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Abstract
We study the existence of multiple solutions of a strongly indefinite elliptic system
involving the critical Sobolev exponent and concave-convex nonlinearities. By using a
suitable version of the dual fountain theorem established in this paper, we prove the
existence of infinitely many small energy solutions.
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1 Introduction
In this paper, we study the existence and multiplicity of solutions for the following elliptic
system of noncooperative type:

⎧⎪⎨
⎪⎩
–�u = λ|u|p–u – α

α+β
|u|α–u|v|β in �,

�v = μ|v|q–v – β

α+β
|u|α|v|β–v in �,

u|∂� = v|∂� = ,
(Sλ,μ)

where � is a bounded smooth domain in R
N with N ≥ , λ > , and μ > ,  < p,q <  and

α,β >  satisfy α+β = �, where � := N/N – denotes the critical Sobolev exponent. The
solutions of (Sλ,μ) are steady states of reaction-diffusion systems, which serve as a class of
models with applications in physics, chemistry and biology (see, for instance, [, ]).
It iswell known thatweak solutions of (Sλ,μ) are critical points of the following functional

defined on the Hilbert space H
(�)×H

(�):

J(u, v) :=
∫

�

[


(|∇u| – |∇v|) – λ

p
|u|p – μ

q
|v|q + 

α + β
|u|α|v|β

]
dx. ()

We call (u, v) a weak solution of (Sλ,μ) if (u, v) ∈H
(�)×H

(�) and

∫
�

[
∇u∇φ –∇v∇ϕ – λ|u|p–uφ –μ|v|q–vϕ

+


α + β

(
α|u|α–|v|βuφ + β|u|α|v|β–vϕ)]

dx = 

for every (φ,ϕ) ∈H
(�)×H

(�).
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The celebrated papers by Brezis and Nirenberg [] and by Ambrosetti et al. [] have
inspired research on differential equations and systems with critical terms, and with
concave-convex nonlinearities, respectively, see, for example, [–] and the many ref-
erences therein. In recent years, more and more attention have been paid to the existence
and multiplicity of solutions of the following elliptic system of cooperative type:

⎧⎪⎨
⎪⎩
–�u = λ|u|q–u + α

α+β
|u|α–u|v|β in �,

–�v = μ|v|q–v + β
α+β

|u|α|v|β–v in �,
u|∂� = v|∂� = .

(Pλ,μ)

In [], by extracting Palais-Smale sequences on the Nehari manifold, Hsu and Lin proved
that if λ and μ are small, then (Pλ,μ) has at least two solutions. Subsequently, their result
was extended by Chen and Wu [], who considered (Pλ,μ) with sign-changing weight
functions. See also [, ] and the references therein for some related results.
However, what can be said about the noncooperative case? To the best of our knowledge,

there is no result on problem (Sλ,μ), even in the subcritical case α + β < �. In addition to
the combined effects of the concave and convex terms, two main difficulties arise when
studying (Sλ,μ). The first one is that the energy functional J above is strongly indefinite
in the sense that it is neither bounded from above nor from below, even on subspaces
of finite codimension. Therefore, the usual critical point theorems such as the mountain
pass theorem cannot be used. Moreover, the method of the Nehari manifold, which is
extensively used in the cooperative case does not apply in this situation. We refer to []
for a unified approach on the method of the Nehari manifold. The second difficulty arises
with the critical Sobolev exponent. Indeed, it is well known that the embeddingH

(�) ↪→
L� (�) is not compact because of the action of dilatations. Therefore, the energy functional
is not expected to satisfy the Palais-Smale condition (see Definition  below ). Usually, the
best we can expect is to find a bounded from above subset I ⊂R such that the functional
satisfies the Palais-Smale condition at every level c ∈ I , see, for instance, [, , , ]. But
surprisingly enough, we will show that in our case the functional J satisfies the Palais-
Smale condition.
The main result of the paper is the following.

Theorem  Let λ,μ > . Then problem (Sλ,μ) has a sequence of solutions (uk , vk) such that
J(uk , vk) <  and J(uk , vk) →  as k → ∞.

Remark  Theorem  remains true in the subcritical case, i.e., if we assume that α +β > 
if N = ,  or  < α + β < � if N = . In this case, the proof of Theorem  is considerably
simplified, since the embedding H

(�) ↪→ Lα+β (�) is now compact.

The paper is organized as follows. In order to prove Theorem , we need a new critical
point theorem for strongly indefinite functionals, whichwill be provided in Section . This
critical point theorem generalizes the dual fountain theorem of Bartsch and Willem, and
is not based on any reduction method. It should be noted that problem (Sλ,μ) does not fit
into the framework of the theorem proved in [], which is only suitable for finding large
energy solutions. Finally the proof of our main result is presented in Section .

http://www.boundaryvalueproblems.com/content/2013/1/268
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2 Critical point theory
Let Y be a closed subspace of a separable Hilbert space X endowed with the inner prod-
uct (·) and the associated norm ‖ · ‖. We denote by P : X → Y and Q : X → Z := Y⊥ the
orthogonal projections.
We fix an orthonormal basis (ej)j≥ of Y , and we consider on X = Y ⊕Z the τ -topology

introduced by Kryszewski and Szulkin in []; that is, the topology associated to the fol-
lowing norm

‖|u‖| :=max

( ∞∑
j=


j+

∣∣(Pu, ej)∣∣,‖Qu‖
)
, u ∈ X.

Clearly ‖Qu‖ ≤ ‖|u‖| ≤ ‖u‖. Moreover, if (un) is a bounded sequence in X, then

un
τ→ u ⇐⇒ Pun ⇀ Pu and Qun →Qu.

Definition  Let � ∈ C(X,R) and a,b ∈ R, a < b. We say that �′ is τ -weak sequentially
compact in�–([a,b]) if for every sequence un which τ -converges to u in�–([a,b]), there
is a subsequence (unk ) such that �′(unk )⇀ �′(u).

Lemma  (Deformation lemma) Let ϕ ∈ C(X,R) be an even functional which is τ -upper
semicontinuous, and such that ∇ϕ is τ -weak sequentially compact in ϕ–([a,b]) for any
a,b ∈ R. Let S ⊂ X with –S = S, and c ∈R, ε, θ >  such that

∀u ∈ ϕ–([c – ε, c + ε]
) ∩ Sθ ,

∥∥ϕ′(u)
∥∥ ≥ ε

θ
.

Then there exists η ∈ C([, ]× ϕc+ε ,X) such that
(i) η(t,u) = u if t =  or if u /∈ ϕ–([c – ε, c + ε])∩ Sθ ,
(ii) η(,ϕc+ε ∩ S) ⊂ ϕc–ε ,
(iii) ‖η(t,u) – u‖ ≤ θ

 ∀u ∈ ϕc+ε , ∀t ∈ [, ],
(iv) ϕ(η(·,u)) is non increasing, ∀u ∈ ϕc+ε ,
(v) Each point (t,u) ∈ [, ]× ϕc+ε has a τ -neighborhood N(t,u) such that

{v – η(s, v)|(s, v) ∈N(t,u) ∩ ([, ]× ϕc+ε)} is contained in a finite-dimensional
subspace of X ,

(vi) η is τ -continuous,
(vii) η(t, ·) is odd ∀t ∈ [, ],

where Sα := {u ∈ X|dist(u,S)≤ α} ∀α >  and ϕa := {u ∈ X|ϕ(u) ≤ a} ∀a ∈R.

Proof We define

w(v) := 
∥∥∇ϕ(v)

∥∥–∇ϕ(v), ∀v ∈ ϕ–([c – ε, c + ε]
)
.

We claim that for every v ∈ ϕ–([c–ε, c+ε]), there exists a τ -open neighborhoodNv of v
such that (∇ϕ(u),w(v)) >  ∀u ∈Nv (Nv can be chosen to be symmetric, that is, –Nv =Nv).
In fact, if this is not true, then we can find a sequence (vn) ⊂ ϕ–([c – ε, c + ε]) which τ -
converges to an element v ∈ ϕ–([c–ε, c+ε]) and such that (∇ϕ(vn),w(v))≤ . Since ∇ϕ

is τ -weak sequentially compact, there is a subsequence (vnk ) such that ∇ϕ(vnk ) ⇀ ∇ϕ(v),
and this implies that (∇ϕ(v),w(v))≤ , which is in contradiction with the definition of w.

http://www.boundaryvalueproblems.com/content/2013/1/268
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The rest of the proof follows the same lines as the proof of Lemma  in [] with G = Z.
�

We introduce the following notations:

Yk :=
∞⊕
j=k

Rej, Zk :=

( k⊕
j=

Rej

)
⊕ Z,

Bk :=
{
u ∈ Yk|‖u‖ ≤ σk

}
, Nk :=

{
u ∈ Zk|‖u‖ = sk

}
, with  < sk < σk ,k ≥ .

Before we state and prove our critical point theorem, we recall the following definition.

Definition  A functional � ∈ C(X,R) is said to satisfy the Palais-Smale condition (resp.
(PS)c condition ) if every sequence (un) ⊂ X such that (�(un)) is bounded (resp.�(un) → c
) and �′(un)→ , has a convergent subsequence.

Theorem  (Generalized dual fountain theorem) Let � ∈ C(X,R) be an even functional
which is τ -lower semicontinuous and such that ∇� is τ -weak sequentially compact in
�–([a,b]) for any a,b ∈R. If, for every k ≥ k, there exist σk > sk >  such that

(B) ak := inf u∈Yk‖u‖=σk
�(u)≥ ,

(B) bk := sup u∈Zk‖u‖=sk
�(u) < ,

(B) dk := inf u∈Yk‖u‖≤σk
�(u) → , k → ∞,

(B) � satisfies the (PS)c condition ∀c ∈ [dk , [.

Then� has a sequence of critical points (uk) such that�(uk) <  and�(uk) →  as k → ∞.

Proof Let �k be the set of maps γ : Bk → X such that
(a) γ is odd, τ -continuous and γ |∂Bk = id,
(b) each u ∈ int(Bk) has a τ -neighborhoodNu in Yk such that (id–γ )(Nu ∩ int(Bk)) is

contained in a finite dimensional subspace of X ,
(c) �(γ (u))≥ �(u) ∀u ∈ Bk .

Define

ck := sup
γ∈�k

inf
u∈Bk

�
(
γ (u)

)
.

It follows from the definitions that dk ≤ ck . Lemma  in [] implies that γ (Bk) ∩Nk �= ∅
∀γ ∈ �k , which in turn implies that ck ≤ bk .
Let ε ∈], ak–ck [, θ > , and let γ ∈ �k such that

ck – ε ≤ inf
u∈Bk

�
(
γ (u)

)
. ()

We claim that

∃u ∈ �–([ck – ε, ck + ε]
) ∩ (

γ (Bk)
)
θ such that

∥∥�′(u)
∥∥ ≤ ε

θ
. ()

http://www.boundaryvalueproblems.com/content/2013/1/268
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Hence, there exists a sequence (un) ⊂ X such that

�(un) → ck and �′(un) → , n → ∞.

The conclusion of Theorem  then follows from (B) and (B).
To complete the proof of Theorem , it remains to show that () holds.
We proceed by contradiction by assuming that () does not hold, and then, we apply

Lemma  with ϕ = –�, c = –ck and S = γ (Bk). We may assume that ck + ε < ak . Next, by
following the proof of Theorem  in [], one can easily verify that the map β defined on
Bk by β(u) := η(,γ (u)) belongs to �k . Now, () and (ii) of Lemma  imply that

inf
u∈Bk

�
(
β(u)

) ≥ ck + ε,

which contradicts the definition of ck . �

3 Proof of themain results
In this section, we denote by |u|p the usual Lp(�) norm.
We consider the Sobolev space H

(�) endowed with the norm ‖u‖ = |∇u| and X :=
H

(�)×H
(�) with the product norm ‖(u, v)‖ = (‖u‖ + ‖v‖)  .

The functional J defined by () then reads as follows:

J(u, v) :=


‖u‖ – 


‖v‖ – λ

p
|u|pp –

μ

q
|v|qq +


α + β

∫
�

|u|α|v|β dx. ()

A standard argument shows that J is of class C on X and

〈
J ′(u, v), (φ,ϕ)

〉
=

∫
�

[
∇u∇φ –∇v∇ϕ – λ|u|p–uφ –μ|v|q–vϕ

+


α + β

(
α|u|α–|v|βuφ + β|u|α|v|β–vϕ)]

dx. ()

Lemma  Let (un, vn) ⊂ X such that (un, vn) ⇀ (u, v) in X. Then there exists a subsequence
(unk , vnk ) such that J ′(unk , vnk ) ⇀ J ′(u, v).

Proof Let (φ,ϕ) ∈ X. Using (), we have

〈
J ′(un, vn) – J ′(u, v), (φ,ϕ)

〉
=

∫
�

[
∇(un – u)∇φ –∇(vn – v)∇ϕ

– λ
(|un|p–un – |u|p–u)

φ –μ
(|vn|q–vn – |v|q–v)ϕ

+
α

α + β

(|un|α–un|vn|β – |u|α–u|v|β)
φ

+
β

α + β

(|un|α|vn|β–vn – |u|α|v|β–v)ϕ]
dx.

It is clear that
∫

�

∇(un – u)∇φ dx →  and
∫

�

∇(vn – v)∇ϕ dx→ .

http://www.boundaryvalueproblems.com/content/2013/1/268
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Now up to a subsequence we have

un → u and vn → v a.e. on �.

By the Sobolev embedding theorem (un) and (vn) are bounded in Lp(�), Lq(�) and
Lα+β (�). So (|un|p–un) (resp. (|vn|q–vn)) is bounded in L

p
p– (�) (resp. in L

q
q– (�)),

(|un|α–un|vn|β ) and (|un|α|vn|β–vn) are bounded in L
α+β

α+β– (�).
By Theorem . in [], we have

|un|p–un ⇀ |u|p–u in L
p

p– (�), |vn|q–vn ⇀ |v|q–v in L
q

q– (�),

|un|α–un|vn|β ⇀ |u|α–u|v|β and |un|α|vn|β–vn ⇀ |u|α|v|β–v in L
α+β

α+β– (�).

Since φ,ϕ ∈H
(�)⊂ Lp(�)∩ Lq(�)∩ Lα+β (�), it follows that

∫
�

(|un|p–un – |u|p–u)
φ dx → ,

∫
�

(|vn|q–vn – |v|q–v)ϕ dx → ,
∫

�

(|un|α–un|vn|β – |u|α–u|v|β)
φ dx → ,

∫
�

(|un|α|vn|β–vn – |u|α|v|β–v)ϕ dx → ,

and 〈J ′(un, vn) – J ′(u, v), (φ,ϕ)〉 →  for every (φ,ϕ) ∈ X. Hence, J ′(un, vn) ⇀ J ′(u, v). �

Lemma  The functional J satisfies the Palais-Smale condition.

Proof Let (un, vn) ⊂ X such that

d := sup
n

∣∣J(un, vn)∣∣ <∞ and J ′(un, vn) → , n→ ∞.

We deduce from () that

〈
J ′(un, vn), (un, )

〉
= ‖un‖ – λ|un|pp +

α

α + β

∫
�

|un|α|vn|β dx

≥ ‖un‖ – λ|un|pp.

Hence for n big enough, we have

‖un‖ – λ|un|pp ≤ ‖un‖,

which implies, since p < , that (un) is bounded.
On the other hand, by using () and (), we obtain

–J(un, vn) +


α + β

〈
J ′(un, vn), (un, vn)

〉
=

(


α + β
–



)
‖un‖ +

(


–


α + β

)
‖vn‖

+ λ

(

p
–


α + β

)
|un|pp +μ

(

q
–


α + β

)
|vn|qq.

http://www.boundaryvalueproblems.com/content/2013/1/268
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Since (un) is bounded, q <  < α + β and

–J(un, vn) +


α + β

〈
J ′(un, vn), (un, vn)

〉 ≤ d +
∥∥(un, vn)∥∥

for n big enough, we easily deduce that (vn) is bounded.
Consequently, we have, up to a subsequence,

(un, vn)⇀ (u, v) in X, ()

un → u in Lp(�), vn → v in Lq(�), ()

un → u, vn → v a.e. on �,

∇J(un, vn) ⇀ ∇J(u, v) (by Lemma ).

On the other hand, J ′(un, vn)→  and equation () imply that J ′(u, v) =  and that

〈
J ′(un, vn), (un, )

〉
–

〈
J ′(u, v), (u, )

〉 → ,
〈
J ′(un, vn), (, vn)

〉
–

〈
J ′(u, v), (, v)

〉 → .

Now, because of equation (), it follows that

‖un‖ – ‖u‖ + α

α + β

∫
�

(|un|α|vn|β – |u|α|v|β)
dx→ ,

–‖vn‖ + ‖v‖ + β

α + β

∫
�

(|un|α|vn|β – |u|α|v|β)
dx → .

Let us combine the preceding equations in order to cancel the integrals. We then
get

β
(‖un‖ – ‖u‖) + α

(‖vn‖ – ‖v‖) → .

But since equation () leads to

‖un‖ = ‖un – u‖ + ‖u‖ + ◦(), ‖vn‖ = ‖vn – v‖ + ‖v‖ + ◦(),

it is then easy to conclude that

β‖un – u‖ + α‖vn – v‖ → .

Hence (un, vn)→ (u, v). �

Now, we select an orthonormal basis (ej) of H
(�), and we consider the τ -topology on

X = Y ⊕ Z, where Y and Z are defined by

Y :=H
(�)× {} and Z := {} ×H

(�).

Lemma  J is τ -lower semicontinuous, and ∇J is τ -weak sequentially compact in
J–([a,b]) for any a,b ∈R.

http://www.boundaryvalueproblems.com/content/2013/1/268
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Proof
. Let (un, vn) ⊂ X and C ∈R such that (un, vn)

τ→ (u, v) in X and J(un, vn)≤ C. By the
definition of τ , (vn) converges strongly to v in H

(�). Clearly, we have

J(un, vn) ≥ 

‖un‖ – 


‖vn‖ – λ

p
|un|pp –

μ

q
|vn|qq,

which implies, since (vn) is bounded and p < , that (un) is bounded. Up to a
subsequence, we may assume that un → u in Lp(�) and vn → v in Lq(�),
un(x)→ u(x) and vn(x) → v(x) for almost every x ∈ �. By using Fatou’s lemma and
the weak lower semicontinuity of the norm ‖ · ‖, we deduce from the inequality

C ≥ J(un, vn) =


‖un‖ – 


‖vn‖ – λ

p
|un|pp –

μ

q
|vn|qq +


α + β

∫
�

|un|α|vn|β dx

that C ≥ J(u, v).
. Assume that (un, vn)

τ→ (u, v) in J–([a,b]), a,b ∈R. The same argument as above
shows that (un, vn) is bounded, and then (un, vn)⇀ (u, v). It follows from Lemma 
that ∇J is τ -weak sequentially compact in J–([a,b]). �

Proof of Theorem  We recall that

Yk :=
∞⊕
j=k

Rej × {} and Zk :=

( k⊕
j=

Rej × {}
)

⊕ Z.

Let (u, ) ∈ Yk . Then, since λ > , we have

J(u, ) =


‖u‖ – λ

p
|u|pp ≥ 


‖u‖ – λ

p
θ
p
k ‖u‖p,

where

θk = sup
w∈⊕∞

j=k Rej
‖w‖=

|w|p.

Therefore, for every (u, ) ∈ Yk such that ‖u‖ = σk := ( λp θ
p
k )


–p , we have

J(u, ) ≥
(

λ

p
θ
p
k

) 
–p


p

–p
(
 – p

)
> .

On the other hand, it is clear that



‖u‖ ≥ J(u, ) ≥ –

λ

p
θ
p
k ‖u‖p.

Hence, for every (u, ) ∈ Yk such that ‖u‖ ≤ σk , we have



σ 
k ≥ J(u, ) ≥ –

λ

p
θ
p
k σ

p
k .

We know by [] that θk →  as k → ∞, hence we deduce that J(u, ) →  as k → ∞.

http://www.boundaryvalueproblems.com/content/2013/1/268
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We have then proved that assumptions (B) and (B) of Theorem  are satisfied.
Let (u, v) ∈ Zk . Since the norms ‖ · ‖ and | · |p are equivalent on

⊕k
j=Rej, μ >  and

H
(�) continuously embeds into Lα+β (�), we have

J(u, v) ≤ 

‖u‖ – λc

p
‖u‖p + c

α + β
‖u‖α+β –



‖v‖ + c

α + β
‖v‖α+β ,

where c >  and c >  are constants. It is then easy to verify, since λ > , that assumption
(B) of Theorem  is satisfied for sk small enough.
By using Lemmas , , we can apply Theorem  and get the desired result. �
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