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ABSTRACT: The holographic entanglement entropy for the most general higher derivative
gravity is investigated. We find a new type of Wald entropy, which appears on entangling
surface without the rotational symmetry and reduces to usual Wald entropy on Killing
horizon. Furthermore, we obtain a formal formula of HEE for the most general higher
derivative gravity and work it out exactly for some squashed cones. As an important ap-
plication, we derive HEE for gravitational action with one derivative of the curvature when
the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic
curvature. We prove that our formula yields the correct universal term of entanglement
entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin
that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs
does not match the holographic result even if the extrinsic curvature vanishes. We find that
such mismatch comes from the ‘anomaly of entropy’ of the derivative of curvature. After
considering such contributions carefully, we resolve the puzzle successfully. In general, we
need to fix the splitting problem for the conical metrics in order to derive the holographic
entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can
be fixed by using equations of motion. How to derive the splittings for higher derivative
gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem
in this paper and find that it does not affect our main results.
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1 Introduction

In [1, 2], Ryu and Takayanagi develop a holographic approach to calculate entanglement
entropy (EE) of quantum (conformal) field theories in the context of AdS/CFT correspon-
dence [3]. For a subsystem A on the boundary, they propose an elegant formula of EE

_ Area of y4
§p= RO, (1.1)

where 7,4 is the minimal surface in the bulk whose boundary is given by 0A and G is the
bulk Newton constant. Their formula yields the correct EE for two-dimensional CFTs and
satisfies the strong subadditivity of EE [4]

Sa+ Sp > Saus + Sans - (1.2)

Recently, the conjecture eq. (1.1) was proved by Lewkowycz and Maldacena [5]. See
also [6, 7] for the proof of Ryu-Takayanagi conjecture. Besides the gravity side there are
also many interesting progress in the field theory side, please refer to [8-14] for more details.



The formula of Ryu and Takayanagi applies to quantum field theories dual to Einstein
Gravity. Thus the corresponding CFTs have only one independent central charge. To cover
more general field theories, one need to generalize their work to higher derivative gravity. A
natural candidate of holographic entanglement entropy (HEE) for higher derivative gravity
would be Wald entropy:

L
SwWald = —QW/ddyféRuupa €uv€po - (1.3)

However, as pointed out by Hung, Myers and Smolkin [15], Wald entropy does not give the
correct universal logarithmic term of EE for CFTs when the extrinsic curvature is non-zero.
For Lovelock gravity, we have another entropy formula: the Jacobson-Myers entropy [16]
which differs from Wald entropy by some extrinsic-curvature terms. It turns out that the
Jacobson-Myers entropy [16] yields the correct CFT results [15, 17]. However, there is no
similar entropy formula for general higher derivative gravity. One do not know how to
derive HEE from the first principle when the extrinsic curvature appears.

The first breakthrough was made by Fursaev, Patrushev and Solodukhin (FPS) [18].
They develop a regularization procedure to deal with the squashed conical singularities.
Using this regularization procedure, they successfully obtain HEE for the curvature-squared
gravity. Soon after [18], another important breakthrough was made by Dong [19]. Dong find
that, similar to holographic Weyl anomaly, the would-be logarithmic terms also contribute
to HEE. Dong call such contribution as the ‘anomaly of entropy’. For the so-called ‘general
higher derivative gravity’ whose action including no derivatives of the curvature S(g, R),
Dong derive an elegant formula of HEE:

%L 8K ;i Ksp
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where the first term is Wald entropy and the second term is the anomaly of entropy. Please
refer to [19] for the definition of ¢,. It should be mentioned that Camps [20] also made
important contributions in this direction. For recent developments of HEE, please refer
0 [21-32].

So far, HEE for gravitational actions which include derivatives of the curvature is not

known. In this paper, we fill this gap by generalizing Dong’s work to ‘the most general
higher derivative gravity’ S(g, R, VR,...). We find all the possible would-be logarithmic
terms and derive a formal formula of HEE for ‘the most general higher derivative gravity’.
To get more exact formulas, we focus on gravity theories whose action S(g, R, VR) includes
only one derivative of the curvature. A natural guess of HEE for S(g, R, VR) would be
Dong’s formula eq. (1.4) with all 9 be replaced by §. This is however not the case. Instead,
we find that new terms should be added to both Wald entropy and anomaly of entropy
even if we replace all 0 by §. The generalized Wald entropy for S(g, R, VR) is
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By ‘generalized Wald entropy’, we means the total entropy minus the anomaly of entropy.
Interestingly, a new term proportional to the extrinsic curvature appears in the generalized
Wald entropy. This new term only appears on entangling surface without the rotational
symmetry, thus it is consistent with Wald’s results on Killing horizon. While for the
anomaly of entropy, since the general case is very complicated, we set K,;; = 0 for sim-
plicity. If the anomaly of entropy is just Dong’s formula with 9 be replaced by ¢, it should
vanish after we set K,;; = 0. However, we get
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Applying the above formula, we resolve the puzzle raised by Huang, Myers and Smolkin
(HMS) that the logarithmic term of EE derived from Weyl anomaly of CFTs does not
match the holographic result even if the extrinsic curvature vanishes [15]. We find that
such mismatch comes from the contributions of the derivative of the curvature. After
considering these contributions carefully by using the above formula, we resolve the HMS
puzzle successfully.

For non-zero extrinsic curvature, we investigate a toy model with Lagrangian L =
MVoRVAR+ XNV Ry VR + A3V Ry e VERFP? . We derive HEE and prove it yields
the correct logarithmic terms of EE for 4d CFTs.

The paper is organized as follows. In section 2, we briefly review Dong’s derivation of
HEE for ‘general higher derivative gravity’. In section 3, we generalize Dong’s method to
the most general cases. We obtain a formal formula of HEE for the most general higher
derivative gravity. As an exercise, we work out the exact formula for some interesting
conical metrics. In section 4, we prove that our formula yields the correct logarithmic term
of EE for 4d CFTs. In section 5, we resolve the HMS puzzle. We derive the logarithmic
term of entanglement entropy for 6d CFTs from Weyl anomaly and find it is consistent
with the holographic result for entangling surfaces with zero extrinsic curvature but without
rotational symmetry. In section 6, we compare with our resolution of the HMS puzzle with
the one of [40, 41]. Finally, we conclude in section 7.

Note added. After this work is finished, there appears two related papers [40, 41].
The authors of [40, 41] claim that convariant total derivatives may contribute to non-
trivial entropy and propose to use the entropy of total derivatives to explain the HMS
mismatch [15]. We notice that their results are based on the FPS regularizations [18]. By
applying the Lewkowycz-Maldacena (LM) regularization [5, 19] instead, it is found that
the entropy of convariant total derivatives is indeed trivial [42]. In this paper, we use the
LM regularization [5, 19] to investigate the HEE.



2 Dong’s proposal of HEE for higher derivative gravity

In this section, we briefly review Dong’s derivation of HEE for higher derivative gravity [19].
The key observation of Dong is that, similar to the holographic Weyl anomaly, the would-
be logarithmic term also contributes to HEE. As a result, corrections of entropy from the
extrinsic curvature emerge:

o2 > K.ij Kz ' (2.1)
ai
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Dong calls such corrections as the anomaly of entropy. For simplicity, he focuses on
the gravity theories without derivatives of the curvature, S = S(g,R). We review
Dong’s derivation of HEE in this section and generalize it to the most general case
S =S5(g9,R,VR,...) in the next section.

2.1 The replica trick

A useful method to derive HEE is by applying the replica trick. Let us take Einstein
Gravity as an example. Recall that the Renyi entropy is defined as

1
S ] n log Z,, — nlog Z 2.2
S —— logtrlp"] = ———(log nlog Z1) (2.2)
_ P
Tr(p)’

Zn=Trlp"l, p (2.3)

where Z,, is the partition function of the field theory on a suitable manifold M,, known as
the n-fold cover.

For theories with a holographic dual we can build a suitable bulk solution B,, whose
boundary is M,. Then the gauge-gravity duality identifies the field theory partition func-
tion on M,, with the on-shell bulk action on B,,

Zy = Z[My] = e SIBnl (2.4)
We can derive the HEE by taking the limit n — 1 of Renyi entropy

Sep = lim S, = =8, (log Tr[p"])[n—1 = —T7[plog p]
= —8n(log Zn — nlog Zl)’n—ﬂ = an(S[Bn] - nS[Bl])‘n—ﬂ

= —0cSreg (2.5)
where Sieg = (nS[B1]— S[By)) is the regularized action and e = 1— 1. For Einstein gravity,
we have ) . Area

Sreg = 167G ey cone dzPVG R = e Tl (2.6)
Then we can derive HEE of Einstein gravity as S = —AJG%. Note that we work in the

Fuclidean signature. So entropy formula differs from its usual Lorentzian form by a mi-
nus sign.



There is still one question need to be answered. On which surface shall we apply this
formula? We know the answer is the minimal surface for Einstein gravity. In general,
according to [5], we require that the analytically continued solution satisfies the linearized
equations of motion near the cone p = 0. We call this method the “boundary condition
method”. The metric of regularized cone is

ds® = e*Adzdz + (9ij + 22K .5 + 22Kzij)dyidyj + 0(,02) , (2.7)

where z = pe'™, dzdz = dp? + p*dr?, A = —elog(p) and K is the extrinsic curvature. Let
us compute the linearized equations of motion dG,, = 8tG0T,,.. We focus on the divergent
terms, going like 1/p near the origin. Since the stress tensor is not expected to be singular,
we have

O0R,., = —ng + regular terms. (2.8)

Requiring the above equation to be regular near the cone, we get K, = Kz = 0. This is
just the condition of the minimal surface.

There is another method to derive the minimal surface conditions. We call it the
‘cosmic brane method’. Consider the action

1 €
Siotal = S Sp = — dPxvVGR dP—2 . 2.9
total EH + 9B 167G x /Reg x + 4GN/ Y9 (2.9)

In the limit e — 0, we can treat Sp as the action of a probe brane and find its location by
minimizing Sp without back reaction on the bulk fields. This gives exactly the minimal
surface.

We have shown how to derive HEE for Einstein Gravity and how to derive the location
of the cone. Now let us try to generalize it to higher derivative gravity.

2.2 Would-be logarithmic terms

According to [19], the metric of regularized cone is

ds? = 4 [dzdz + e*AT(2dz — zd2)2] + (9ij + 2K aijx® 4+ Qupijr®a’)dy' dy’

+ 2i?MU; + Vo) (Zdz — zdZ)dy' + ..., (2.10)
where T, gi;, Kaij, Qabij, Ui, Vai are independent of z and z, with the exception that
Q:z;j = Qz.i; contains a factor e?4. The warp factor A is regularized by a thickness
parameter a as A = —§1g(2z + a?). As we shall show below, the result is independent of

the choice of regularization.
The key observation of [19] is that

£
43"’
where z = pe'”. Naively the left hand of eq. (2.11) is in order o(e?). Magically it be-

/ pdpd, Adz Ae P4 = — (2.11)

comes in order o(e) after regularization. The magic happens because would-be logarithmic
divergence gets a % enhancement:

1 1
dp—— ~ — . 2.12
/ o~ (2.12)



As we know, the coefficient of a would-be logarithmic divergence is universal (like anomaly).
So eq. (2.11) is independent of the regularization. In fact, we can give a very simple proof.
It is known that the following formula is universal

/ dzdze P40,8:A = —7e.. (2.13)
This formula is usually used to derive Wald entropy. Performing integration by parts,
we get
=~ —BA —TE
dzdze P"0,A0:A = 5 (2.14)

which is exactly eq. (2.11). It should be mentioned that we can drop the boundary terms
safely. Ome can check that the boundary term is zero after regularization. Note that
egs. (2.11), (2.13) are only true to linear order ine. We ignore the higher-order terms
because they do not contribute to the HEE.

2.3 Dong’s formula: HEE for four-derivative gravity

Now let us focus on the four-derivative gravity whose action S(g, R) contains no derivatives
of the curvature. By four-derivative gravity, we means the equations of motion are four
order differential equations. This is the case investigated in [19]. From the regularized
metric eq. (2.10), we can derive the curvature with non-vanishing derivatives of A as

Rz = 62A6262A +...,
Rzizj = QKZZ‘]@ZA + ...,
R.z.i = ie*2U;0,(20,A) + . .. | (2.15)

where “...”

denotes terms without derivatives of A. One can get the other curva-
tures by exchanging z, z, 7, j and complex conjugate. For the reason will be clear in sec-
tion 3, R.z.i ~ e*AU;0.(20,A) ~ 0 actually does not contribute to HEE. Thus, from

egs. (2.13), (2.14), (2.15), we can derive the HEE as

oL 0L K.ii Kz
_ 2 dd 1 z1) z 2‘1
Sn = 2 / ua [aRzzzz 1o <8Rzizl8Rzkzl >0<1 Beu } (2.16)

The first term above is just the Wald entropy, and the second term denotes the anomly of

entropy [19]. It should be stressed that, unlike Kg;;, U; could not appear in the formula
of HEE eq. (2.16). Otherwise, it would yield wrong results of entropy for stationary black
holes. As we shall show in next section, R.s,; = iezAU,ﬁz(zazA) indeed do not contribute
to HEE.

3 HEE for the most general higher derivative gravity

In this section, we investigate HEE for the most general higher derivative gravity. Firstly,
we discuss the splitting problems for the conical metrics. Then we find all the possible
would-be logarithmic terms and derive a formal formula of HEE for the most general
higher derivative gravity. Finally, we work out the formal formula exactly for some special
conical metrics.



3.1 Splitting problems

The splitting problems appear because we can not distinguish 72 and %" in the expansions
of the conical metrics. That is because 72 and 7" are of the same order in the limit n — 1
when we calculate HEE. It should be mentioned that the splitting problem is ignored in the
initial works of Dong and Camps [19, 20]. However they both change their mind and realize
the splitting is necessary later.! Recently Camps et al. generalize the conical metrics to the
case without Z, symmetry, where the splitting problem appears naturally [33]. Inspired
by the works of [5, 19, 33], a natural way to fix the splitting problem is by using equations
of motion. As we shall prove below, this is indeed the case at least for Einstein gravity.
For the higher derivative gravity, how to fix the splitting problem is a non-trivial and open
problem. We leave it for future work. It should be mentioned that the splitting problem
does not affect the main results of this paper. We shall explain the reasons briefly at the
end of this subsection.

Let us start with the general squashed conical metric [19, 20]

ds® = 24 [dzdz + T(2dz — 2dz)?] + 2iV;(2dz — zdZ)dy’
+ (955 + Qij)dy'dy’, (3.1)

where g;; is the metric on the transverse space and is independent of 2, 2. A = —5 lg(22+a?)
is regularized warp factor. T, V;, Q;; are defined as

[e'e) Pal..4an+1
T = E E e?mAT, ay.a, Tt
n=0 m=0

[e’e) Pal..4a,n+1
2mA a a
V= g g e Vin aq..ani®™ .. 2%,
n=0 m=0

00 Pal..,an

Qij = Z Z €2mAQm a1...anijSL‘a1 R A (32)

n=1 m=0

Here z, z are denoted by 2 and P, 4, is the number of pairs of z, zZ appearing in a; . . . ay.
For example, we have P,,; = P.z, = P5,, = 1, Pz, = 2 and P,, ., = 0. Expanding
T,V,Q to the first few terms in Dong’s notations, we have

T =Ty + > Ty 4+ O(z)
Vi=Up i+ 22Uy  + O(x),
Qij = 2Kaijz® + Qo abijz®z’ + 2¢*4Q1 .zij 22 + O(2?) (3.3)

How to split W (W denote T, V, @) into {Wy, W1,...,Wpy1} is an important problem.
Inspired by [5], it is expected that the splitting problem can be fixed by equations of motion.
Let us take Einstein gravity in vacumm as an example. We denote the quations of motion

"We thank Dong and Camps for discussions on this problem.



by E,, = Ry — R_TMGW = 0. Focus on terms which are important near % = 0, we have

Rap = 2K (VA — gy KV A + 24 (12T + 4U?)gap — Q1 api ']
+ Kai K, + (1210 + 8UoUt)gab — Qo api *
Rai = 320aV + D" Kami — DiK,
Rij = rij + 8UUj — Q1% + € 24 [2Kaim K™ — K Kqij + 16Uy Uy j) — Qoam.j]
R=r+16U% 4+ 24T; — 2Q,%; + ¢ > (3K ij K™ — KK, + 24Ty — 2Q%; + 32U U1)

(3.4)
where A = —§logzz, e,z = 5 - and g,z = 7. Let us firstly consider the leading term of F,,,
we get
K.
E,,=2K,V,+...=——Z=+...=0. (3.5)
z

Requiring the above equation to be regular near the cone, we obtain the minimal surface
condition K, = Kz = 0 [5]. To derive Ty and @Qp, we need consider the subleading terms
of E.z, E;j and El;. We have

B =)+ [Q o — 2K K.Y + K. Kz — 4UgUy | =0,
Ez] — ( . ) + 6_2A 2KaimKam KQK(MJ + 16U0 Ul J QO G'lj

1 ’

— 596 (3K K* — KK, + 24Ty — 2Q¢",' + 3200l | =0,

2-D
672A

B = () + 25

(3K, K — K K, + 24T — 2Qy%'; + 32UgUr ] = 0. (3.6)
Here (...) denote the leading terms which can be used to determine 71, U1;, Q1225 and g;;.
From the subleading terms of the above equations, we can derive a unique solution

Ty = 24(KMJK‘”J K,K%),

1
Qozgi]‘ = (KmmKZJm — iKZKEU + C.C.> +4U0 (ZUI 7) (37)

Now we have fixed the splitting of 7" and @.z;; by using equations of motion. Note that
Einstein equations does not fix Uy ;. That is not surprising. U; can be regarded as the
‘gauge fields’” which are related to the coordinate transformations [20]. It is clear that
equations of motion can not fix the gauge fields completely. It should be mentioned that, if
we reqiure that a special background metric such as AdS is a solution, then different theories
of gravity can share the same splittings. That is because we have imposed additional
conditions. Recently, the splittings eq. (3.7) are used to derive the universal terms of
entanglement entropy for 6d CFTs [43]. It turns out that eq. (3.7) is the necessary condition
that all the theories of higher derivative gravity with an AdS solution yield the consistent
results for the universal terms of entanglement entropy [43].

In addition to equations of motion, there is another principle which may help us to
get some insights into the splitting problem. The entropy should reduce to Wald entropy



in stationary spacetime. We call this principle as the ‘stationary principle’. Let us take
VR poa VFRYP7Y as an example. In stationary spacetime, we have Ky;j = Q.25 = Qzzij =
0. Applying the method will be developed in the next section, we can derive the HEE as

SHEE =
SWald +/dyD2\/§1287T(Q025ijQOZg + 9T02 +5(Uy iUOi)2 + mixed terms of Tj, Qo, Ug) .
(3.8)

To be consistent with Wald entropy, we must have Ty = Uy ; = Qo.z; = 0 in stationary
spacetime. This implies that Ty, Up ; and Qo.z;; should be either zero or functions of the
extrinsic curvatures. This is indeed the case for the splitting eqs. (3.7). The ‘stationary
principle’ tells us that the splitting problem disappears if we focus on the cases with zero
extrinsic curvature. By dimensional analysis, we note that Uy ; ~ O(K). However, it is
impossible to express Up ; in terms of the extrinsic curvature Kg;;. Thus, a natural choice
would be Uy ; = 0.

In this paper, for simplicity, we keep only the highest order of T', V;, Q;; eq. (3.2) to
illustrate our approach. This is also the case studied in [19]. In other words, we ignore
the splittting probelm in most parts of this paper. For example, we set Ty = Uy = Qo =
0 when we investigate the entropy of higher derivative gravity S(g, R, VR). According
to the ‘stationary principle’, equivalently, we have zero extrinsic curvatures. It should
be mentioned that this condition Ty = Uy = Q¢ = 0 does not affect our main results
(egs. (1.5), (1.6), (3.10), (3.12) and the results in section 4 and section 5). Straightforward
calculations can show that Ty, Up ;, Qo ».zj do not contribute to the generalized Wald
entropy eq. (1.5). However, they indeed appear in the anomaly of entropy, see the appendix.
Recall that eq. (1.6) is derived under the condition Kg;; = 0. According to the ‘stationary
principle’, the condition Ky;; = 0 yields Ty = Uy ; = Qo »zij = 0. Thus To, Uy 4, Qo 2zij
does not affect eq. (1.6). Because we only use eq. (1.6) to resolve the HMS puzzle (the
HMS puzzle is found under the condition K,;; = 0), so Ty, Up i, Qo »zij does not affect
our resolution of the HMS puzzle in section 5. As we shall show in section 4, only the
leading terms 17 = —%, Q1 2zij = %Gij contribute to the logarithmic term of EE. And
the subleading terms Ty ~ Qo .z ~ o(K 2) are irrelevant to the logarithmic term of EE
for 4d CFTs in section 4. For the above reasons, the splitting problem does not affect the
main results of this paper (egs. (1.5), (1.6), (3.10), (3.12) and the results in section 4 and
section 5).

3.2 General would-be logarithmic terms

Using the squashed cone metric (3.1), we can calculate the action of most general higher
derivative gravity and then select the relevant terms to derive HEE. Now let us discuss all
the possible terms relevant to HEE. The discussions of this subsection are universal and
independent of the splitting of the conical metrics.

Let us denote the general derivatives by

d = cmmamor, (3.9)



where ¢ are arbitrary constants. Since only o(e) terms contribute to HEE, we only need
to consider terms with at most two A: A, 0AJA. For the first case 0A, it is easy to find
that only the following terms contribute to HEE

/dzdzzmz”(?;”“@gHA = /dzdz(—l)er”m!n!azagA
= (=)™ Hmlnlre. (3.10)

Equivalently, we have
OOt A = —7ed™0%5(2, 2) . (3.11)
These terms contribute to the Wald entropy. Note that the delta function is defined as
[dzdz5(z, z) = 1.
As for the second case JAHA, we should focus on the would-be logarithmic terms.
That is because only such terms could gain a % enhancement. The only possible terms are

/ dzdzz™z" 0L AGT T AePA = / dzdz(—1)""m!nld, Ad; Ae=PA

= (—1)m+”+1m!n!% . (3.12)
Equivalently, we have
oL AGITL A BA = 7%8;”8?5(2, 7). (3.13)

These terms contribute to the anomaly of entropy. It should be mentioned that
egs. (3.10), (3.12) are only true to linear order ine. We ignore the higher-order terms
because they do not contribute to the HEE.

The simplest method to prove eq. (3.12) is by applying integration by part and dropping
the irrelevant terms such as 38282/1314, DADADA and so on. This is the method we
used in eq. (3.12). We can also prove eq. (3.12) by using Dong’s method. Recall that
A= —$§log(2z), we have 29T 1A = —5(—1)™™. Thus we can derive

2
/pdpzmznagnJrlAa?HAeﬁA = /dp(—l)”“”m!n!64pHﬁ6

€ €
(=1)" it
o (—1)m+”+14im!n! . (3.14)

Here =2 denotes equivalence after regularization. For simplicity, the above equation is
illustrated in a regularization-independent way. Now let us use Dong’s regularization with
A = —$log(2z + a?) to rederive it. We have
1 " 5A N 62 p3+2m+2n
dpz"zZ" 0T T AOTT Ae P = | dp(—1)" " mln!—

/p Pz 2% # ¢ / p(=1) Ty (p2+a2)2+m+n7%

eI (— %Eﬁ)F(Q +m+n)
ST(2+m+n—L)

_ (—1)"”‘”“%771!71! +0(e). (3.15)

= (=)™ "minla®e

,10,



Following [19], we set a finite so that a”® =1+ O(e). We have also used I'le] = 1 + O(€°)
in the above derivations.

It should be stressed that terms contains 0,0:;A, z0,A or z0:A in the second case
would not contribute to HEE,

D0,0;A0A =0,
9(20,A)0A = D(20:A)IA = 0.

SO 56265:%13/1 at least in order €2a®. Note that
2

That is because 0,0:A4 = —gﬁ,

(a® +7r?) always appear as a whole in the denominator. To cancel a?, we must have e P
after integration. However this is a r~2 term rather than a would be logarithmic term %r‘e.
So we can not cancel € and a? at the same time. Similar for the second case, 9(z9,A)0A
is also at least in order e?a®. Thus, it does not contribute to HEE either. Maybe the
most quick way to see that 0,0:A and 20.,A do not contribute to HEE is by identifying
A = —§log(zZ). So we have 90,0:A = 8(28,A) = 0, which can not contribute to HEE
at all.

Using egs. (3.10), (3.12), we can derive HEE for most general higher derivative grav-

ity as

SHEE - _aesreg‘e:(]

= 270(z, z)g“b(

65, L[ & (4S
00,004 " Ba 0054\ 50, A

: 3.16
- (3.16)

o))
where a sum over « is implied. Note that, we drop all the 00,05 A terms after one variation
of 9,A in the second term of eq. (3.16). This formula applies to the most general higher
derivative gravity. It is one of the main results of this paper. Let us comment on our
formula (3.16).

Firstly, the first term of eq. (3.16) is the generalized Wald entropy. It should be stressed
that not only R.z,5 and its covariant derivative V" R,z,> but aslo many other terms may
contribute to the generalized Wald entropy. For example, we have

V:Rzizj = Kz;0,0:A+ ... . (3.17)

Clearly, the above term contributes to the generalized Wald entropy and is not included

in the usual Wald entropy 5Ri€ . e eP?. Note that such new generalized Wald entropy
appears only in the dynamic space-time. Thus nothing goes wrong with Wald’s formula
which is designed for the stationary black holes. We shall discuss the generalized Wald
entropy in details in the next subsection.

Secondly, the second term of eq. (3.16) is the anomaly of entropy. In general, it is
very difficult to calculate such terms for the most general higher derivative gravity. Let
us play a trick. Setting A = —§log[2Z] and keeping only the would-be logarithmic term
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%dzdie_ﬁA;—z in the action, then replacing it by %ﬂ, we obtain the final result.

1 _ €2
SAction = /QdZdZZ Cae 5&145 + ...
«

27
SAnomaly of entropy — Z CO(F . (318)
o «

Thirdly, we have found all the relevant terms with HEE in order O(A) and O(A?). A
natural question is whether terms in higher order O(A™*?) contribute to HEE or not. In
general, only would-be (log p)"*! terms may get an enhancement after regularization. Let
us discuss these terms briefly. Recall that we have

e

—BA _
e P49, A0, A =
3

(2,%). (3.19)

Taking the derivatives of the above equation by [, we can derive

—7nle

n, —BA
A"e B 8ZA82A:W

5(2,7) . (3.20)

Naively, the left hand side of eq. (3.20) is in order o(¢"*?). However it becomes in order
o(€) after regularization. Actually, this is the would be (logp)"*! terms. This kind of
terms may contribute to HEE for some crazy regularized cone metrics. However, if we
focus on higher derivative gravity with the regularized cone eq. (3.1), only eq. (3.12) is
already enough. That is because the factor e’ always appear as an entirety in the regu-
larized metric and the action [19], and A")ADA terms never appear separately. Thus only
the would-be logarithmic term contribute to HEE of higher derivative gravity. Based on
egs. (3.10), (3.12), in section 4 we shall prove that our formulas of HEE yield the correct
universal logarithmic terms of EE for 4d CFTs. This can be regarded as a support of the
fact that terms in higher order O(A™*2) do not contribute to HEE.

To summary, we have found all the would-be logarithmic terms and obtained a formal
formula of HEE for the most general higher derivative gravity. In the next section, we shall
work out this formula exactly for some squashed cone metrics.

3.3 HEE for six-derivative gravity

In this subsection, we investigate HEE of six-derivative gravity. By six-derivative gravity,
we mean the equations of motion are six order differential equations. Its action can always
be rewritten in the form S(g, R, VR). We firstly derive the generalized Wald entropy for
the general cone metric and then calculate the anomaly of entropy for some special cone
metric.

Let us firstly investigate the generalized Wald entropy. It come from the first term
of eq. (3.16). As we have mentioned in the above section, in addition to R,z, and its
covariant derivative V,R.z.>, many other terms may contribute to the generalized Wald
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entropy. We list all the possible terms relevant to the generalized Wald entropy below.

Rz.z = €2Aazazx4 + ...,
V.R. 5.z = €2A3§35A + ...,
V.Rzz = 2iUie*10,0:A + ...
ViR.z.j = 2K5;0.0:A+ ...,
V.Rzizj = 2K5;0,0:A + ... . (3.21)

Using the above formulae, we can derive

OL
Wald = 27 [ d?
SG-Wald 77/ y\/ﬁ[aRzuz

1 oL

OL
+4i——U,; 4 c.c.
aszizii ‘
oL
2—— K5, .C.
+ v, Roisy zij +c.C
oL
44— K .C.| . 3.22
+ OV Rors 2ij +c.c ] ( )
Take into account that I'Z, = —2iU;, F;-Z = sz-, 'Y = —2K5, we obtain the generalized

Wald entropy as

oL oL oL
Wald = 27 [ dy\/g| s — 2 K=ij + c.c.
SG Wald ﬂ-/d y\/g[aRzézZ V,u avuRzizi N (aszZiZj / oo >:|

oL oL

Remarkably, a new term proportional to the extrinsic curvature Kg;; appears in the gen-
eralized Wald entropy. This new term vanishes for stationary black holes and thus is
consistent with Wald’s results. In general, self conjugate terms such as T,U;, Q.zi; - .-
could not contribute new terms to the generalized Wald entropy, otherwise it conflicts with
Wald entropy for stationary black holes. That is because, in general, these self conjugate

terms are non-zero in stationary spacetime. Indeed, T', U;, Q).z;; do not appear in our
generalized Wald entropy eq. (3.23) for six-derivative gravity. The above generalized Wald
entropy can be written in a covariant form as

oL

oL
Sa-Wald = 2 d? — €€y 22—
G-Wald 7T/ y\/ﬁ[ 5RWPU€# €po + OV R

Kgpg(nﬁunw - eﬁuea,,) . (3.24)
It should be mentioned that the extrinsic curvature flips the sign under n,, — —nu, (a
denotes the flat index and p is the spacetime index). So it seems that the generalized Wald
entropy egs. (3.23), (3.24) depend on the orientation of the surface. However this is not
the case. From eq. (4.25), we learn that V.Rzzj contains odd numbers of the extrinsic
Kz

1Zj

curvatures. Thus, #}%ﬁj also flips the sign under n, — —n,. It turns out ﬁ
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as a whole is orientation independent. While for the convariant formula eq. (3.24), it
should be stressed that Kg,, = nﬁaKapg includes only the spacetime indexes and thus is
actually orientation independent. So the generalized Wald entropy is indeed orientation
independent.

Let us go on to study the anomaly of entropy. Because the general case is quite
complicated we consider some special conical metrics below. For simplicity, we keep only
the highest order of T', Vi, Qi; eq. (3.2) which is also the case studied in [19, 20].

Recall that the squashed conical metric is
ds® = 24 [dzdz + AT (zdz — de)Q] +2ie?AV;(2dz — 2dz)dy’ + (gi; + Qij)dy'dy’ . (3.25)
For simplicity, we firstly consider the case with zero extrinsic curvature. Thus, we have

T =T + Tpx® + Topaab + ...,
Vi = U; + Voa® + Vopia®a + ...,
Q” = QabijCCaLI?b +.... (326)

Note that there is a factor €24 before Ty, V.z and (Q).zij. Let us calculate R, VR, and
select all the possible terms relevant to HEE. We have

R.z.z = €2A8282A +.,
V.R.z.: = 49%0: A+ ...,
szzizj = 4sz1]azA +...,
V.R.zj = —3ie* WV, ;0,A + ... . (3.27)

Note that to derive V. R.;.; and V.R.z.;, we have identified zﬁgA =~ 0,4 and 228§’A o
20,A. In general, we have ™97 1A = (—1)™mld,A. We can read out these indentities
from eq. (3.12). Using egs. (3.10), (3.12), (3.27), we can derive HEE for six-derivative
gravity as

2
S =2 | ddy*@[mfizz * 64<aszzzavaRm>al Q”Zf -
d°L > Q-2 Var
OV R.inOV:Rzzk ), Boa
9°L > Vzl‘/;k:|
OV.R.z00V:Rzzk ), Bon |

+ c.c.

+96i<

+ 144< (3.28)

Here V,; = %e“”npag"iRw,pg, T = ée“”ep"RWW. Note that we only need the traceless

part of Qui; in the above formula. We denote the traceless part of Qg by Qabij =
Hpij — %nabHccij with Hypj = am(iK|b|j§n —n“an”bgp( g"j)Rupﬂg. Let us rewrite the above

7
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formula in convariant form. We have

SHEE =
%/ddy\@{ L e 4< 0L ) Qi dapisis Qrshavsvs
ORwro OV iy Ryt i 1a s OV vy Rugugvavs ) o Ba
[(n,m,1 — €101 ) (Mpgve — 1€050 ) (Mpywy —i6u4y4)(n’\1’\3 —ie’\l’\3)(n’\2’\4 —ie’\”\“ﬂ
B 2( 0?L > Qxixopsps Brars Aovs (s — €010,
OV 1 Rz i s OV s Rusvgvavs ) o Ba e
(M — 1€ ) (Mpugrg — €040, ) (N1 — e A) (ph2Ro fie)‘z)‘ﬁ)(nyi‘s fieui‘f’)] +c.c.
+( L ) Pwwusboses (6, —iq,.,)
OV 1 Rty g 1ais OV vy Runwsvavs ) o Ba
(Mppws — €130 ) (Mpavs — 1€0a0, ) (RN —ieM1A0) (225 —jer2ds ) (pAats —ie’\3)‘6)]
(3.29)
with
Qs = 119393 Qabi (3.30)

Note that we use Dong’s notation €,; = % So the above formula is real although including
i. To keep the expression simple, we do not expand it as product of €, and n,,. The final
expression is not expected to include 7 explicitly. It is not hard to proof the terms of the
product which include odd number of €,, are vanishing. Let’s take the last one in (3.29)
an example. We make the index swap, p; <> v; (i = 1,2,3,4) and A\; < A\jy3 (= 1,2,3).
( 0L )aR“A?A?"‘ng“f’A‘S”S will keep the same. But the terms of the

avulRM2M3M4M58VV1RV2V3V4V5 N . . . . .
products of €,,, and n,, which include odd number €,, will give an extra minus sign. So

these terms must be vanishing. The second one in (3.29) include its complex partner, which
also makes the terms including odd number of €, vanishing.

Now let us consider a more complicated case. We set V; = 0 but with general T,
Qij. For simplicity, we only investigate a special action, S = [ dzP \/@VMRWMV“R” By,
Applying the formulae in the appendix, we obtain the anomaly of entropy

SAnomaly =
32ﬂ/ddy\/§[4Q55ijszij + 8K2inzijz2ki - QKZpPKZijszij
— 2K, P K. 9 Qszj + 2K K7 Qo) + (Ko K57 ) + K P K K KV
—AK IR 3 KK g+ WKL W K7 — 40TK K.Y
+ KL KT K o K+ Rzz‘ijzijk - 6sz2ingij — 6Qzz5i; K,
+4Q0271j Q.2 +36T5 —28Totr (K. Kz) —2Qo-zi; K" K 7 + Qo5 KK ']
(3.31)
As a check of formula, we shall use the above formula to derive the universal terms of EE
for 4d CFTs in section 4.

To summary, we have found a new type of Wald entropy, the generalized Wald entropy,
for six-derivative gravity. This generalized Wald entropy appears on entangling surfaces
without the rotational symmetry and reduces to Wald entropy for stationary black holes.
Here ‘entangling surface’ denotes the co-dimension 2 surface where we calculate HEE in the
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bulk. ‘without the rotational symmetry’ means we do not have the U(1) symmetry alone
the Euclidean time. Instead, we only have a discrete Z,, symmetry (n = 1 for entanglement
entropy and n is a positive integer for Renyi entropy). It would be interesting to study
the physical meaning of this generalized Wald entropy. We leave it to the future work. We
also derive the anomaly of entropy for cone metrics with zero extrinsic curvature. As for
non-zero extrinsic curvature, we study a toy model of six-derivative gravity. In section 4,
we shall also prove that our results give the correct logarithmic term of EE for 4d CFTs.

3.4 HEE for 2n-derivative gravity

We calculate HEE of 2n-derivative gravity in this subsection. By 2n-derivative gravity, we
mean the equations of motion are 2n-order differential equations. Its action can always
be rewritten as S(g, R, VR,..., V" 2R). In general, the formula of HEE becomes more
and more complicated when higher and higher derivatives are involved. For simplicity, we
consider only one special case here.

We choose the cone metric (3.1) with

o
T=2"Ty ,+ Z”_?’Tg_ 5+ E eQAP“l“"“"Tal_”a A Al
S o~

m )

n—3 n—3 m=n—2

oo
Vi=2"Vo i+ 2 Ve Lzt Y Aean Vg aa

N ~
n—2 n—2 m=n—1
0
n—1 n—1 2APq, ... a a
Qij =2"""Qz.. zij+ % Qz,_,gij%— E st m Qi Tt (3.32)
N——" N — —
n—1 n—1 m=n

We call this kind of cone as ‘the highest-order cone’. That is because only the highest-order
derivative of curvature V2R contributes to the anomaly of entropy in this case. We have

Vg_szizj = (n - 1)F[n]QZ . Zz]azA +...,

n—1

n—2
VI Rezj = —i—Tln+1]e*Vz . 504+,
— 2
n—2
n—3
VZ_QRZgzg = F[n + 1]€4AT2; . zazA 4+ ... (333)
n—2 ——

n—3

In the derivation of the above fromulas, we have identified 2™971 A with (—1)™m!0, A,

which can be read out from eq. (3.12).
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Using egs. (3.10), (3.12), (3.33), we can derive HEE for 2n-derivative gravity as

SL 0%L
_ d
Sep = 27 /d y\/§|:5Rzzzz avLL_QRziZjav2_2R5k2l

+4(n—1)2F[n}2( )alQZ...ZijQZ...Zkl//Bcu

0?L
avg_sziz]’ 8V?_2R£z2k

+i8(n—2)T'[n]T[n+1] ( )ale . ;.lzm‘VZ ... Zk/Bay +cc.

n—2

LS S P (W?—mmigang—ZRzm > Qeps T 5/ o
' 1622—3;["“? (av2—2RzziQ;vZ‘2Rzzzk >alvzs'>;5[v%;2-%’“/ P

' 72.8(2%?F[n+1]2 (avg—Z‘Rzzi)jang‘QRzm >aVuTu/ Poa -0

+4 EZ:;;E [[n+1)? <3V?2Rzz?jf)LV?2Rzm )mTé7_1\,/,:‘;_2;T€—7_?./.3__5//@11 , (3.34)

As for the general case, the formula of HEE is quite complicated. Like the holographic
Weyl anomaly, it seems very difficult (if not impossible) to derive an exact expression.
Actually, there is no need to work it out exactly. Instead, for any given action and cone
metric, we can directly use egs. (3.10), (3.12) to calculate HEE.

4 Checks of our formulas

In this section, we prove that our formula of HEE yields the correct logarithmic term of
EE for 4d CFTs. This is a nontrivial check of our results. For simplicity, we focus on an
example of 6-derivative gravity in five-dimensional space-time as follows:

1 5, 12 L ) A ) A
S = 16771' / d5x\/z<R + 2 + AlvuRvﬂR + AQVQRMVVQR“V + /\SVQRWWVO‘R“”PU> ‘

4.1

According to [34], the expected logarithmic term of EE for the dual CFTs is .

Skr = log(1 /5)% /E xvh [aRg - c<C“dehachbd — k%Ko + ;kfﬂkfbﬂ : (4.2)
where the central charges a and ¢ is given by [35]

a:g, c:%—l—&n\g. (4.3)

Thus, it is expected that HEE of V“RV“R and VQRWVO‘}?W do not contribute to the
logarithmic term, while HEE of vaﬁzwpgvaﬁw P? yields a logarithmic term as

1
— 43 log(1/6) / d%\/ﬁ{cabcdhachbd — k% + ik;%fb : (4.4)
%

As we shall prove below, this is indeed the case.
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Let us firstly compute the generalized Wald entropy. Applying the formula (3.24),
we get

1 . A -
Sa-Wald = 1 / d,odgy\/ﬂ — 14 2M0R + Mon*OR,, + A3e™ e 0OR 10 p0

+ 2)\2V0‘R“”Kﬁ(nﬂunm, — eﬁuem,)

+ 2)\3VQR“p”UKng(nﬂﬂna,, - eﬁﬂea,,)] . (4.5)

Note that we work in the Euclidean signature. So HEE is different from the Lorentzian
one by a minus sign. The first term of the above equation is just the Bekenstein-Hawking
entropy. According to [15, 34], it gives a logarithmic term as

1 1
mga/®16jgd%nvﬁ[32-(cw%WMJ%d—kﬂwmm,+2kykg>]. (4.6)

Thus we only need to consider the other terms of eq. (4.5) below.
For asymptotically AdS space-time, we can expand the bulk metric in the Fefferman-
Graham gauge

~ 1 1 . .
ds? = Gdatdx” = 47)2dp2 + ;gijdznzda:j, (4.7)

€))

(%)
(9 i+ hijlogp) + ... Interestingly,

d
2

(0) (1)
where gij = g +pgi+ .-+ p

(0)
(1) 1 ) R
L= —— i T .. s 4'
gzg d_2<RJ 2<d_1)gzj> ( 8)

can be determined completely by PBH transformation [36, 37] and thus is independent of

. . . 2 3 . .
equations of motion. However, the higher order terms g;;, g,; ... are indeed constrained
by equations of motion. Fortunately, for the logarithmic terms of HEE in 5-dimensional
space-time, we only need to expand the metric to the subleading order (é)ij. Let us define
a useful quantity R as

~

R,uupa = R,uzzpa + (é,upéuo - G/,LaGup) ’
Ry = Ry +dG .,

R=R+d(d+1). (4.9)
According to [35], we have
R~ ols?). Bij ~ olp) Rip~olp),  Rop~oll)

~ 1 ~ 1
Ri‘NO > R’Lk‘NO<>

pip (p) pij P
. Ci;
Rijn = pj’“l . (4.10)

Note that eq. (4.8) is used in the derivation of above equations.
Denote the transverse space of the squashed cone by m. The embedding of the 3-
dimensional submanifold m into 5-dimensional bulk is described by X* = X*(o®), where
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X# = {z%, p} are bulk coordinates and o® = {y%, 7} are coordinates on m. We choose a
gauge

T:p’ haTZO) (411)
where hqg is the induced metric on m. Let us expand the embedding functions as

(0) (1)

X', y") = X" (y*) + X (y*)T + ... (4.12)

Diffeomorphism preserving the FG gauge (4.7) and above gauge (4.11) uniquely fixes a

transformation rule of the embedding functions X*(y®,7) [38]. From this transformation
1), .
rule, we can identity X*(y®) with $k%(y®)

XU(y) = K", (113)

where % is the trace of the extrinsic curvature of the entangling surface ¥ in the boundary
where CFTs live. From eq. (4.12), we can derive the induced metric on m as

hrrzZ;_Z(l—l—ikikj?iﬂ'-i-'”), hab:%((;;ab_f'(}ll)abT—'_'”)v (4.14)
with
(;;ab = 5a)(?i3b)(§)j (E])z‘j ; (;L)ab = (é)ab - %kik’ib(g})m‘ . (4.15)
Thus, we have
Vi = <ﬁ>21p2+._., (4.16)

Using eq. (4.12), we can also derive the extrinsic curvature K of m as
i i KO

Note that all the other components of K* 5 are higher order terms which do not contribute
to the logarithmic terms.

Now let us begin to derive the logarithmic term from the generalized Wald entropy
eq. (4.5). Note that O ~ o(1) and (e"”,n*”) take the same order as G"”. Applying
egs. (4.10), (4.16), (4.17), we find that, in addition to the Bekenstein-Hawking entropy,
only eé"eP?0R,,p0 ~ o(p) in the generalized Wald entropy eq. (4.5) contribute to the
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logarithmic terms. After some calculations, we can derive

1 .
Sa-Wald = 1 /dpd2y\/ﬁ[)\3€/w6p0DRuypg + .. ]

(0)

1 h ~ mn N
/ dodPyy 5 Pl (492V )V, Rt + 99 ViV Feiger) + -

1

4

(0)
= —4)zlog(1/6) / d2y\/; (R*h*Clpeq) + . .. (4.18)

2

(0)
1/ Y h [ (0)” okl
€

(&%m+n}

It agrees with the expected logarithmic term of EE for 4d CFTs with zero extrinsic curva-
ture eq. (4.4). In the above derivations, we have used the following useful formulae

C; - Ci
VoV R = —2 9" Vi Rigpy = —12795
P’ P2
5 (oKl
N i = 20 R C e po = 62 (4.19)

Now let us go on to compute the logarithmic term from the entropy eq. (3.31). It
should be mentioned that the splittings 7o, Qo »z;; do not affect the discussions of this
section. From egs. (3.31), (A.12), (A.13), (A.14), Ty, Qo contribute terms in the form of
T2, ToK?, Q3, QoK2. However, since Ty ~ Qo ~ K2, these terms are all of oder O(K*?)
which do not contribute to logarithmic term of EE in 4d at all. Recall that the squashed
conical metric is

ds® = 24 [dzdz + e*AT(2dz — 2dz)?] +2ie**V;(2dz — zdz)dy’ + (gi + Qij)dy'dy’  (4.20)
with

T=T+T,x"+...,
Vi = Ui 4+ Voz® + Vgaz®a + ...,
Qij = QK(M']'JJ(Z + Qabz-jazaxb + Qabcijl’al‘bmc . (421)

Note that there is a factor €24 before Q.z, Q..3, Q.57 and V.. It should be stressed that,
for asymptotically AdS space-time the submanifold m is very close to the boundary, thus
we cannot choose T, V;, Q;; freely. Instead, they should approach to the value for AdS.
On the leading order, we have

1 1 4
T=-—— Uz = 07 Vai = 07 szw Gzy ) szij = Kzileé‘ ) széij = §Kzz] .

127
(4.22)
Let us derive the above formulas. For simplicity, we focus on pure AdS below. It is expected
that it gives the leading value of T', V', @ for asymptotically AdS.
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According to [19], we have

Rapea = 12T gpeca

Rabci - 3€abv::i ’
Rapij = 2eap(0:U; — 0;U;) + G*(Koji Kvir — Kair K1)

Rauivj = [eab(0:U; — 0;U;) + AGopUiUj ] + GM Ko jk Kpit — Quabij »

Rigjt = Tirgi + G (Ko Kt — Kaij Kora) - (4.23)
Comparing the above formula with Rm,pg = —GupGro + GueGup, we get
B 1
127
‘/;:i - 07

(0;U; —0;U;) =0,

GF (K i Kpit — Kair Kpjt) = 0,

GaupGij + 4G UUj + GH K in Kyt — Qupij = 0,
Tirjt + GijGri — GuGrj + G (Kai Kyjr — KaijKprt) = 0. (4.24)
Let us make a brief discussion. Since Fj; = 9;U; — 0;U; = 0, we can always set U; = 0
locally. Since K is in higher order, from the last equation above, we find G;; is the metric

of AdS3 on leading order. To derive the leading order of @).z;;, one need to compute
V:R.;.;. To leading order, we have

V:R..j = —AToK.i; + 2K.1(Q.% ) — 3Qzzzij + oK) = 0. (4.25)
Taking into account T" = —%, Q2zij = %sz, we get Q.zij = %Kzij + o(K?). Now we can

calculate the logarithmic term from the anomaly of entropy.
Without loss of generality, to the leading order, we can choose the regularized conical

metric as
1 1 2A =
ds? = e*4 |dzdz — EezA(Edz — 2d2)*| + dez
N nab(l + SQAZZ) + \/ﬁ((Qz + %ZZZ)Ezab + (22 + %ZEZ)Ezab) dyadyb (426)

p

where we have replaced K by k by using eq. (4.17) and k.ap = (Koap — %hub) is the traceless
part of k.qp. Substituting the above squashed cone metric into egs. (A.12), (A.13), (A.14),
we get

1 e -
Sanomaly = 163 / ddeQ%\/E[kzabkgb +0(p)]

1
= 4\3log(1/6) / d%\/ﬁ<wbkmb — Qk;gakfb> (4.27)
P

Combining eqgs. (4.6), (4.18), (4.27), we finally obtain the logarithmic term of HEE as

1 1 1
Sgg = log(1/0) / PavVh|[ = )Ry — [ = + 423 ){ C%Ungehpg — Kk, + =k29ES, )|
. 16 16 2
(4.28)
which exactly agrees with the CFT results eq. (4.4). Now we finish the proof.
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5 Resolution of the HMS puzzle

Hung, Myers and Smolkin find that the logarithmic term of EE derived from the trace
anomaly of 6d CFTs agrees with the holographic result for entangling surfaces with ro-
tational symmetry. However, mismatch appears when the entangling surfaces have no
rotational symmetry even if the extrinsic curvature vanishes [15]. We clarify this problem
in this section. After considering the anomaly of entropy from the higher-derivative term
Cijle2Cijkl, we resolve this problem successfully.

Let us first review the approach of calculating the logarithmic term of EE from the trace
anomaly for 6d CFTs [15, 39]. In six dimensions, the trace anomaly takes the following form

3
<TQ):ZBnIn+2AE6, (5.1)

n=1

where Ej is the Euler density and I; are conformal invariants defined by

I = CgpC™™iC, M, L =CykC,m™C,,

I3 = Citm (v2 8t +4R'; — g Ré;’) carm, (5.2)
According to [15, 34, 39], the universal logarithmic term of EE can be identified with HEE

of the trace anomaly. For entangling surfaces with the rotational symmetry, only Wald
entropy contribute to HEE of the trace anomaly (5.1). Thus, we have

SEE = log(f/é)/d‘lg;\f [271 g g Eul —|—2AE4] : (5.3)
X
where

on | o L

BR”l kl =3 <(ijnk O &3 € = Clklm Cjklm R C”kl Cz‘jkl> ;
oI |

aRWle gig =3 (Ck:lmn C,, ’U Eij Ert — C'tklm C]Iclm gw + Czjkl ngkl) (5‘4)
013 & o Okl 4 4 gE oMkl 6 RCUK g . z 4R R oL

@szkl €k;l — + m — 5 €ij €kl — il gjl

12 ..
iklm ] ~J_ igkl o~ .
ACH™ O 55— O O

The above result can be reliably applied for entangling surfaces with rotational symmetry.
However, Myers et al. find that it is inconsistent with the holographic result for entangling
surfaces with zero extrinsic curvature but without a rotational symmetry. Assuming the

conditions

Kaij =0, Ropei = 3€apVei = 0, (55)

they derive the holographic result for Einstein gravity as

2
“ W @i 1

Siuse = mlog(t/0) [ a'yVE |2~ §55" + 5012 (5.6
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The mismatch between holographic result eq. (5.6) and CFT result eq. (5.3) becomes

sl

AS = —47Bslog(l/6) / d* oV h (Crpn S C™™ M GG — Crr*C™ " 3 (5.7)
%

+ 20" C™ g i — 20" O g )
Although eq. (5.7) is derived in the case of Einstein gravity, Myers et al. argue that it can
be applied to the general case.

Now let us discuss the origin of the mismatch. First of all, as argued by HMS, the
holographic results are the correct ones. Thus, something goes wrong with the CF'T results.
As we shall show below, some contributions are ignored in the CFT calculations. Following
the assumption eq. (5.5), we focus on the conical metric (3.25) with Ky; = Vi = 0.
According our formula eq. (3.34), in addition to the Wald entropy, a new term proportional
to Q2 also contribute to HEE

oL 9°L Q22 Qzzki
S:27r/dd [ +64< > R ] 5.8
WO sk PN N R0V R ), B (58)

when the derivative of curvature is included in the action. Since only I3 (5.2) contains

such terms C'% leQCijkl, so the mismatch AS should be proportional to Bs. This explains
the proposal of Myers et al. that AS ~ Bs. Now let us calculate the contribute from
CWV?CW = —VmCijlemCijkl exactly. Applying the formula (5.8), we can derive the
contribution ignored in eq. (5.3) as

ASl = 12871'33 log(l/é)/ d4$\/ﬁ (szij@ii ij)v (59)
P

where Qabij = Qubij — %gzj is the traceless part of Qup; -
Substituted the cone metric (3.25) with K4;; = V,; = 0 into eq. (5.7), we obtain

AS = 1287 B3 log(1/§) / d*eVh (Q..i;Q5: "), (5.10)
b

which is exactly the same as eq. (5.9). Thus taking into account the contributions from the
higher-derivative term Cijle2C’ijkl, the CFT results exactly match the holographic ones.

It should be mentioned that after this work is finished, there appears two related pa-
pers [40, 41]. By applying the FPS regularization [18], they find that total derivatives may
contribute to non-zero entropy and they propose to use the entropy from total derivatives
to explain the HMS mismatch [40, 41]. However, it is found that actually the proposal
of [40, 41] does not resolve the HMS puzzle [44]. For convenience of the reader, we briefly
review work of [44] in the next section.

In this paper, we use the LM regularization [5, 19] instead of the FPS regulariza-
tion [18]. As a result, the entropy of covariant total derivatives is zero. [42]. For example,
by using eqgs. (3.10), (3.12), one can prove that the entropy of R and DC’ijle'ijkl van-
ishes for the general conical metrics eq. (3.1) with arbitrary splitting. For the detailed
discussions on the entropy of total derivatives, please refer to [42].
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6 Comparison with APS’s proposal for HMS puzzle

In this section, we briefly review the work of [44] to show that the proposal of [40, 41] can not
solve the HMS puzzle. For simplicity, we focus on Einstein gravity. We calculate the entropy
for all of the terms in the holographic Weyl anomaly by using the LM regularization [5,
19] and the APS regularization [40, 41], respectively. It turns out that only the LM
regularization [5, 19] can yield consistent results with the holographic ones.

In the holographic approach, the universal terms of EE for 6d CFTs dual to Einstein
gravity is given by [15]

2) &5
i w13

SHEE = WIOg(f/‘;)/ d*yVh [29 ;= éggé ~(93)?] - (6.1)

5

2
The above formula applies to the case with zero extrinsic curvatures. For the general case,
please see [43]. For simplicity, we focus on the following conical metric with zero extrinsic
curvatures

ds? = dr? + r?dr* + (8;; + 2H,jr* cost sin t)dy'dy’ . (6.2)

Then the holographic universal term of EE eq. (6.1) becomes
SHEE = _IT) log(£/9) / d*yVh [8trH? — (trH)?] . (6.3)
b

The holographic Weyl anomaly for Einstein gravity is given by [45]

(T%) = 3% <— %RR“RH + %R3 + RYRM Ry — éRiijjR+ %RWDRU - 210RDR> :

(6.4)

Note that the curvature in our notation is different from the one of [45] by a minus sign.

In the field theoretical approach, the universal term of EE can be derived as the entropy

of the Weyl anomaly [15, 34]. Below we calculate the universal term of EE in the field

theoretical approach by using the APS regularization [40, 41] and the LM regularization [5,

19], respectively.

Following [40, 41], we regularize the conical metric eq. (6.2) as

ds* = fo(r)dr® 4 r2dr?* + (045 + 2I:Iijr2” costsint)dy'dy’, (6.5)

2 2,2

where f, = %
derive the total entropy of eq. (6.4) in the Lorentzian signature as

and 7 ~ 7 4 2nm. Using the above regularizaed conical metric, we can

Saps = —7;/ d4y\/ﬁ [tTﬁZ] , (6.6)
b))

which does not match the holographic result eq. (6.3) at all. Please refer to [44] for the
details of the calculations.
Applying the approach of [5, 19], we regularize the conical metric eq. (6.2) as

1

ds* = —————
(r2+b2)'x

(dr? + r2dr?) + (6;; + 2H;;r? cost sint)dy'dy’, (6.7)
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with 7 ~ 7 4+ 27. From the above regularizaed conical metric, we can derive the total
entropy of eq. (6.4) in the Lorentzian signature as

Sma = —Z—O /2 d*yvh [8trﬁ2 - (trﬁ)z] , (6.8)

which exactly agrees with the holographic result eq. (6.3). Please refer to [44] for the
derivations of eq. (6.8).

Now it is clear that it is the proposal of this paper rather than the proposal of [40, 41]
that can solve the HMS puzzle. This implies that the LM regularization [5, 19] instead of
the APS regularization [40, 41] is the correct apporach of regularization.

7 Conclusions

In this paper, we investigate HEE for the most general higher derivative gravity. In partic-
ular, we find a new class of generalized Wald entropy on entangling surfaces without the
rotational symmetry. It appears in the general higher derivative gravity and reduces to
Wald entropy on Killing horizon or on the entangling surface with the rotational symmetry.
We also find all the possible would-be logarithmic terms which contribute to the anomaly
of entropy. Combining the generalized Wald entropy and the anomaly of entropy together,
we obtain a formal formula of HEE for the most general higher derivative gravity. We work
out this formula exactly for 2n-derivative gravity for some interesting conical metrics. We
prove that our formula yields the correct universal term of entanglement entropy for 4d
CFTs. This is a strong support of our results. As an important application of our formulae,
we solve the HMS puzzle that the logarithmic term of entanglement entropy derived from
Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curva-
ture vanishes. We find that such mismatch comes from the contributions of the derivative
of the curvature. Taking into account such contributions carefully, we find that the CF'T
result match the holographic one exactly. Finally, we find that there is splitting problem in
the derivations of HEE. The splitting problem can be fixed by using equations of motion
for Einstein gravity. As for higher derivative gravity, how to fix the splitting problem is
a non-trivial and open problem. We hope to address this problem in future. Fortunately,
the splitting problem does not affect the main results of this paper. That is because the
splitting problem only affects the entropy at least of order O(K*) (K denotes the extrinsic
curvatures) for all the examples studied in this paper.
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A Useful formulas

In the section, we list some formulas which would be useful for the calculations of HEE for
six-derivative gravity. For simplicity, we ignore the splitting problems. In other words, we
set Ty = Qo = 0.

ViR.inj = 2K,;;0:0,A — [20,AK. " K 1,
- 2582A(Kzz‘k(szkj — 2K " Kznj) + (i <+ J)] (A.1)

VSRZiZj = 28ZA( ngij + 4’L'U5Kzij) + 127;28ZAV'25KZ13'
+[220, AK 1 (2iU* Kz; + 6" (0; K515 + 05 K1t — O K z3) — 290K F) +(i <+ 5)]

(A.2)
VszZzi = —37:62A82AV21'
+2ie?2 20, A(K ;" Vo — K" Var) (A.3)
VERzizi = _QiUi62AazaZAa (A4)
ViRusj = —2K.,;j0,0;A — 2K KK ;.,0. A
— 220, AK 1 (Qzz1i9™ — 2K, Kzi) | (A.5)
VZRziZj — _28ZAK2inKznj
— 2283A(szangnz‘ — 2K2manniszj) , (AG)
VZRzéij = 2azAK2jnKzni
— 20, A(K ;" Qsznj + K, K5 i Koi) — (i ¢ 5) (A7)
V2Reije = 20, A(0; K i + 4iU; Koig + Kojvhe)
+ 220, A[3iK; Ve, + 20U K Kz — (i 4 ) — 2K, K yin
+ K" (0iK oo + Ok K oim — Om Ki) | — (j > k), (A.8)
ViRuiji = de 0, A(Kz; Koy — KanKij)
+ 46720, A(Qzair K 2ij — Qiatj Koik) - (A.9)
VoRinj = 4e 240, A(K ij Kapg + Kzij Kop)
—4e 20, A(K.ijQzzm + Ko Qzzi5) — (5 ¢ k), (A.10)
VZRzizj = 2KzijazazA + azA(4szij - 8Kzilelj)
- eQA,?aZA[ — 24TKZZ']‘ + Z((%Vm + 81“/;]')
— 20UN0; K i + 0: Ky — O K 1ji) — Qink%kj
— 8UM(U; K i + UiK pj) + 4672A(kzijz2ik + K,;'Q.zj)
—2Qu.zj — 16K, KM K5 . (A.11)

Applying the above formulas and eqgs. (3.10), (3.12), let us compute the anomaly of
entropy for some toy models. We recover the contributions from Ty and @ .z;; in these
examples.
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For L = 7, R 7" R, we obtain
S'Anomaly = 327r/dyd\/§ (3tr(K.Kz) — K. K= + 6Ty — 2Qo Z5)2, (A.12)

where K, = ¢ Kaij, tr(KoKp) = 99 Kair Ky)', Qab = 97 Qabij, ete.
For Ly = 7, R, VF RPY, we get

SAnomaly = —47 / dy?/g [A0T K. K> — 6K2tr K2 + 2K, Kstr(K.Kz) — 2Q.: K. K>

— K?K? — 8trK?trK2 — 8tr(K.Q.:) K> + 18tr(K2K,) K.

— 8K, tr(Qz=K.) + 8tr(Kz2)Q22 + 4K§Q2£ —40Q..Qzz
+4Q..:K; — 8(trK.K:)* — 8tr(K. K, K:K;) — 8tr(K.K:K.K>)
- V,('y)Kz vW K, — 2RzkijRzk’i’j’gkjgklj/giil + (24 2)]

+87 / dyd\/§[72T02 — 24T0Qo -z + 4tr(Qf .2) +4Q5 .-

— 28Ty K. K> + 24Tptr (K. Kz) + 11Qq .2 K. Kz — 20Qq .str(K.K3)] .
(A.13)

For Ly = V,Ryap, VFRV*P | we have

SAnomaly = 327 / ddy\/§[4Q22ijszij + 8K§inijQZZki - 2K§ppK§ijszij
- 2szpKzijQ25ij + QKZinEijQZZ;g] + (Kzinzij)Q + szpKquKzinEij
—AKTK KM K g+ VYKL v WS K9 — 40T K KLY
+ KL KK oy KM - Rziij;jk - 6szzingij — 6Qz5.i, K,
+ 4Q22ij Q2" +36T5 —28Totr (K. Kz)—2Qo-2;; K, K ) + Q0.5 KA K '
(A.14)

Remarkably, the entropy from the splittings takes the form T02, Ty K2, Q%, QoK.
They are all in order K* due to the fact Tp ~ Qo ~ O(K?). As a result, the splitting
probem does not affect our results in section 4 and section 5.
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any medium, provided the original author(s) and source are credited.
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