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horizon. Furthermore, we obtain a formal formula of HEE for the most general higher

derivative gravity and work it out exactly for some squashed cones. As an important ap-

plication, we derive HEE for gravitational action with one derivative of the curvature when

the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic

curvature. We prove that our formula yields the correct universal term of entanglement

entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin

that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs

does not match the holographic result even if the extrinsic curvature vanishes. We find that

such mismatch comes from the ‘anomaly of entropy’ of the derivative of curvature. After

considering such contributions carefully, we resolve the puzzle successfully. In general, we

need to fix the splitting problem for the conical metrics in order to derive the holographic

entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can

be fixed by using equations of motion. How to derive the splittings for higher derivative

gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem

in this paper and find that it does not affect our main results.
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1 Introduction

In [1, 2], Ryu and Takayanagi develop a holographic approach to calculate entanglement

entropy (EE) of quantum (conformal) field theories in the context of AdS/CFT correspon-

dence [3]. For a subsystem A on the boundary, they propose an elegant formula of EE

SA =
Area of γA

4G
, (1.1)

where γA is the minimal surface in the bulk whose boundary is given by ∂A and G is the

bulk Newton constant. Their formula yields the correct EE for two-dimensional CFTs and

satisfies the strong subadditivity of EE [4]

SA + SB ≥ SA∪B + SA∩B . (1.2)

Recently, the conjecture eq. (1.1) was proved by Lewkowycz and Maldacena [5]. See

also [6, 7] for the proof of Ryu-Takayanagi conjecture. Besides the gravity side there are

also many interesting progress in the field theory side, please refer to [8–14] for more details.
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The formula of Ryu and Takayanagi applies to quantum field theories dual to Einstein

Gravity. Thus the corresponding CFTs have only one independent central charge. To cover

more general field theories, one need to generalize their work to higher derivative gravity. A

natural candidate of holographic entanglement entropy (HEE) for higher derivative gravity

would be Wald entropy:

SWald = −2π

∫

ddy
√
g

δL

δRµνρσ
ǫµνǫρσ . (1.3)

However, as pointed out by Hung, Myers and Smolkin [15], Wald entropy does not give the

correct universal logarithmic term of EE for CFTs when the extrinsic curvature is non-zero.

For Lovelock gravity, we have another entropy formula: the Jacobson-Myers entropy [16]

which differs from Wald entropy by some extrinsic-curvature terms. It turns out that the

Jacobson-Myers entropy [16] yields the correct CFT results [15, 17]. However, there is no

similar entropy formula for general higher derivative gravity. One do not know how to

derive HEE from the first principle when the extrinsic curvature appears.

The first breakthrough was made by Fursaev, Patrushev and Solodukhin (FPS) [18].

They develop a regularization procedure to deal with the squashed conical singularities.

Using this regularization procedure, they successfully obtain HEE for the curvature-squared

gravity. Soon after [18], another important breakthrough was made by Dong [19]. Dong find

that, similar to holographic Weyl anomaly, the would-be logarithmic terms also contribute

to HEE. Dong call such contribution as the ‘anomaly of entropy’. For the so-called ‘general

higher derivative gravity’ whose action including no derivatives of the curvature S(g,R),

Dong derive an elegant formula of HEE:

SEE = 2π

∫

ddy
√
g

[
∂L

∂Rzz̄zz̄
+
∑

α

(
∂2L

∂Rzizl∂Rz̄kz̄l

)

α

8KzijKz̄kl

qα + 1

]

, (1.4)

where the first term is Wald entropy and the second term is the anomaly of entropy. Please

refer to [19] for the definition of qα. It should be mentioned that Camps [20] also made

important contributions in this direction. For recent developments of HEE, please refer

to [21–32].

So far, HEE for gravitational actions which include derivatives of the curvature is not

known. In this paper, we fill this gap by generalizing Dong’s work to ‘the most general

higher derivative gravity’ S(g,R,∇R, . . .). We find all the possible would-be logarithmic

terms and derive a formal formula of HEE for ‘the most general higher derivative gravity’.

To get more exact formulas, we focus on gravity theories whose action S(g,R,∇R) includes

only one derivative of the curvature. A natural guess of HEE for S(g,R,∇R) would be

Dong’s formula eq. (1.4) with all ∂ be replaced by δ. This is however not the case. Instead,

we find that new terms should be added to both Wald entropy and anomaly of entropy

even if we replace all ∂ by δ. The generalized Wald entropy for S(g,R,∇R) is

SG-Wald = 2π

∫

ddy
√
g

[
δL

δRzz̄zz̄
+ 2

(
∂L

∂∇zRz̄iz̄j
Kz̄ij + c.c.

)]

= 2π

∫

ddy
√
g

[

− δL

δRµνρσ
ǫµνǫρσ + 2

∂L

∂∇αRµρνσ
Kβρσ(n

β
µnαν − ǫβµǫαν)

]

(1.5)
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By ‘generalized Wald entropy’, we means the total entropy minus the anomaly of entropy.

Interestingly, a new term proportional to the extrinsic curvature appears in the generalized

Wald entropy. This new term only appears on entangling surface without the rotational

symmetry, thus it is consistent with Wald’s results on Killing horizon. While for the

anomaly of entropy, since the general case is very complicated, we set Kaij = 0 for sim-

plicity. If the anomaly of entropy is just Dong’s formula with ∂ be replaced by δ, it should

vanish after we set Kaij = 0. However, we get

SAnomaly = 2π

∫

ddy
√
g

[

64

(
∂2L

∂∇zRzizl∂∇z̄Rz̄kz̄l

)

α1

QzzijQz̄z̄kl

βα1

+ 96i

(
∂2L

∂∇zRzizl∂∇z̄Rz̄zz̄k

)

α1

QzzijVz̄k

βα1

+ c.c.

+ 144

(
∂2L

∂∇zRzz̄zl∂∇z̄Rz̄zz̄k

)

α1

VzlVz̄k

βα1

]

. (1.6)

Applying the above formula, we resolve the puzzle raised by Huang, Myers and Smolkin

(HMS) that the logarithmic term of EE derived from Weyl anomaly of CFTs does not

match the holographic result even if the extrinsic curvature vanishes [15]. We find that

such mismatch comes from the contributions of the derivative of the curvature. After

considering these contributions carefully by using the above formula, we resolve the HMS

puzzle successfully.

For non-zero extrinsic curvature, we investigate a toy model with Lagrangian L =

λ1∇αR∇αR+λ2∇αRµν∇αRµν +λ3∇αRµνρσ∇αRµνρσ. We derive HEE and prove it yields

the correct logarithmic terms of EE for 4d CFTs.

The paper is organized as follows. In section 2, we briefly review Dong’s derivation of

HEE for ‘general higher derivative gravity’. In section 3, we generalize Dong’s method to

the most general cases. We obtain a formal formula of HEE for the most general higher

derivative gravity. As an exercise, we work out the exact formula for some interesting

conical metrics. In section 4, we prove that our formula yields the correct logarithmic term

of EE for 4d CFTs. In section 5, we resolve the HMS puzzle. We derive the logarithmic

term of entanglement entropy for 6d CFTs from Weyl anomaly and find it is consistent

with the holographic result for entangling surfaces with zero extrinsic curvature but without

rotational symmetry. In section 6, we compare with our resolution of the HMS puzzle with

the one of [40, 41]. Finally, we conclude in section 7.

Note added. After this work is finished, there appears two related papers [40, 41].

The authors of [40, 41] claim that convariant total derivatives may contribute to non-

trivial entropy and propose to use the entropy of total derivatives to explain the HMS

mismatch [15]. We notice that their results are based on the FPS regularizations [18]. By

applying the Lewkowycz-Maldacena (LM) regularization [5, 19] instead, it is found that

the entropy of convariant total derivatives is indeed trivial [42]. In this paper, we use the

LM regularization [5, 19] to investigate the HEE.

– 3 –
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2 Dong’s proposal of HEE for higher derivative gravity

In this section, we briefly review Dong’s derivation of HEE for higher derivative gravity [19].

The key observation of Dong is that, similar to the holographic Weyl anomaly, the would-

be logarithmic term also contributes to HEE. As a result, corrections of entropy from the

extrinsic curvature emerge:

δS = 32π

∫

ddy
√
g

(
∂2L

∂Rzizl∂Rz̄kz̄l

)

α1

KzijKz̄kl

βα1

. (2.1)

Dong calls such corrections as the anomaly of entropy. For simplicity, he focuses on

the gravity theories without derivatives of the curvature, S = S(g,R). We review

Dong’s derivation of HEE in this section and generalize it to the most general case

S = S(g,R,∇R, . . .) in the next section.

2.1 The replica trick

A useful method to derive HEE is by applying the replica trick. Let us take Einstein

Gravity as an example. Recall that the Renyi entropy is defined as

Sn = − 1

n− 1
log tr[ρn] = − 1

n− 1
(logZn − n logZ1) (2.2)

Zn = Tr[ρ̂n] , ρ =
ρ̂

T r[ρ̂]
, (2.3)

where Zn is the partition function of the field theory on a suitable manifold Mn known as

the n-fold cover.

For theories with a holographic dual we can build a suitable bulk solution Bn whose

boundary is Mn. Then the gauge-gravity duality identifies the field theory partition func-

tion on Mn with the on-shell bulk action on Bn

Zn = Z[Mn] = e−S[Bn] . (2.4)

We can derive the HEE by taking the limit n → 1 of Renyi entropy

SEE = lim
n→1

Sn = −∂n(log Tr[ρ
n])|n→1 = −Tr[ρ log ρ]

= −∂n(logZn − n logZ1)|n→1 = ∂n(S[Bn]− nS[B1])|n→1

= −∂ǫSreg , (2.5)

where Sreg = (nS[B1]−S[Bn]) is the regularized action and ǫ = 1− 1
n
. For Einstein gravity,

we have

Sreg =
1

16πG

∫

RegCone
dxD

√
GR = ǫ

Area

4G
. (2.6)

Then we can derive HEE of Einstein gravity as S = −Area
4G . Note that we work in the

Euclidean signature. So entropy formula differs from its usual Lorentzian form by a mi-

nus sign.

– 4 –
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There is still one question need to be answered. On which surface shall we apply this

formula? We know the answer is the minimal surface for Einstein gravity. In general,

according to [5], we require that the analytically continued solution satisfies the linearized

equations of motion near the cone ρ = 0. We call this method the “boundary condition

method”. The metric of regularized cone is

ds2 = e2Adzdz̄ + (gij + 2zKzij + 2z̄Kz̄ij)dy
idyj + o(ρ2) , (2.7)

where z = ρeiτ , dzdz̄ = dρ2 + ρ2dτ2, A = −ǫ log(ρ) and Kz is the extrinsic curvature. Let

us compute the linearized equations of motion δGzz = 8πGδTzz. We focus on the divergent

terms, going like 1/ρ near the origin. Since the stress tensor is not expected to be singular,

we have

δRzz = − ǫ

z
Kz + regular terms . (2.8)

Requiring the above equation to be regular near the cone, we get Kz = Kz̄ = 0. This is

just the condition of the minimal surface.

There is another method to derive the minimal surface conditions. We call it the

‘cosmic brane method’. Consider the action

Stotal = SEH + SB = − 1

16πGN

∫

Reg
dDx

√
GR+

ǫ

4GN

∫

dD−2y
√
g . (2.9)

In the limit ǫ → 0, we can treat SB as the action of a probe brane and find its location by

minimizing SB without back reaction on the bulk fields. This gives exactly the minimal

surface.

We have shown how to derive HEE for Einstein Gravity and how to derive the location

of the cone. Now let us try to generalize it to higher derivative gravity.

2.2 Would-be logarithmic terms

According to [19], the metric of regularized cone is

ds2 = e2A
[
dzdz̄ + e2AT (z̄dz − zdz̄)2

]
+ (gij + 2Kaijx

a +Qabijx
axb)dyidyj

+ 2ie2A(Ui + Vaix
a)(z̄dz − zdz̄)dyi + . . . , (2.10)

where T , gij , Kaij , Qabij , Ui, Vai are independent of z and z̄, with the exception that

Qzz̄ij = Qz̄zij contains a factor e2A. The warp factor A is regularized by a thickness

parameter a as A = − ǫ
2 lg(zz̄ + a2). As we shall show below, the result is independent of

the choice of regularization.

The key observation of [19] is that
∫

ρdρ∂zA∂z̄Ae
−βA = − ǫ

4β
, (2.11)

where z = ρeiτ . Naively the left hand of eq. (2.11) is in order o(ǫ2). Magically it be-

comes in order o(ǫ) after regularization. The magic happens because would-be logarithmic

divergence gets a 1
ǫ
enhancement:

∫

dρ
1

ρ1−βǫ
∼ 1

βǫ
. (2.12)

– 5 –
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As we know, the coefficient of a would-be logarithmic divergence is universal (like anomaly).

So eq. (2.11) is independent of the regularization. In fact, we can give a very simple proof.

It is known that the following formula is universal
∫

dzdz̄e−βA∂z∂z̄A = −πǫ . (2.13)

This formula is usually used to derive Wald entropy. Performing integration by parts,

we get ∫

dzdz̄e−βA∂zA∂z̄A =
−πǫ

β
, (2.14)

which is exactly eq. (2.11). It should be mentioned that we can drop the boundary terms

safely. One can check that the boundary term is zero after regularization. Note that

eqs. (2.11), (2.13) are only true to linear order inǫ. We ignore the higher-order terms

because they do not contribute to the HEE.

2.3 Dong’s formula: HEE for four-derivative gravity

Now let us focus on the four-derivative gravity whose action S(g,R) contains no derivatives

of the curvature. By four-derivative gravity, we means the equations of motion are four

order differential equations. This is the case investigated in [19]. From the regularized

metric eq. (2.10), we can derive the curvature with non-vanishing derivatives of A as

Rzz̄zz̄ = e2A∂z∂z̄A+ . . . ,

Rzizj = 2Kzij∂zA+ . . . ,

Rzz̄zi = ie2AUi∂z(z∂zA) + . . . , (2.15)

where “. . . ” denotes terms without derivatives of A. One can get the other curva-

tures by exchanging z, z̄, i, j and complex conjugate. For the reason will be clear in sec-

tion 3, Rzz̄zi ∼ e2AUi∂z(z∂zA) ∼ 0 actually does not contribute to HEE. Thus, from

eqs. (2.13), (2.14), (2.15), we can derive the HEE as

SEE = 2π

∫

ddy
√
g

[
∂L

∂Rzz̄zz̄
+ 16

(
∂2L

∂Rzizl∂Rz̄kz̄l

)

α1

KzijKz̄kl

βα1

]

(2.16)

The first term above is just the Wald entropy, and the second term denotes the anomly of

entropy [19]. It should be stressed that, unlike Kaij , Ui could not appear in the formula

of HEE eq. (2.16). Otherwise, it would yield wrong results of entropy for stationary black

holes. As we shall show in next section, Rzz̄zi = ie2AUi∂z(z∂zA) indeed do not contribute

to HEE.

3 HEE for the most general higher derivative gravity

In this section, we investigate HEE for the most general higher derivative gravity. Firstly,

we discuss the splitting problems for the conical metrics. Then we find all the possible

would-be logarithmic terms and derive a formal formula of HEE for the most general

higher derivative gravity. Finally, we work out the formal formula exactly for some special

conical metrics.

– 6 –
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3.1 Splitting problems

The splitting problems appear because we can not distinguish r2 and r2n in the expansions

of the conical metrics. That is because r2 and r2n are of the same order in the limit n → 1

when we calculate HEE. It should be mentioned that the splitting problem is ignored in the

initial works of Dong and Camps [19, 20]. However they both change their mind and realize

the splitting is necessary later.1 Recently Camps et al. generalize the conical metrics to the

case without Zn symmetry, where the splitting problem appears naturally [33]. Inspired

by the works of [5, 19, 33], a natural way to fix the splitting problem is by using equations

of motion. As we shall prove below, this is indeed the case at least for Einstein gravity.

For the higher derivative gravity, how to fix the splitting problem is a non-trivial and open

problem. We leave it for future work. It should be mentioned that the splitting problem

does not affect the main results of this paper. We shall explain the reasons briefly at the

end of this subsection.

Let us start with the general squashed conical metric [19, 20]

ds2 = e2A
[
dzdz̄ + T (z̄dz − zdz̄)2

]
+ 2iVi(z̄dz − zdz̄)dyi

+ (gij +Qij)dy
idyj , (3.1)

where gij is the metric on the transverse space and is independent of z, z̄. A = − ǫ
2 lg(zz̄+a2)

is regularized warp factor. T , Vi, Qij are defined as

T =
∞∑

n=0

Pa1...an+1
∑

m=0

e2mATm a1...anx
a1 . . . xan ,

Vi =
∞∑

n=0

Pa1...an+1
∑

m=0

e2mAVm a1...anix
a1 . . . xan ,

Qij =
∞∑

n=1

Pa1...an∑

m=0

e2mAQm a1...anijx
a1 . . . xan . (3.2)

Here z, z̄ are denoted by xa and Pa1...an is the number of pairs of z, z̄ appearing in a1 . . . an.

For example, we have Pzzz̄ = Pzz̄z = Pz̄zz = 1, Pzz̄zz̄ = 2 and Pzz...z = 0. Expanding

T, V,Q to the first few terms in Dong’s notations, we have

T = T0 + e2AT1 +O(x) ,

Vi = U0 i + e2AU1 i +O(x) ,

Qij = 2Kaijx
a +Q0 abijx

axb + 2e2AQ1 zz̄ij zz̄ +O(x3) (3.3)

How to split W (W denote T , V , Q) into {W0,W1, . . . ,WP+1} is an important problem.

Inspired by [5], it is expected that the splitting problem can be fixed by equations of motion.

Let us take Einstein gravity in vacumm as an example. We denote the quations of motion

1We thank Dong and Camps for discussions on this problem.
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by Eµν = Rµν − R−2Λ
2 Gµν = 0. Focus on terms which are important near xa = 0, we have

Rab = 2K(a∇b)A− gabK
c∇cA+ e2A

[
(12T1 + 4U2)gab −Q i

1 abi

]

+KaijK
ij

b + (12T0 + 8U0U1)gab −Q i
0 abi

Rai = 3εbaV
b
i +DmKami −DiKa ,

Rij = rij + 8UiUj −Q a
1 aij + e−2A

[
2KaimKam

j −KaKaij + 16U0 (iU1 j) −Q a
0 aij

]
,

R = r + 16U2 + 24T1 − 2Q a i
1 a i + e−2A(3KaijK

aij −KaKa + 24T0 − 2Q a i
0 a i + 32U0U1) ,

(3.4)

where A = − ǫ
2 log zz̄, εzz̄ =

i
2 and gzz̄ =

1
2 . Let us firstly consider the leading term of Ezz,

we get

Ezz = 2Kz∇z + . . . = −ǫ
Kz

z
+ . . . = 0 . (3.5)

Requiring the above equation to be regular near the cone, we obtain the minimal surface

condition Kz = Kz̄ = 0 [5]. To derive T0 and Q0, we need consider the subleading terms

of Ezz̄, Eij and Eµ
µ . We have

Ezz̄ = e2A(. . .) +
[
Q i

0 zz̄i − 2KzijK
ij

z̄ +KzKz̄ − 4U0U1

]
= 0 ,

Eij = (. . .) + e−2A

[

2KaimKam
j −KaKaij + 16U0 (iU1 j) −Q a

0 aij

− 1

2
gij(3KaijK

aij −KaKa + 24T0 − 2Q a i
0 a i + 32U0U1)

]

= 0 ,

Eµ
µ = (. . .) +

2−D

2
e−2A

[
3KaijK

aij −KaKa + 24T0 − 2Q a i
0 a i + 32U0U1

]
= 0 . (3.6)

Here (. . .) denote the leading terms which can be used to determine T1, U1i, Q1zz̄ij and gij .

From the subleading terms of the above equations, we can derive a unique solution

T0 =
1

24
(KaijK

aij −KaK
a) ,

Q0zz̄ij =

(

KzimK m
zj − 1

2
KzKz̄ij + c.c.

)

+ 4U0 (iU1 j) (3.7)

Now we have fixed the splitting of T and Qzz̄ij by using equations of motion. Note that

Einstein equations does not fix U0 i. That is not surprising. Ui can be regarded as the

‘gauge fields’ which are related to the coordinate transformations [20]. It is clear that

equations of motion can not fix the gauge fields completely. It should be mentioned that, if

we reqiure that a special background metric such as AdS is a solution, then different theories

of gravity can share the same splittings. That is because we have imposed additional

conditions. Recently, the splittings eq. (3.7) are used to derive the universal terms of

entanglement entropy for 6d CFTs [43]. It turns out that eq. (3.7) is the necessary condition

that all the theories of higher derivative gravity with an AdS solution yield the consistent

results for the universal terms of entanglement entropy [43].

In addition to equations of motion, there is another principle which may help us to

get some insights into the splitting problem. The entropy should reduce to Wald entropy

– 8 –
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in stationary spacetime. We call this principle as the ‘stationary principle’. Let us take

∇µRνρσα∇µRνρσα as an example. In stationary spacetime, we have Kaij = Qzzij = Qz̄z̄ij =

0. Applying the method will be developed in the next section, we can derive the HEE as

SHEE =

SWald +

∫

dyD−2√g128π
(
Q0zz̄ijQ

ij
0zz̄ + 9T 2

0 + 5(U0 iU
i

0 )2 +mixed terms of T0, Q0, U0

)
.

(3.8)

To be consistent with Wald entropy, we must have T0 = U0 i = Q0zz̄ij = 0 in stationary

spacetime. This implies that T0, U0 i and Q0zz̄ij should be either zero or functions of the

extrinsic curvatures. This is indeed the case for the splitting eqs. (3.7). The ‘stationary

principle’ tells us that the splitting problem disappears if we focus on the cases with zero

extrinsic curvature. By dimensional analysis, we note that U0 i ∼ O(K). However, it is

impossible to express U0 i in terms of the extrinsic curvature Kaij . Thus, a natural choice

would be U0 i = 0.

In this paper, for simplicity, we keep only the highest order of T , Vi, Qij eq. (3.2) to

illustrate our approach. This is also the case studied in [19]. In other words, we ignore

the splittting probelm in most parts of this paper. For example, we set T0 = U0 = Q0 =

0 when we investigate the entropy of higher derivative gravity S(g,R,∇R). According

to the ‘stationary principle’, equivalently, we have zero extrinsic curvatures. It should

be mentioned that this condition T0 = U0 = Q0 = 0 does not affect our main results

(eqs. (1.5), (1.6), (3.10), (3.12) and the results in section 4 and section 5). Straightforward

calculations can show that T0, U0 i, Q0 zz̄ij do not contribute to the generalized Wald

entropy eq. (1.5). However, they indeed appear in the anomaly of entropy, see the appendix.

Recall that eq. (1.6) is derived under the condition Kaij = 0. According to the ‘stationary

principle’, the condition Kaij = 0 yields T0 = U0 i = Q0 zz̄ij = 0. Thus T0, U0 i, Q0 zz̄ij

does not affect eq. (1.6). Because we only use eq. (1.6) to resolve the HMS puzzle (the

HMS puzzle is found under the condition Kaij = 0), so T0, U0 i, Q0 zz̄ij does not affect

our resolution of the HMS puzzle in section 5. As we shall show in section 4, only the

leading terms T1 = − 1
12 , Q1 zz̄ij = 1

2Gij contribute to the logarithmic term of EE. And

the subleading terms T0 ∼ Q0 zz̄ij ∼ o(K2) are irrelevant to the logarithmic term of EE

for 4d CFTs in section 4. For the above reasons, the splitting problem does not affect the

main results of this paper (eqs. (1.5), (1.6), (3.10), (3.12) and the results in section 4 and

section 5).

3.2 General would-be logarithmic terms

Using the squashed cone metric (3.1), we can calculate the action of most general higher

derivative gravity and then select the relevant terms to derive HEE. Now let us discuss all

the possible terms relevant to HEE. The discussions of this subsection are universal and

independent of the splitting of the conical metrics.

Let us denote the general derivatives by

∂̂ = cmn∂m
z ∂n

z̄ , (3.9)
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where cmn are arbitrary constants. Since only o(ǫ) terms contribute to HEE, we only need

to consider terms with at most two A: ∂̂A, ∂̂A∂̂A. For the first case ∂̂A, it is easy to find

that only the following terms contribute to HEE
∫

dzdz̄zmz̄n∂m+1
z ∂n+1

z̄ A =

∫

dzdz̄(−1)m+nm!n!∂z∂z̄A

= (−1)m+n+1m!n!πǫ . (3.10)

Equivalently, we have

∂m+1
z ∂n+1

z̄ A = −πǫ∂m
z ∂n

z̄ δ̄(z, z̄) . (3.11)

These terms contribute to the Wald entropy. Note that the delta function is defined as
∫
dzdz̄δ̄(z, z̄) = 1.

As for the second case ∂̂A∂̂A, we should focus on the would-be logarithmic terms.

That is because only such terms could gain a 1
ǫ
enhancement. The only possible terms are

∫

dzdz̄zmz̄n∂m+1
z A∂n+1

z̄ Ae−βA =

∫

dzdz̄(−1)m+nm!n!∂zA∂z̄Ae
−βA

= (−1)m+n+1m!n!
πǫ

β
. (3.12)

Equivalently, we have

∂m+1
z A∂n+1

z̄ Ae−βA = −πǫ

β
∂m
z ∂n

z̄ δ̄(z, z̄) . (3.13)

These terms contribute to the anomaly of entropy. It should be mentioned that

eqs. (3.10), (3.12) are only true to linear order inǫ. We ignore the higher-order terms

because they do not contribute to the HEE.

The simplest method to prove eq. (3.12) is by applying integration by part and dropping

the irrelevant terms such as ∂̂∂z∂ẑA∂̂A, ∂̂A∂̂A∂̂A and so on. This is the method we

used in eq. (3.12). We can also prove eq. (3.12) by using Dong’s method. Recall that

A = − ǫ
2 log(zz̄), we have zm∂m+1

z A = − ǫ
2(−1)mm!

z
. Thus we can derive

∫

ρdρzmz̄n∂m+1
z A∂n+1

z̄ Ae−βA =

∫

dρ(−1)m+nm!n!
ǫ2

4
ρ−1+βǫ

= (−1)m+nm!n!
ǫ

4β
ρβǫ|∞0

∼= (−1)m+n+1 ǫ

4β
m!n! . (3.14)

Here ∼= denotes equivalence after regularization. For simplicity, the above equation is

illustrated in a regularization-independent way. Now let us use Dong’s regularization with

A = − ǫ
2 log(zz̄ + a2) to rederive it. We have
∫

ρdρzmz̄n∂m+1
z A∂n+1

z̄ Ae−βA =

∫

dρ(−1)m+nm!n!
ǫ2

4

ρ3+2m+2n

(ρ2 + a2)2+m+n−βǫ
2

= (−1)m+nm!n!aβǫ
ǫ2Γ
(
− 1

2ǫβ
)
Γ(2 +m+ n)

8Γ
(
2 +m+ n− ǫβ

2

)

= (−1)m+n+1 ǫ

4β
m!n! +O(ǫ2) . (3.15)
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Following [19], we set a finite so that aβǫ = 1 +O(ǫ). We have also used Γ[ǫ] = 1
ǫ
+ O(ǫ0)

in the above derivations.

It should be stressed that terms contains ∂z∂z̄A, z∂zA or z̄∂z̄A in the second case

would not contribute to HEE,

∂̂∂z∂ẑA∂̂A = 0 ,

∂̂(z∂zA)∂̂A = ∂̂(z̄∂z̄A)∂̂A = 0 .

That is because ∂z∂z̄A = − ǫ
2

a2

(a2+r2)2
, so ∂̂∂z∂ẑA∂̂A at least in order ǫ2a2. Note that

(a2+r2) always appear as a whole in the denominator. To cancel a2, we must have ǫ2 a2

a2+r2

after integration. However this is a r−2 term rather than a would be logarithmic term 1
ǫ
r−ǫ.

So we can not cancel ǫ and a2 at the same time. Similar for the second case, ∂̂(z∂zA)∂̂A

is also at least in order ǫ2a2. Thus, it does not contribute to HEE either. Maybe the

most quick way to see that ∂z∂z̄A and z∂zA do not contribute to HEE is by identifying

A = − ǫ
2 log(zz̄). So we have ∂̂∂z∂z̄A = ∂̂(z∂zA) = 0, which can not contribute to HEE

at all.

Using eqs. (3.10), (3.12), we can derive HEE for most general higher derivative grav-

ity as

SHEE = −∂ǫSreg|ǫ=0

= 2πδ(z, z̄)ĝab

(

δS

δ∂a∂bA
+

1

βα

[
δ

δ∂bA

(
δS

δ∂aA

∣
∣
∣
∂z∂z̄A=0

)]

α

)
∣
∣
∣
ǫ=0

, (3.16)

where a sum over α is implied. Note that, we drop all the ∂̂∂z∂z̄A terms after one variation

of ∂aA in the second term of eq. (3.16). This formula applies to the most general higher

derivative gravity. It is one of the main results of this paper. Let us comment on our

formula (3.16).

Firstly, the first term of eq. (3.16) is the generalized Wald entropy. It should be stressed

that not only Rzz̄zz̄ and its covariant derivative ∇nRzz̄zz̄ but aslo many other terms may

contribute to the generalized Wald entropy. For example, we have

∇zRz̄iz̄j = Kz̄ij∂z∂z̄A+ . . . . (3.17)

Clearly, the above term contributes to the generalized Wald entropy and is not included

in the usual Wald entropy δS
δRµνρσ

ǫµνǫρσ. Note that such new generalized Wald entropy

appears only in the dynamic space-time. Thus nothing goes wrong with Wald’s formula

which is designed for the stationary black holes. We shall discuss the generalized Wald

entropy in details in the next subsection.

Secondly, the second term of eq. (3.16) is the anomaly of entropy. In general, it is

very difficult to calculate such terms for the most general higher derivative gravity. Let

us play a trick. Setting A = − ǫ
2 log[zz̄] and keeping only the would-be logarithmic term

– 11 –
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1
2dzdz̄e

−βA ǫ2

zz̄
in the action, then replacing it by 2π

β
, we obtain the final result.

SAction =

∫
1

2
dzdz̄

∑

α

Cαe
−βαA

ǫ2

zz̄
+ . . .

SAnomaly of entropy =
∑

α

Cα
2π

βα
. (3.18)

Thirdly, we have found all the relevant terms with HEE in order O(A) and O(A2). A

natural question is whether terms in higher order O(An+2) contribute to HEE or not. In

general, only would-be (log ρ)n+1 terms may get an enhancement after regularization. Let

us discuss these terms briefly. Recall that we have

e−βA∂zA∂z̄A =
−πǫ

β
δ(z, z̄) . (3.19)

Taking the derivatives of the above equation by β, we can derive

Ane−βA∂zA∂z̄A =
−πn!ǫ

βn+1
δ(z, z̄) . (3.20)

Naively, the left hand side of eq. (3.20) is in order o(ǫn+2). However it becomes in order

o(ǫ) after regularization. Actually, this is the would be (log ρ)n+1 terms. This kind of

terms may contribute to HEE for some crazy regularized cone metrics. However, if we

focus on higher derivative gravity with the regularized cone eq. (3.1), only eq. (3.12) is

already enough. That is because the factor eβA always appear as an entirety in the regu-

larized metric and the action [19], and An∂̂A∂̂A terms never appear separately. Thus only

the would-be logarithmic term contribute to HEE of higher derivative gravity. Based on

eqs. (3.10), (3.12), in section 4 we shall prove that our formulas of HEE yield the correct

universal logarithmic terms of EE for 4d CFTs. This can be regarded as a support of the

fact that terms in higher order O(An+2) do not contribute to HEE.

To summary, we have found all the would-be logarithmic terms and obtained a formal

formula of HEE for the most general higher derivative gravity. In the next section, we shall

work out this formula exactly for some squashed cone metrics.

3.3 HEE for six-derivative gravity

In this subsection, we investigate HEE of six-derivative gravity. By six-derivative gravity,

we mean the equations of motion are six order differential equations. Its action can always

be rewritten in the form S(g,R,∇R). We firstly derive the generalized Wald entropy for

the general cone metric and then calculate the anomaly of entropy for some special cone

metric.

Let us firstly investigate the generalized Wald entropy. It come from the first term

of eq. (3.16). As we have mentioned in the above section, in addition to Rzz̄zz̄ and its

covariant derivative ∇µRzz̄zz̄, many other terms may contribute to the generalized Wald
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entropy. We list all the possible terms relevant to the generalized Wald entropy below.

Rzz̄zz̄ = e2A∂z∂z̄A+ . . . ,

∇zRzz̄zz̄ = e2A∂2
z∂z̄A+ . . . ,

∇zRz̄zz̄i = 2iUie
2A∂z∂z̄A+ . . . ,

∇iRzz̄zj = 2Kz̄ij∂z∂z̄A+ . . . ,

∇zRz̄iz̄j = 2Kz̄ij∂z∂z̄A+ . . . . (3.21)

Using the above formulae, we can derive

SG-Wald = 2π

∫

ddy
√
g

[
∂L

∂Rzz̄zz̄

− 1√
g
∂z

(√
g

∂L

∂∇zRz̄zz̄z

)

+ c.c.

+ 4i
∂L

∂∇zRz̄zz̄i
Ui + c.c.

+ 2
∂L

∂∇zRz̄iz̄j
Kz̄ij + c.c.

+ 4
∂L

∂∇iRzz̄zj
Kzij + c.c.

]

. (3.22)

Take into account that Γz
zi = −2iUi, Γ

i
jz = K i

zj , Γ
z
ij = −2Kz̄ij , we obtain the generalized

Wald entropy as

SG-Wald = 2π

∫

ddy
√
g

[
∂L

∂Rzz̄zz̄
−∇µ

∂L

∂∇µRzz̄zz̄
+ 2

(
∂L

∂∇zRz̄iz̄j
Kz̄ij + c.c.

)]

= 2π

∫

ddy
√
g

[
δL

δRzz̄zz̄
+ 2

(
∂L

∂∇zRz̄iz̄j
Kz̄ij + c.c.

)]

. (3.23)

Remarkably, a new term proportional to the extrinsic curvature Kaij appears in the gen-

eralized Wald entropy. This new term vanishes for stationary black holes and thus is

consistent with Wald’s results. In general, self conjugate terms such as T, Ui, Qzz̄ij . . .

could not contribute new terms to the generalized Wald entropy, otherwise it conflicts with

Wald entropy for stationary black holes. That is because, in general, these self conjugate

terms are non-zero in stationary spacetime. Indeed, T , Ui, Qzz̄ij do not appear in our

generalized Wald entropy eq. (3.23) for six-derivative gravity. The above generalized Wald

entropy can be written in a covariant form as

SG-Wald = 2π

∫

ddy
√
g

[

− δL

δRµνρσ
ǫµνǫρσ + 2

∂L

∂∇αRµρνσ
Kβρσ(n

β
µnαν − ǫβµǫαν)

]

. (3.24)

It should be mentioned that the extrinsic curvature flips the sign under nµa → −nµa (a

denotes the flat index and µ is the spacetime index). So it seems that the generalized Wald

entropy eqs. (3.23), (3.24) depend on the orientation of the surface. However this is not

the case. From eq. (4.25), we learn that ∇zRz̄iz̄j contains odd numbers of the extrinsic

curvatures. Thus, ∂L
∂∇zRz̄iz̄j

also flips the sign under nµ → −nµ. It turns out ∂L
∂∇zRz̄iz̄j

Kz̄ij

– 13 –
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as a whole is orientation independent. While for the convariant formula eq. (3.24), it

should be stressed that Kβρσ = n a
β Kaρσ includes only the spacetime indexes and thus is

actually orientation independent. So the generalized Wald entropy is indeed orientation

independent.

Let us go on to study the anomaly of entropy. Because the general case is quite

complicated we consider some special conical metrics below. For simplicity, we keep only

the highest order of T , Vi, Qij eq. (3.2) which is also the case studied in [19, 20].

Recall that the squashed conical metric is

ds2 = e2A
[
dzdz̄+e2AT (z̄dz−zdz̄)2

]
+2ie2AVi(z̄dz−zdz̄)dyi+(gij +Qij)dy

idyj . (3.25)

For simplicity, we firstly consider the case with zero extrinsic curvature. Thus, we have

T = T1 + Tax
a + Tabx

axb + . . . ,

Vi = Ui + Vax
a + Vabix

axb + . . . ,

Qij = Qabijx
axb + . . . . (3.26)

Note that there is a factor e2A before Tzz̄, Vzz̄i and Qzz̄ij . Let us calculate R,∇R, and

select all the possible terms relevant to HEE. We have

Rzz̄zz̄ = e2A∂z∂z̄A+ . . . ,

∇zRzz̄zz̄ = e2A∂2
z∂z̄A+ . . . ,

∇zRzizj = 4Qzzij∂zA+ . . . ,

∇zRzz̄zj = −3ie2AVzj∂zA+ . . . . (3.27)

Note that to derive ∇zRzizj and ∇zRzz̄zj , we have identified z∂2
zA

∼= −∂zA and z2∂3
zA

∼=
2∂zA. In general, we have zm∂m+1

z A ∼= (−1)mm!∂zA. We can read out these indentities

from eq. (3.12). Using eqs. (3.10), (3.12), (3.27), we can derive HEE for six-derivative

gravity as

SHEE = 2π

∫

ddy
√
g

[
δL

δRzz̄zz̄
+ 64

(
∂2L

∂∇zRzizl∂∇z̄Rz̄kz̄l

)

α1

QzzijQz̄z̄kl

βα1

+ 96i

(
∂2L

∂∇zRzizl∂∇z̄Rz̄zz̄k

)

α1

QzzijVz̄k

βα1

+ c.c.

+ 144

(
∂2L

∂∇zRzz̄zl∂∇z̄Rz̄zz̄k

)

α1

VzlVz̄k

βα1

]

. (3.28)

Here Vai = 1
6ǫ

µνnρ
agσiRµνρσ, T = 1

64ǫ
µνǫρσRµνρσ. Note that we only need the traceless

part of Qabij in the above formula. We denote the traceless part of Qabij by Q̂abij =

Habij − 1
2nabH

c
c ij with Habij = Kam(iK

m
|b|j) −nµ

anν
bg

ρ

(ig
σ
j)Rµρµσ. Let us rewrite the above

– 14 –
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formula in convariant form. We have

SHEE =

2π

∫

ddy
√
g

[

− δL

δRµνλσ

ǫµνǫλσ + 4

(
∂2L

∂∇µ1
Rµ2µ3µ4µ5

∂∇ν1
Rν2ν3ν4ν5

)

α

Qλ1λ2µ3µ5
Qλ3λ4ν3ν5

βα
[
(nµ1ν1

−iǫµ1ν1
)(nµ2ν2

−iǫµ2ν2
)(nµ4ν4

−iǫµ4ν4
)(nλ1λ3−iǫλ1λ3)(nλ2λ4−iǫλ2λ4)

]

− 2

(
∂2L

∂∇µRµ2ν3µ4µ5
∂∇ν1

Rν2ν3ν4ν5

)

α

Qλ1λ2µ3µ5
Rλ4λ5λ6ν5

βα

[
(nµ1ν1

−iǫµ1ν1
)

(nµ2ν2
−iǫµ2ν2

)(nµ4ν4
−iǫµ4ν4

)(nλ1λ4−iǫλ1λ4)(nλ2λ6−iǫλ2λ6)(n λ5

ν3
−iǫ λ5

ν3
)
]
+ c.c.

+

(
∂2L

∂∇µ1
Rµ2µ3µ4µ5

∂∇ν1
Rν2ν3ν4ν5

)

α

Rλ1λ2λ3µ5
Rλ4λ5λ6ν5

βα

[
(nµ1ν1

−iǫµ1ν1
)

(nµ2ν2
−iǫµ2ν2

)(nµ4ν4
−iǫµ4ν4

)(nλ1λ4−iǫλ1λ4)(nλ2λ5−iǫλ2λ5)(nλ3λ6−iǫλ3λ6)
]
]

(3.29)

with

Qµνλσ = na
µn

b
νg

i
λg

j
σQ̂abij (3.30)

Note that we use Dong’s notation ǫz ¯̄z =
i
2 . So the above formula is real although including

i. To keep the expression simple, we do not expand it as product of ǫµν and nµν . The final

expression is not expected to include i explicitly. It is not hard to proof the terms of the

product which include odd number of ǫµν are vanishing. Let’s take the last one in (3.29)

an example. We make the index swap, µi ↔ νi (i = 1, 2, 3, 4) and λj ↔ λj+3 (j = 1, 2, 3).
(

∂2L
∂∇µ1Rµ2µ3µ4µ5∂∇ν1Rν2ν3ν4ν5

)

α

Rλ1λ2λ3µ5
Rλ4λ5λ6ν5

βα
will keep the same. But the terms of the

products of ǫµν and nµν which include odd number ǫµν will give an extra minus sign. So

these terms must be vanishing. The second one in (3.29) include its complex partner, which

also makes the terms including odd number of ǫµν vanishing.

Now let us consider a more complicated case. We set Vi = 0 but with general T ,

Qij . For simplicity, we only investigate a special action, S =
∫
dxD

√
G∇µRναβγ∇µRναβγ .

Applying the formulae in the appendix, we obtain the anomaly of entropy

SAnomaly =

32π

∫

ddy
√
g
[
4Qz̄z̄ijQ

ij
zz + 8K ij

z̄ K k
zj Qzz̄ki − 2K p

z̄p K ij
z̄ Qzzij

− 2K p
zp K ij

z Qz̄z̄ij + 2KzijK
ij

z̄ Q p
zz̄p + (KzijK

ij
z̄ )2 +K p

zp K q
z̄q KzijK

ij
z̄

− 4K ij
z Kz̄jkK

kl
z̄ Kzli +▽(y)

s Kzij ▽(y)s K ij
z − 40TKzijK

ij
z̄

+KzijK
ij

z Kz̄klK
kl

z̄ +RzijkR
ijk
z̄ − 6Qzzz̄ijK

ij
z̄ − 6Qz̄z̄zijK

ij
z

+ 4Q0zz̄ijQ
ij

0zz̄ +36T 2
0 −28T0tr(KzKz̄)−2Q0zz̄ijK

il
z̄ K j

zl +Q i
0zz̄iK

j
z̄jK

l
zl

]

(3.31)

As a check of formula, we shall use the above formula to derive the universal terms of EE

for 4d CFTs in section 4.

To summary, we have found a new type of Wald entropy, the generalized Wald entropy,

for six-derivative gravity. This generalized Wald entropy appears on entangling surfaces

without the rotational symmetry and reduces to Wald entropy for stationary black holes.

Here ‘entangling surface’ denotes the co-dimension 2 surface where we calculate HEE in the
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bulk. ‘without the rotational symmetry’ means we do not have the U(1) symmetry alone

the Euclidean time. Instead, we only have a discrete Zn symmetry (n = 1 for entanglement

entropy and n is a positive integer for Renyi entropy). It would be interesting to study

the physical meaning of this generalized Wald entropy. We leave it to the future work. We

also derive the anomaly of entropy for cone metrics with zero extrinsic curvature. As for

non-zero extrinsic curvature, we study a toy model of six-derivative gravity. In section 4,

we shall also prove that our results give the correct logarithmic term of EE for 4d CFTs.

3.4 HEE for 2n-derivative gravity

We calculate HEE of 2n-derivative gravity in this subsection. By 2n-derivative gravity, we

mean the equations of motion are 2n-order differential equations. Its action can always

be rewritten as S(g,R,∇R, . . . ,∇n−2R). In general, the formula of HEE becomes more

and more complicated when higher and higher derivatives are involved. For simplicity, we

consider only one special case here.

We choose the cone metric (3.1) with

T = zn−3Tz . . . z
︸ ︷︷ ︸

n−3

+ z̄n−3Tz̄ . . . z̄
︸ ︷︷ ︸

n−3

+
∞∑

m=n−2

e2APa1...amTa1...amx
a1 . . . xam ,

Vi = zn−2Vz . . . z
︸ ︷︷ ︸

n−2

i + z̄n−2Vz̄ . . . z̄
︸ ︷︷ ︸

n−2

i +
∞∑

m=n−1

e2APa1...amVa1...amix
a1 . . . xam ,

Qij = zn−1Qz . . . z
︸ ︷︷ ︸

n−1

ij + z̄n−1Qz̄ . . . z̄
︸ ︷︷ ︸

n−1

ij +
∞∑

m=n

e2APa1...amQa1...amijx
a1 . . . xam . (3.32)

We call this kind of cone as ‘the highest-order cone’. That is because only the highest-order

derivative of curvature ∇n−2R contributes to the anomaly of entropy in this case. We have

∇n−2
z Rzizj = (n− 1)Γ[n]Qz . . . z

︸ ︷︷ ︸
n−1

ij∂zA+ . . . ,

∇n−2
z Rzz̄zj = −i

n− 2

n− 1
Γ[n+ 1]e2AVz . . . z

︸ ︷︷ ︸
n−2

j∂zA+ . . . ,

∇n−2
z Rzz̄zz̄ =

n− 3

n− 2
Γ[n+ 1]e4ATz . . . z

︸ ︷︷ ︸
n−3

∂zA+ . . . . (3.33)

In the derivation of the above fromulas, we have identified zm∂m+1
z A with (−1)mm!∂zA,

which can be read out from eq. (3.12).
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Using eqs. (3.10), (3.12), (3.33), we can derive HEE for 2n-derivative gravity as

SEE = 2π

∫

ddy
√
g

[
δL

δRzz̄zz̄

+ 4(n−1)2Γ[n]2
(

∂2L

∂∇n−2
z Rzizj∂∇n−2

z̄ Rz̄kz̄l

)

α1

Qz . . . z
︸ ︷︷ ︸

n−1

ijQz̄ . . . z̄
︸ ︷︷ ︸

n−1

kl/βα1

+ i8(n−2)Γ[n]Γ[n+1]

(
∂2L

∂∇n−2
z Rzizj∂∇n−2

z̄ Rz̄zz̄k

)

α1

Qz . . . z
︸ ︷︷ ︸

n−1

ijVz̄ . . . z̄
︸ ︷︷ ︸

n−2

k/βα1
+ c.c.

+ 4
(n−1)(n−3)

n−2
Γ[n]Γ[n+1]

(
∂2L

∂∇n−2
z Rzizj∂∇n−2

z̄ Rz̄zz̄z

)

α1

Qz . . . z
︸ ︷︷ ︸

n−1

ijTz̄ . . . z̄
︸ ︷︷ ︸

n−3

/βα1
+ c.c.

+ 16
(n−2)2

(n−1)2
Γ[n+1]2

(
∂2L

∂∇n−2
z Rzz̄zl∂∇n−2

z̄ Rz̄zz̄k

)

α1

Vz . . . z
︸ ︷︷ ︸

n−2

lVz̄ . . . z̄
︸ ︷︷ ︸

n−2

k/βα1

+−i8
(n−3)

n−1
Γ[n+1]2

(
∂2L

∂∇n−2
z Rzz̄zi∂∇n−2

z̄ Rz̄zz̄z

)

α1

Vz . . . z
︸ ︷︷ ︸

n−2

iTz̄ . . . z̄
︸ ︷︷ ︸

n−3

/βα1
+ c.c.

+ 4
(n−3)2

(n−2)2
Γ[n+1]2

(
∂2L

∂∇n−2
z Rzz̄zz̄∂∇n−2

z̄ Rz̄zz̄z

)

α1

Tz . . . z
︸ ︷︷ ︸

n−3

Tz̄ . . . z̄
︸ ︷︷ ︸

n−3

/βα1

]

. (3.34)

As for the general case, the formula of HEE is quite complicated. Like the holographic

Weyl anomaly, it seems very difficult (if not impossible) to derive an exact expression.

Actually, there is no need to work it out exactly. Instead, for any given action and cone

metric, we can directly use eqs. (3.10), (3.12) to calculate HEE.

4 Checks of our formulas

In this section, we prove that our formula of HEE yields the correct logarithmic term of

EE for 4d CFTs. This is a nontrivial check of our results. For simplicity, we focus on an

example of 6-derivative gravity in five-dimensional space-time as follows:

S =
1

16π

∫

d5x

√

−Ĝ

(

R̂+
12

l2
+ λ1∇µR̂∇µR̂+ λ2∇αR̂µν∇αR̂µν + λ3∇αR̂µνρσ∇αR̂µνρσ

)

.

(4.1)

According to [34], the expected logarithmic term of EE for the dual CFTs is

SEE = log(l/δ)
1

2π

∫

Σ
d2x

√
h

[

aRΣ − c

(

Cabcdhachbd − kιabkιab +
1

2
kιaa kbιb

)]

, (4.2)

where the central charges a and c is given by [35]

a =
π

8
, c =

π

8
+ 8πλ3 . (4.3)

Thus, it is expected that HEE of ∇µR̂∇µR̂ and ∇αR̂µν∇αR̂µν do not contribute to the

logarithmic term, while HEE of ∇αR̂µνρσ∇αR̂µνρσ yields a logarithmic term as

− 4λ3 log(l/δ)

∫

Σ
d2x

√
h

[

Cabcdhachbd − kιabkιab +
1

2
kιaa kbιb

]

. (4.4)

As we shall prove below, this is indeed the case.
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Let us firstly compute the generalized Wald entropy. Applying the formula (3.24),

we get

SG-Wald =
1

4

∫

dρd2y
√
h
[
− 1 + 2λ1�R̂+ λ2n

µν
�R̂µν + λ3ǫ

µνǫρσ�R̂µνρσ

+ 2λ2∇αR̂µνKβ(n
β
µnαν − ǫβµǫαν)

+ 2λ3∇αR̂µρνσKβρσ(n
β
µnαν − ǫβµǫαν)

]
. (4.5)

Note that we work in the Euclidean signature. So HEE is different from the Lorentzian

one by a minus sign. The first term of the above equation is just the Bekenstein-Hawking

entropy. According to [15, 34], it gives a logarithmic term as

log(l/δ)
1

16

∫

Σ
d2x

√
h

[

RΣ −
(

Cabcdhachbd − kιabkιab +
1

2
kιaa kbιb

)]

. (4.6)

Thus we only need to consider the other terms of eq. (4.5) below.

For asymptotically AdS space-time, we can expand the bulk metric in the Fefferman-

Graham gauge

ds2 = Ĝµνdx
µdxν =

1

4ρ2
dρ2 +

1

ρ
gijdx

idxj , (4.7)

where gij =
(0)
g ij + ρ

(1)
g ij + . . .+ ρ

d
2 (

( d2 )

g ij +
( d2 )

h ij log ρ) + . . .. Interestingly,

(1)
g ij = − 1

d− 2

(
(0)

Rij −
(0)

R

2(d− 1)

(0)
g ij

)

, (4.8)

can be determined completely by PBH transformation [36, 37] and thus is independent of

equations of motion. However, the higher order terms
(2)
g ij ,

(3)
g ij . . . are indeed constrained

by equations of motion. Fortunately, for the logarithmic terms of HEE in 5-dimensional

space-time, we only need to expand the metric to the subleading order
(1)
g ij . Let us define

a useful quantity R̃ as

R̃µνρσ = R̂µνρσ + (ĜµρĜνσ − ĜµσĜνρ) ,

R̃µν = R̂µν + dĜµν ,

R̃ = R̂+ d(d+ 1) . (4.9)

According to [35], we have

R̃ ∼ o(ρ2) , R̃ij ∼ o(ρ) , R̃iρ ∼ o(ρ) , R̃ρρ ∼ o(1)

R̃iρjρ ∼ o

(
1

ρ

)

, R̃ρijk ∼ o

(
1

ρ

)

R̃ijkl =
Cijkl

ρ
. (4.10)

Note that eq. (4.8) is used in the derivation of above equations.

Denote the transverse space of the squashed cone by m. The embedding of the 3-

dimensional submanifold m into 5-dimensional bulk is described by Xµ = Xµ(σα), where
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Xµ = {xi, ρ} are bulk coordinates and σα = {ya, τ} are coordinates on m. We choose a

gauge

τ = ρ , haτ = 0 , (4.11)

where hαβ is the induced metric on m. Let us expand the embedding functions as

Xi(τ, yi) =
(0)

Xi(ya) +
(1)

Xi(ya)τ + . . . (4.12)

Diffeomorphism preserving the FG gauge (4.7) and above gauge (4.11) uniquely fixes a

transformation rule of the embedding functions Xµ(ya, τ) [38]. From this transformation

rule, we can identity
(1)

Xi(ya) with 1
4k

i(ya)

(1)

Xi(ya) =
1

4
ki(ya) , (4.13)

where ki is the trace of the extrinsic curvature of the entangling surface Σ in the boundary

where CFTs live. From eq. (4.12), we can derive the induced metric on m as

hττ =
1

4τ2

(

1 +
1

4
kikj

(0)
g ij τ + · · ·

)

, hab =
1

τ

((0)

h ab +
(1)

h ab τ + . . .
)

, (4.14)

with

(0)

h ab = ∂a

(0)

Xi∂b

(0)

Xj (0)
g ij ,

(1)

h ab =
(1)
g ab −

1

2
kikjab

(0)
g ij . (4.15)

Thus, we have

√
h =

√
(0)

h
1

2ρ2
+ . . . . (4.16)

Using eq. (4.12), we can also derive the extrinsic curvature K of m as

Ki
ab =

(

kiab −
ki

2

(0)

h ab

)

+ . . . (4.17)

Note that all the other components of Kµ
αβ are higher order terms which do not contribute

to the logarithmic terms.

Now let us begin to derive the logarithmic term from the generalized Wald entropy

eq. (4.5). Note that � ∼ o(1) and (ǫµν , nµν) take the same order as Gµν . Applying

eqs. (4.10), (4.16), (4.17), we find that, in addition to the Bekenstein-Hawking entropy,

only ǫµνǫρσ�Rµνρσ ∼ o(ρ) in the generalized Wald entropy eq. (4.5) contribute to the

– 19 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
1

logarithmic terms. After some calculations, we can derive

SG-Wald =
1

4

∫

dρd2y
√
h
[
λ3ǫ

µνǫρσ�R̂µνρσ + . . .
]

=
1

4

∫

dρd2y

√
(0)

h

2ρ2

[

λ3ǫ
ijǫkl

(

4ρ2∇ρ∇ρR̂ijkl + ρ
(0)
g
mn

∇m∇nR̂ijkl

)

+ . . .
]

=
1

4

∫

dρd2y

√
(0)

h

2ρ

[

λ3
(0)
ǫ
ij (0)
ǫ
kl

(−8Cijkl) + . . .
]

= −4

∫

dρd2y

√
(0)

h

2ρ

[
λ3(h

ikhjlCijkl) + . . .
]

= −4λ3 log(l/δ)

∫

d2y

√
(0)

h (hachbdCabcd) + . . . (4.18)

It agrees with the expected logarithmic term of EE for 4d CFTs with zero extrinsic curva-

ture eq. (4.4). In the above derivations, we have used the following useful formulae

∇ρ∇ρR̂ijkl =
Cijkl

ρ3
, gmn∇m∇nR̂ijkl = −12

Cijkl

ρ2
,

(0)
ǫ
ij (0)
ǫ
kl

Cijkl = 2hachbdCabcd , ρ0 = δ2. (4.19)

Now let us go on to compute the logarithmic term from the entropy eq. (3.31). It

should be mentioned that the splittings T0, Q0 zz̄ij do not affect the discussions of this

section. From eqs. (3.31), (A.12), (A.13), (A.14), T0, Q0 contribute terms in the form of

T 2
0 , T0K

2, Q2
0, Q0K

2. However, since T0 ∼ Q0 ∼ K2, these terms are all of oder O(K4)

which do not contribute to logarithmic term of EE in 4d at all. Recall that the squashed

conical metric is

ds2 = e2A
[
dzdz̄+e2AT (z̄dz−zdz̄)2

]
+2ie2AVi(z̄dz−zdz̄)dyi+(gij +Qij)dy

idyj (4.20)

with

T = T + Tax
a + . . . ,

Vi = Ui + Vax
a + Vabix

axb + . . . ,

Qij = 2Kaijx
a +Qabijx

axb +Qabcijx
axbxc . . . . (4.21)

Note that there is a factor e2A before Qzz̄, Qzzz̄, Qzz̄z̄ and Vzz̄. It should be stressed that,

for asymptotically AdS space-time the submanifold m is very close to the boundary, thus

we cannot choose T , Vi, Qij freely. Instead, they should approach to the value for AdS.

On the leading order, we have

T = − 1

12
, Ui = 0 , Vai = 0 , Qzz̄ij =

1

2
Gij , Qzzij = KzilK

l
zj , Qzzz̄ij =

4

9
Kzij .

(4.22)

Let us derive the above formulas. For simplicity, we focus on pure AdS below. It is expected

that it gives the leading value of T , V , Q for asymptotically AdS.
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According to [19], we have

R̂abcd = 12Tεabεcd ,

R̂abci = 3εabVci ,

R̂abij = 2εab(∂iUj − ∂jUi) +Gkl(KajkKbil −KaikKbjl) ,

R̂aibj =
[
εab(∂iUj − ∂jUi) + 4GabUiUj

]
+GklKajkKbil −Qabij ,

R̂ikjl = rikjl +Gab(KailKbjk −KaijKbkl) . (4.23)

Comparing the above formula with R̂µνρσ = −GµρGνσ +GµσGνρ, we get

T = − 1

12
,

Vci = 0 ,

(∂iUj − ∂jUi) = 0 ,

Gkl(KajkKbil −KaikKbjl) = 0 ,

GabGij + 4GabUiUj +GklKajkKbil −Qabij = 0 ,

rikjl +GijGkl −GilGkj +Gab(KailKbjk −KaijKbkl) = 0 . (4.24)

Let us make a brief discussion. Since Fij = ∂iUj − ∂jUi = 0, we can always set Ui = 0

locally. Since K is in higher order, from the last equation above, we find Gij is the metric

of AdS3 on leading order. To derive the leading order of Qzzz̄ij , one need to compute

∇z̄Rzizi. To leading order, we have

∇z̄R̂zizj = −4T0Kzij + 2Kzl(iQ
l
zz̄j) − 3Qzzz̄ij + o(K3) = 0 . (4.25)

Taking into account T = − 1
12 , Qzz̄ij =

1
2Gij , we get Qzzz̄ij =

4
9Kzij + o(K3). Now we can

calculate the logarithmic term from the anomaly of entropy.

Without loss of generality, to the leading order, we can choose the regularized conical

metric as

ds2 = e2A
[

dzdz̄ − 1

12
e2A(z̄dz − zdz̄)2

]

+
1 + e2Azz̄

4ρ4
dρ2

+
ηab(1 + e2Azz̄) +

√
ρ
(
(2z + 4

3zzz̄)k̄zab + (2z̄ + 4
3zz̄z̄)k̄z̄ab

)

ρ
dyadyb (4.26)

where we have replaced K by k by using eq. (4.17) and k̄zab = (kzab− kz
2 hab) is the traceless

part of kzab. Substituting the above squashed cone metric into eqs. (A.12), (A.13), (A.14),

we get

SAnomaly = 16λ3

∫

dρd2y
1

2ρ

√
h
[
k̄zabk̄

ab
z̄ + o(ρ)

]

= 4λ3 log(l/δ)

∫

Σ
d2x

√
h

(

kιabkιab −
1

2
kιaa kbιb

)

(4.27)

Combining eqs. (4.6), (4.18), (4.27), we finally obtain the logarithmic term of HEE as

SEE = log(l/δ)

∫

Σ
d2x

√
h

[(
1

16

)

RΣ −
(

1

16
+ 4λ3

)(

Cabcdhachbd − kιabkιab +
1

2
kιaa kbιb

)]

,

(4.28)

which exactly agrees with the CFT results eq. (4.4). Now we finish the proof.
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5 Resolution of the HMS puzzle

Hung, Myers and Smolkin find that the logarithmic term of EE derived from the trace

anomaly of 6d CFTs agrees with the holographic result for entangling surfaces with ro-

tational symmetry. However, mismatch appears when the entangling surfaces have no

rotational symmetry even if the extrinsic curvature vanishes [15]. We clarify this problem

in this section. After considering the anomaly of entropy from the higher-derivative term

Cijkl∇2Cijkl, we resolve this problem successfully.

Let us first review the approach of calculating the logarithmic term of EE from the trace

anomaly for 6d CFTs [15, 39]. In six dimensions, the trace anomaly takes the following form

〈T i
i 〉 =

3∑

n=1

Bn In + 2AE6 , (5.1)

where E6 is the Euler density and Ii are conformal invariants defined by

I1 = CkijlC
imnjC kl

m n , I2 = C kl
ij C mn

kl C ij
mn ,

I3 = Ciklm

(

∇2 δij + 4Ri
j −

6

5
Rδij

)

Cjklm. (5.2)

According to [15, 34, 39], the universal logarithmic term of EE can be identified with HEE

of the trace anomaly. For entangling surfaces with the rotational symmetry, only Wald

entropy contribute to HEE of the trace anomaly (5.1). Thus, we have

SEE = log(ℓ/δ)

∫

d4x
√
h

[

2π
3∑

n=1

Bn
∂In

∂Rij
kl
ε̃ij ε̃kl + 2AE4

]

Σ

, (5.3)

where

∂I1
∂Rij

kl
ε̃ij ε̃kl = 3

(

Cjmnk C il
m n ε̃ij ε̃kl −

1

4
CiklmCj

klm g̃⊥ij +
1

20
Cijkl Cijkl

)

,

∂I2
∂Rij

kl
ε̃ij ε̃kl = 3

(

CklmnC ij
mn ε̃ij ε̃kl − CiklmCj

klm g̃⊥ij +
1

5
Cijkl Cijkl

)

, (5.4)

∂I3
∂Rij

kl
ε̃ij ε̃kl = 2

(

�Cijkl + 4Ri
mCmjkl − 6

5
RCijkl

)

ε̃ij ε̃kl − 4Cijkl Rik g̃
⊥
jl

+ 4CiklmCj
klm g̃⊥ij −

12

5
Cijkl Cijkl .

The above result can be reliably applied for entangling surfaces with rotational symmetry.

However, Myers et al. find that it is inconsistent with the holographic result for entangling

surfaces with zero extrinsic curvature but without a rotational symmetry. Assuming the

conditions

Kaij = 0 , Rabci = 3ǫabVci = 0 , (5.5)

they derive the holographic result for Einstein gravity as

SHEE = π log(ℓ/δ)

∫

Σ
d4y

√
h

[

2

(2)

gî î −
(1)
g îĵ

(1)
g
îĵ

+
1

2
(

(1)

gî î)
2

]

(5.6)

– 22 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
1

The mismatch between holographic result eq. (5.6) and CFT result eq. (5.3) becomes

∆S = −4πB3 log(l/δ)

∫

Σ
d4x

√
h
(
Cmn

rsCmnklg̃⊥sl g̃
⊥
rk − Cmnr

sCmnrlg̃⊥sl (5.7)

+ 2Cm
n
r
sCmkrlg̃⊥nsg̃

⊥
kl − 2Cm

n
r
sCmkrlg̃⊥nlg̃

⊥
ks

)
,

Although eq. (5.7) is derived in the case of Einstein gravity, Myers et al. argue that it can

be applied to the general case.

Now let us discuss the origin of the mismatch. First of all, as argued by HMS, the

holographic results are the correct ones. Thus, something goes wrong with the CFT results.

As we shall show below, some contributions are ignored in the CFT calculations. Following

the assumption eq. (5.5), we focus on the conical metric (3.25) with Kaij = Vai = 0.

According our formula eq. (3.34), in addition to the Wald entropy, a new term proportional

to Q2 also contribute to HEE

S = 2π

∫

ddy
√
g

[
δL

δRzz̄zz̄
+ 64

(
∂2L

∂∇zRzizl∂∇z̄Rz̄kz̄l

)

α1

QzzijQz̄z̄kl

βα1

]

, (5.8)

when the derivative of curvature is included in the action. Since only I3 (5.2) contains

such terms Cijkl∇2Cijkl, so the mismatch ∆S should be proportional to B3. This explains

the proposal of Myers et al. that ∆S ∼ B3. Now let us calculate the contribute from

Cijkl∇2Cijkl
∼= −∇mCijkl∇mCijkl exactly. Applying the formula (5.8), we can derive the

contribution ignored in eq. (5.3) as

∆S1 = 128πB3 log(l/δ)

∫

Σ
d4x

√
h (Q̄zzijQ̄

ij
z̄z̄ ) , (5.9)

where Q̄abij = Qabij − Qab

4 gij is the traceless part of Qabij .

Substituted the cone metric (3.25) with Kaij = Vai = 0 into eq. (5.7), we obtain

∆S = 128πB3 log(l/δ)

∫

Σ
d4x

√
h (Q̄zzijQ̄

ij
z̄z̄ ) , (5.10)

which is exactly the same as eq. (5.9). Thus taking into account the contributions from the

higher-derivative term Cijkl∇2Cijkl, the CFT results exactly match the holographic ones.

It should be mentioned that after this work is finished, there appears two related pa-

pers [40, 41]. By applying the FPS regularization [18], they find that total derivatives may

contribute to non-zero entropy and they propose to use the entropy from total derivatives

to explain the HMS mismatch [40, 41]. However, it is found that actually the proposal

of [40, 41] does not resolve the HMS puzzle [44]. For convenience of the reader, we briefly

review work of [44] in the next section.

In this paper, we use the LM regularization [5, 19] instead of the FPS regulariza-

tion [18]. As a result, the entropy of covariant total derivatives is zero. [42]. For example,

by using eqs. (3.10), (3.12), one can prove that the entropy of �R and �CijklC
ijkl van-

ishes for the general conical metrics eq. (3.1) with arbitrary splitting. For the detailed

discussions on the entropy of total derivatives, please refer to [42].
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6 Comparison with APS’s proposal for HMS puzzle

In this section, we briefly review the work of [44] to show that the proposal of [40, 41] can not

solve the HMS puzzle. For simplicity, we focus on Einstein gravity. We calculate the entropy

for all of the terms in the holographic Weyl anomaly by using the LM regularization [5,

19] and the APS regularization [40, 41], respectively. It turns out that only the LM

regularization [5, 19] can yield consistent results with the holographic ones.

In the holographic approach, the universal terms of EE for 6d CFTs dual to Einstein

gravity is given by [15]

SHEE = π log(ℓ/δ)

∫

Σ
d4y

√
h

[

2

(2)

gî î −
(1)
g îĵ

(1)
g
îĵ

+
1

2
(

(1)

gî î)
2

]

. (6.1)

The above formula applies to the case with zero extrinsic curvatures. For the general case,

please see [43]. For simplicity, we focus on the following conical metric with zero extrinsic

curvatures

ds2 = dr2 + r2dτ2 + (δij + 2H̃ijr
2 cos t sin t)dyidyj . (6.2)

Then the holographic universal term of EE eq. (6.1) becomes

SHEE = − π

40
log(ℓ/δ)

∫

Σ
d4y

√
h
[
8trH̃2 − (trH̃)2

]
. (6.3)

The holographic Weyl anomaly for Einstein gravity is given by [45]

〈T i
i〉 =

1

32

(

− 1

2
RRijRij +

3

50
R3 +RijRklRikjl −

1

5
Rij∇i∇jR+

1

2
Rij

�Rij −
1

20
R�R

)

.

(6.4)

Note that the curvature in our notation is different from the one of [45] by a minus sign.

In the field theoretical approach, the universal term of EE can be derived as the entropy

of the Weyl anomaly [15, 34]. Below we calculate the universal term of EE in the field

theoretical approach by using the APS regularization [40, 41] and the LM regularization [5,

19], respectively.

Following [40, 41], we regularize the conical metric eq. (6.2) as

ds2 = fn(r)dr
2 + r2dτ2 + (δij + 2H̃ijr

2n cos t sin t)dyidyj , (6.5)

where fn = r2+b2n2

r2+b2
and τ ∼ τ + 2nπ. Using the above regularizaed conical metric, we can

derive the total entropy of eq. (6.4) in the Lorentzian signature as

SAPS = −π

5

∫

Σ
d4y

√
h
[
trH̃2

]
, (6.6)

which does not match the holographic result eq. (6.3) at all. Please refer to [44] for the

details of the calculations.

Applying the approach of [5, 19], we regularize the conical metric eq. (6.2) as

ds2 =
1

(r2 + b2)1−
1
n

(dr2 + r2dτ2) + (δij + 2H̃ijr
2 cos t sin t)dyidyj , (6.7)
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with τ ∼ τ + 2π. From the above regularizaed conical metric, we can derive the total

entropy of eq. (6.4) in the Lorentzian signature as

SMG = − π

40

∫

Σ
d4y

√
h
[
8trH̃2 − (trH̃)2

]
, (6.8)

which exactly agrees with the holographic result eq. (6.3). Please refer to [44] for the

derivations of eq. (6.8).

Now it is clear that it is the proposal of this paper rather than the proposal of [40, 41]

that can solve the HMS puzzle. This implies that the LM regularization [5, 19] instead of

the APS regularization [40, 41] is the correct apporach of regularization.

7 Conclusions

In this paper, we investigate HEE for the most general higher derivative gravity. In partic-

ular, we find a new class of generalized Wald entropy on entangling surfaces without the

rotational symmetry. It appears in the general higher derivative gravity and reduces to

Wald entropy on Killing horizon or on the entangling surface with the rotational symmetry.

We also find all the possible would-be logarithmic terms which contribute to the anomaly

of entropy. Combining the generalized Wald entropy and the anomaly of entropy together,

we obtain a formal formula of HEE for the most general higher derivative gravity. We work

out this formula exactly for 2n-derivative gravity for some interesting conical metrics. We

prove that our formula yields the correct universal term of entanglement entropy for 4d

CFTs. This is a strong support of our results. As an important application of our formulae,

we solve the HMS puzzle that the logarithmic term of entanglement entropy derived from

Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curva-

ture vanishes. We find that such mismatch comes from the contributions of the derivative

of the curvature. Taking into account such contributions carefully, we find that the CFT

result match the holographic one exactly. Finally, we find that there is splitting problem in

the derivations of HEE. The splitting problem can be fixed by using equations of motion

for Einstein gravity. As for higher derivative gravity, how to fix the splitting problem is

a non-trivial and open problem. We hope to address this problem in future. Fortunately,

the splitting problem does not affect the main results of this paper. That is because the

splitting problem only affects the entropy at least of order O(K4) (K denotes the extrinsic

curvatures) for all the examples studied in this paper.
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A Useful formulas

In the section, we list some formulas which would be useful for the calculations of HEE for

six-derivative gravity. For simplicity, we ignore the splitting problems. In other words, we

set T0 = Q0 = 0.

▽z̄Rzizj = 2Kzij∂z̄∂zA−
[
2∂zAK

k
z̄i Kzkj

− 2z̄∂zA(K
k

zi (Qz̄z̄kj − 2K n
z̄k Kz̄nj) + (i ↔ j)

]
, (A.1)

▽sRzizj = 2∂zA(▽y
sKzij + 4iUsKzij) + 12iz̄∂zAVz̄sKzij

+
[
2z̄∂zAKzkj

(
2iUkKz̄si + gkl(∂iKz̄ls + ∂sKz̄lt − ∂lKz̄si)− 2γnsiK

k
z̄n

)
+(i ↔j)

]
,

(A.2)

▽zRzz̄zi = −3ie2A∂zAVzi

+ 2ie2Az̄∂zA(K
k

z̄i Vzk −K k
zi Vz̄k) , (A.3)

▽z̄Rzz̄zi = −2iUie
2A∂z∂z̄A , (A.4)

▽iRzz̄zj = −2Kzij∂z∂z̄A− 2K k
z̄i Kzkj∂zA

− 2z̄∂zAKzkj(Qz̄z̄lig
lk − 2K kn

z̄ Kz̄ni) , (A.5)

▽zRziz̄j = −2∂zAK
n

z̄i Kznj

− 2z̄∂zA(K
n

zj Qzz̄ni − 2K mn
z̄ Kz̄niKzmj) , (A.6)

▽zRzz̄ij = 2∂zAK
n

z̄j Kzni

− z̄∂zA(K
n

zi Qz̄z̄nj +K nl
z Kz̄njKzli)− (i ↔ j) (A.7)

▽zRzijk = 2∂zA(∂jKzki + 4iUjKzik +Kzljγ
l
ik)

+ 2z̄∂zA
[
3iKijVz̄k + 2iU lKzlkKz̄ij − (i ↔ j)− 2KzljK

l
z̄ mγmik

+K m
z̄j (∂iKzkm + ∂kKzim − ∂mKzik)

]
− (j ↔ k) , (A.8)

▽lRzijk = 4e−2A∂zA(Kz̄ljKzik −Kz̄lkKzij)

+ 4e−2Az̄∂zA(Qz̄z̄lkKzij −Qz̄zljKzik) . (A.9)

▽zRikjl = 4e−2A∂zA(KzijKz̄kl +Kz̄ijKzkl)

− 4e−2Az̄∂zA(KzijQz̄z̄kl +KzklQz̄z̄ij)− (j ↔ k) , (A.10)

▽zRzizj = 2Kzij∂z∂zA+ ∂zA(4Qzzij − 8K l
zi Kzlj)

− e2Az̄∂zA
[
− 24TKzij + i(∂jVzi + ∂iVzj)

− 2iU l(∂jKzli + ∂iKzlj − ∂lKzji)− 2iVzkγ
k
ij

− 8Uk(UjKzki + UiKzkj) + 4e−2A(k k
zj Qzz̄ik +K l

zi Qzz̄lj)

− 2Qzzz̄ij − 16KzikK
lk

z Kzlj

]
. (A.11)

Applying the above formulas and eqs. (3.10), (3.12), let us compute the anomaly of

entropy for some toy models. We recover the contributions from T0 and Q0 zz̄ij in these

examples.
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For L1 = ▽µR▽µ R, we obtain

SAnomaly = 32π

∫

dyd
√
g
(
3tr(KzKz̄)−KzKz̄ + 6T0 − 2Q0 zz̄

)2
, (A.12)

where Ka ≡ gijKaij , tr(KaKb) = gijKailK
l

bj , Qab = gijQabij , etc.

For L2 = ▽µRρν ▽µ Rρν , we get

SAnomaly = −4π

∫

dyd
√
g
[
40TKzKz̄ − 6K2

z trK
2
z̄ + 2KzKz̄tr(KzKz̄)− 2Qzz̄KzKz̄

−K2
zK

2
z̄ − 8trK2

z trK
2
z̄ − 8tr(KzQzz̄)Kz̄ + 18tr(K2

z̄Kz)Kz

− 8Kztr(Qz̄z̄Kz) + 8tr(K2
z )Qz̄z̄ + 4K2

zQz̄z̄ − 4QzzQz̄z̄

+ 4Qzzz̄Kz̄ − 8(trKzKz̄)
2 − 8tr(KzKzKz̄Kz̄)− 8tr(KzKz̄KzKz̄)

−▽(y)
i Kz ▽(y)i Kz̄ − 2RzkijRzk′i′j′g

kjgk
′j′gii

′

+ (z ↔ z̄)
]

+8π

∫

dyd
√
g
[
72T 2

0 − 24T0Q0 zz̄ + 4tr(Q2
0 zz̄) + 4Q2

0 zz̄

− 28T0KzKz̄ + 24T0tr(KzKz̄) + 11Q0 zz̄KzKz̄ − 20Q0 zz̄tr(KzKz̄)
]
.

(A.13)

For L3 = ∇µRναβγ∇µRναβγ , we have

SAnomaly = 32π

∫

ddy
√
g
[
4Qz̄z̄ijQ

ij
zz + 8K ij

z̄ K k
zj Qzz̄ki − 2K p

z̄p K ij
z̄ Qzzij

− 2K p
zp K ij

z Qz̄z̄ij + 2KzijK
ij

z̄ Q p
zz̄p + (KzijK

ij
z̄ )2 +K p

zp K q
z̄q KzijK

ij
z̄

− 4K ij
z Kz̄jkK

kl
z̄ Kzli +▽(y)

s Kzij ▽(y)s K ij
z − 40TKzijK

ij
z̄

+KzijK
ij

z Kz̄klK
kl

z̄ +RzijkR
ijk
z̄ − 6Qzzz̄ijK

ij
z̄ − 6Qz̄z̄zijK

ij
z

+ 4Q0zz̄ijQ
ij

0zz̄ +36T 2
0 −28T0tr(KzKz̄)−2Q0zz̄ijK

il
z̄ K j

zl +Q i
0zz̄iK

j
z̄jK

l
zl

]

(A.14)

Remarkably, the entropy from the splittings takes the form T 2
0 , T0 K2, Q2

0, Q0K
2.

They are all in order K4 due to the fact T0 ∼ Q0 ∼ O(K2). As a result, the splitting

probem does not affect our results in section 4 and section 5.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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