvement, in particular of the sensitivity, in this work the measurement was performed with

an ultra-precision capacitance bridge (Andeen-Hagerling AH 2550A). It was connected to the

micro-electrodes through relays (Fig. 2) and was controlled by a personal computer using pur-

pose-built software. The reed relays (Meder) also were computer controlled via the capacitance

bridge. The measuring signal of 1 kHz was kept at or below 30 mVRMS to minimise impact on the

measurement itself. The dielectrophoresis signal was supplied by an RF synthesizer (Hameg HM

8133-2) and raised to up to 17 VRMS by a power amplifier (Toellner Toe 7606). The synthesizer

output could be modulated or gated by a DDS generator (TTi TG 1010 A) giving a variable duty

cycle of the DEP field between 0.1% and 100%. DEP field amplitude and duty cycle were moni-

tored by a digital oscilloscope (Agilent MSO 6104 A). All electrical connections were shielded.

The input cables to the capacitance bridge were double shielded and arranged close to each other

to minimise loop area and, hence, magnetically induced pickup.

As DNA sample the phagemid pBluescript was used. It has a length of 2961 base pairs corre-

sponding to 1.0 m contour length. That means that it did not bridge the electrode gap of 1.7

m. pBluescript was prepared from a transformed E. coli culture and linearised by digestion with

the restriction enzyme Eco RI. It was purified using an Invisorb Spin PCRapid kit (Invitek) and

diluted with deionised water to final concentrations ranging from 18 pM to 18 nM.

Cross section of the interdigitated electrodesFigure 1
Cross section of the interdigitated electrodes. Each aluminium electrode (A, B) consists of 35 fingers of 800 
m length. The shading of the DNA solution is meant to illustrate the possible DNA attraction during dielectro-
phoresis.

quartz substrate

electrodes

A B A B

1.7 μm 2.3 μm DNA solution
Page 3 of 12
(page number not for citation purposes)



PMC Biophysics 2008, 1:4 http://www.physmathcentral.com/1757-5036/1/4
Results and discussion
For the quantification of molecular DEP response the dielectrophoresis field was applied to the

electrodes for 8 s followed by a measuring period of 2 s. As a measure of DEP response the

increase in capacitance during DEP was taken. In order to examine whether this is a suitable

measure, DEP frequency and amplitude were kept constant at 1 MHz and 4 VRMS, resp., and the

field was 100% square modulated, that means it was switched on and off, at a rate of 1 kHz. The

modulation's duty cycle was varied from 0.1% to 100% (Fig. 3). This should result in dielectro-

phoretic action onto the DNA being proportional to the duty cycle.

As can be seen from Fig. 4, the determined capacitance changes C increased nearly linear

with DEP action up to 1.6 pF at a duty cycle of 30%, being saturated at higher values. A similar

saturation effect for pBluescript has been reported by Du et al. [18] using fluorescence changes

as a measure of DEP response. In order to ensure a linear relation between DEP action and capac-

itance changes, in the following experiments conditions were chosen that resulted in C values

within this range of 1.6 pF.

The time constant of the decrease in capacitance due to diffusion of the DNA after DEP appli-

cation was found to amount to 30 s at 18 nM DNA concentration (Fig. 3, t = 120 s...240 s). This

Electrical setup for combined dielectrophoresis and impedance measurementFigure 2
Electrical setup for combined dielectrophoresis and impedance measurement. Electrodes are alter-
nately connected by relays either to the capacitance bridge for measurement or to the DEP signal supply for dielec-
trophoretic action. A personal computer controls relays, capacitance bridge and RF synthesizer.
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decrease is much slower than the data acquisition speed which is 200 ms or less for each capaci-

tance data. However, this variation in capacitance still limits the resolution of the presented

method. This is because the actual capacitance changes take place on a shorter time scale than the

bridge's automatic balancing procedure for complete balancing. The observed capacitance decay

of 80 pF is an order of magnitude larger than the typical capacitance change recorded for DEP

quantification. This means that by far most of the measured signal is a consequence of reversible

DNA attraction and that most of the DNA does not adhere to the electrodes.

This is inconsistent with the observations of Washizu et al. [28] who report spontaneous per-

manent fixation of DNA to aluminium. On the other hand this result agrees well with the work

of Kabata et al. [15] who deliberatly functionalised the ends of DNA with avidin in order to

achieve permanent adherence to the aluminium electrodes.

The values for capacitance change at 100% duty cycle increased in the course of the experi-

ment by 9% (t1 = 100 s, t2 = 800 s). That means that there is a systematic error introduced, pre-

sumably by the gradual concentration increase close to the electrodes due to DEP action, which

Time course of capacitance for a typical DEP experimentFigure 3
Time course of capacitance for a typical DEP experiment. Capacitance of an aqueous solution of 18 nM 
pBluescript DNA with a DEP excitation of 1 MHz and 4VRMS. The duty cycle of the modulated signal was varied 
from 0.1% ("0") to 100% ("1.0"). The magnified view shows the change between 8 s DEP ("d") application and 2 s 
measurement ("m").
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also is reflected by the increase in the absolute average capacitance by 4% within this period.

Errors are also introduced by aggregation of DNA molecules [19,29] which leads to variations of

the local DNA concentration in the electrode gap [30]. As a consequence of the DEP duration

being much shorter than the time needed to reach equilibrium concentration the determined

capacitance changes reflect the initial dielectrophoretic collection rate as described by Bakewell

and Morgan [19], whilst in other studies steady-state DNA concentrations were monitored

[18,31].

In the typical combination of impedance measurement and dielectrophoresis biological cells

are usually studied, which have to be agitated after or during each measurement to achieve an

even distribution for the following measurement. For this end flow through systems are used

[23,24]. When extending the method onto molecules mixing already occurs by thermally driven

stochastic fluctuations (Brownian motion). Consequently a batch system is also suitable. Such a

static system is not only simpler, it also requires much smaller sample volumes. Therefore it is

possible to reduce the current volume of about 1 L even further.

Zheng et al. [21] investigated the suitability of DNA and proteins for the manufacturing of

electronic devices. For this purpose they measured the electrical resistance between narrow elec-

trode tips during and after dielectrophoretic manipulation of DNA and of the protein BSA, how-

ever, without any success. Probably this was mainly a consequence of the small interaction length

of their tip electrodes of only about 10 m as compared to the interdigitated electrode arrange-

Capacitance change as a function of DEP field duty cycleFigure 4
Capacitance change as a function of DEP field duty cycle. Data of Fig. 3 are presented as a function of the 
duty cycle of the dielectrophoresis field. pBluescript DNA concentration was 18 nM. Dielectrophoretic excitation 
was at a frequency of 1 MHz with a voltage of 4VRMS.
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ment of this work, which extends over 55 mm with only a fifth of the gap width. Above this, we

observed that concentration changes of DNA led to a more distinct response in the capacitive part

of the impedance than in its resistive part.

The electrical conductivity of the sample solution strongly influences the dielectrophoretic

response. Due to the small volumes involved and, hence, high surface-to-volume ratio it is prob-

lematic to presume equal conductivities in the stock solution and in the actual sample in situ.

Even the stock solution itself is too small to be measured with a standard conductivity probe. We

therefore used the resistive part of the bridge's output to deduce the electrical conductivity of the

actual sample volume after calibration with solutions of known conductivity. From this an upper

bound of 5 mS/m for the electrical conductivity in all experiments follows. From AC electroki-

netic studies on similarly small sample volumes [32,33] a lower bound of 1 mS/m can be

deduced.

The stability of the DNA double helix is influenced by the solution's salt content. At low salt

concentrations double stranded DNA tends to disintegrate into its composing single strands. This

is reflected by the melting point of hybridised DNA, which can be approximately calculated from

its base composition and the salt concentration [34]. The latter can be estimated from the sam-

ple's electrical conductivity to lie in the range between 0.08 mM and 0.4 mM. This results in a

melting point of pBluescript between 34°C and 45°C. The melting point is also influenced by

the solution's pH-value. For deionised water it is around pH 5 due to atmospheric CO2. This will

lower the melting point by about 2°C [35] to 32°C to 43°C. This is well above the experimental

temperature of 22 (± 2) °C and in accordance with other dielectrophoretic studies on double

stranded DNA having been performed in deionised water [21,36]. Still, it cannot fully ruled out

for this work as well as for other dielectrophoretic studies that a minor portion of DNA is present

as single strands.

In order to quantify the dependence of molecular dielectrophoresis on field strength DEP volt-

age was varied from 2 VRMS to 4.5 VRMS at a fixed frequency of 1 MHz (Fig. 5). From the slope of

the double logarithmic plot clearly a cubic relation follows, which is in contradiction to generally

accepted DEP theory [37,38]. DEP action usually is explained by dipoles that are induced by the

DEP field and interact with this field, resulting in a square dependence on field strength. Similar

experiments on fluorescently labelled pBluescript DNA also showed a cubic relation at 1 MHz

[18], whilst the data of Asbury et al. [39] at 30 Hz are more consistent with a square dependence.

Tuukkanen et al. [31] have investigated the trapping efficiency for DNA samples of various

lengths as a function of applied DEP voltage. They found a deviation from a purely quadratic rela-

tion and interpreted this by assuming a threshold resulting from thermal drag force with which

the dielectrophoretic force competes. They also mentioned the well known fact that DNA longer

than a few hundreds of basepairs is in a globular shape as long as there are no external forces

present, and that DEP leads to elongation of the molecules and, hence, to an enhanced polaris-
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ability. In our view this mechanism of enhanced polarisability alone is sufficient to account for

the observed more-than-quadratic DEP-voltage dependence. It means that in the equation for the

dielectrophoretic force FDEP the polarisability  is no longer a constant but a function of the elec-

tric field E itself: FDEP = (E)·á (E2). Bakewell and Morgan [19] reported DEP collection data

from fluorescently labelled supercoiled plasmid DNA that deviated from a purely square relation.

They, too, considered a change in plasmid shape under the action of a high DEP force and, addi-

tionally, discussed the action of fluid flow that is caused by electrohydrodynamic (EHD) forces,

in particular AC-electroosmosis [40,41]. When re-evaluating the data of Tuukkanen et al. [31] by

plotting their voltage-fluorescence relation in a double-logarithmic plot (data not shown) we got

slopes between 2.9 and 3.8 (r2 = 0.723...0.994) for DNA lengths ranging from 27 bp to 8461 bp.

Therefore the origin of the deviation from a purely quadratic dependence between electric field

and molecular DEP response remains ambiguous. For a further clarification the DEP response of

globular molecules like proteins should be quantified or, even better, stable compact DNA con-

structs like origami structures [42,43] should be studied. Variation of the DEP field's duty cycle

especially in the region of small capacitance changes would surely clarify the influence of thresh-

old effects.

Capacitance changes as a function of DEP voltageFigure 5
Capacitance changes as a function of DEP voltage. Dielectrophoretic excitation was performed at a fre-
quency of 1 MHz. pBluescript DNA concentration was 18 nM. The inset shows the data in a double logarithmic plot.
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For a better understanding of molecular dielectrophoresis we have measured its frequency

dependence between 1 kHz and 3 MHz (Fig. 6). The electrically determined DEP response agrees

very well with the fluorescence data of Tuukkanen et al. [31] who found positive dielectrophore-

sis at a rather constant level between 100 kHz and 10 MHz. The findings of Bakewell and Morgan

[19] and of Du et al. [18] are slightly different showing a stronger decrease of DEP with increasing

frequency. However, differences in the experimental setup, e.g. in the conductivity of the DNA

solution and in parasitic inductances, might account for these deviations. At frequencies below

30 kHz the measured capacitance changes became negative indicating negative dielectrophoresis.

This is contradictory to the results of Chou et al. [44] who observed positive DEP below 1 kHz.

However, they used an electrodeless setup with more confined attraction regions thereby avoid-

ing disturbing effects like electrolysis and fluid flow. Fluid flow due to nonuniform AC fields has

been investigated in detail by Green et al. [40,41] for an electrode geometry similar to the inter-

digitated structure of this work. They found strong flow by AC electroosmosis at field frequencies

between about 100 Hz and 10 kHz coinciding well with the range of apparent negative capaci-

tance change found here. For a better understanding variations of the field's duty cycle in this fre-

quency range would be helpful as well as simultaneous microscopical observation of

fluorescently labelled DNA.

Dielectrophoretic spectrum of pBluescript DNAFigure 6
Dielectrophoretic spectrum of pBluescript DNA. DNA concentration was 18 nM. DEP amplitude was 5.6 
VRMS.
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The suitability of the present setup for a quantification of macromolecular concentrations in

general is shown in Fig. 7. The concentration of pBluescript DNA was varied between 1.8 pM and

1.8 nM, corresponding to 3.5 ng/ml and 3.5 g/ml, resp. The semi-logarithmic plot shows a good

correlation between DNA concentration and capacitance. A similar result has been reported by

Macanovic et al. [45] using chemically modified electrodes of 1 cm2 surface area, however, at

DNA concentrations that were at least a factor of 30 higher (0.1 g/ml to 2 g/ml). The dielec-

trophoretic response of DNA strongly depends on its molecular weight with higher field

strengths being needed for smaller molecules [31]. Still, DEP can be applied successfully to DNA

of contour lengths well below a tenth of the electrode spacing as well as to DNA spanning this

gap more than 20 times. The size dependence could be exploited for the sensing of molecular

weight by applying more complex electrode structures and excitation schemes.

It is of interest to estimate whether the present setup should be capable of detecting single

macromolecules. The capacitance bridge used in this work is specified by the manufacturer with

a reportable resolution of 10-7 pF under optimal conditions. If one considers a maximal measur-

ing voltage of 30 mVRMS as used in this work the resolution should be reduced to about 10-4 pF.

This is three orders of magnitude better than has been achieved in this work and is mainly a con-

Capacitance as a function of pBluescript DNA concentrationFigure 7
Capacitance as a function of pBluescript DNA concentration. Capacitance of deionised water alone was 15 
pF.
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sequence of the fast concentration changes after dielectrophoretic attraction. Additionally, the

shielding of the cables currently used is not better than 60 dB and the contact-to-contact capaci-

tance of the relays amounts to about 1 pF. Both factors allow interference by external noise

sources. From the present data it follows, that under optimal conditions and if one considers

electrodes of e.g. 1 m width and a mutual distance of 1 m a single pBluescript molecule would

result in a capacitance change of more than 10-2 pF, which is still two orders of magnitude above

the calculated resolution. Therefore it appears quite feasible to further develop the presented

apparatus towards an electronic labelfree single molecule detector. Selectivity would be readily

achieved by chemical modifications of the electrodes or of the gap by e.g. complementary DNA

or antibodies as it is common practise in other labelfree detection schemes like surface plasmon

resonance and grating couplers [8,9]. Additionally, such a detector could be used in combination

with a dielectrophoretic single molecule trap [46] allowing for an automatic consecutive investi-

gation of large numbers of single molecules.

Conclusion
A system has been developed for the measurement of the concentration of macromolecules by

monitoring the capacitance between interdigitated electrodes. It has been applied to the determi-

nation of the dielectrophoretic response of DNA without the need for any chemical modification

of the analyte. Being purely electronic the method can be easily integrated into lab-on-a-chip sys-

tems. Neither optical nor mechanical access to the sample is needed in the course of the meas-

urement. An improvement of the temporal resolution by about an order of magnitude appears

rather straighforward. Some modifications of the experimental design will allow for a downscal-

ing of the actual sample volume to a few m3 or even less. In this case the resolution of the instru-

mentation will be adequate to automatically detect and possibly characterise single

macromolecules.
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