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Treatment with Rhodiola crenulata root
extract ameliorates insulin resistance in
fructose-fed rats by modulating
sarcolemmal and intracellular fatty acid
translocase/CD36 redistribution in skeletal
muscle
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Abstract

Background: Rhodiola species have been used for asthenia, depression, fatigue, poor work performance and
cardiovascular diseases, all of which may be associated with insulin resistance. To disclose the underlying
mechanisms of action, the effect of Rhodiola crenulata root (RCR) on insulin resistance was investigated.

Methods: Male Sprague-Dawley rats were treated with liquid fructose in their drinking water over 18 weeks. The
extract of RCR was co-administered (once daily by oral gavage) during the last 5 weeks. The indexes of lipid and
glucose homeostasis were determined enzymatically and/or by ELISA. Gene expression was analyzed by Real-time
PCR, Western blot and/or confocal immunofluorescence.

Results: RCR extract (50 mg/kg) suppressed fructose-induced hyperinsulinemia and the increases in the homeostasis
model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. Additionally, this
treatment had a trend to restore the ratios of glucose to insulin and non-esterified fatty acids (NEFA) to insulin.
Mechanistically, RCR suppressed fructose-induced acceleration of the clearance of plasma NEFA during oral glucose
tolerance test (OGTT), and decreased triglyceride content and Oil Red O staining area in the gastrocnemius.
Furthermore, RCR restored fructose-induced sarcolemmal overexpression and intracellular less distribution of fatty acid
translocase/CD36 that contributes to etiology of insulin resistance by facilitating fatty acid uptake.

Conclusion: These results suggest that RCR ameliorates insulin resistance in fructose-fed rats by modulating
sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. Our findings may provide a better
understanding of the traditional use of Rhodila species.
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Background
Insulin resistance is the thread that runs through many
chronic afflictions of modern times–obesity, cardiovas-
cular disease, and most conspicuously, type 2 diabetes
[1]. Recently, a large body of evidence has suggested that
depression and fatigue are linked to some metabolic dis-
orders, such as obesity, insulin resistance, diabetes and
liver disease [2–9]. Depression may occur as a conse-
quence of having diabetes. It has been suggested that in-
sulin resistance is a part of the pathophysiology of
affective disorders, and that improvement of insulin re-
sistance may reduce the severity of depressive symptoms
[10, 11]. Treatments of type 2 diabetic patients with in-
sulin sensitizers rosiglitazone and pioglitazone improve
not only metabolic derangements, but also affective dis-
orders [10, 12–14]. On the other hand, depression may
also be a risk factor for the onset of type 2 diabetes; de-
pressed adults have a 37 % increased risk of developing
type 2 diabetes mellitus [15]. Similarly, endocrine dys-
function is a common etiology of fatigue. Chronic fatigue
has been associated with obesity and its metabolic compli-
cations [16]. Therefore, these research findings suggest
that amelioration of insulin resistance may result in im-
provement of depression and fatigue, and conversely, ef-
fective prevention or treatment of depression may reduce
insulin resistance-associated health consequences.
The roots of the alpine plant genus Rhodiola (Crassula-

ceae) have been traditional medicines in Eastern Europe
and Asia. Rhodila species are used as tonics and stimu-
lants to increase physical endurance, work productivity
and longevity, and to enhance energy levels [17, 18]. Thus,
Rhodila species are used to treat patients with asthenia
[17, 18]. It has been demonstrated that treatment of type
2 diabetic patients with Rhodiola crenulata tea for 12–24
months significantly lowered blood glucose concentration,
accompanied by improvement of dysfunctions of liver and
kidneys [19]. Rhodioa rosea, another species of Rhodiola,
has been reported to show synergistic effects with losar-
tan, an angiotensin II type 1 receptor blocker, on hypergly-
cemia and hyperlipidemia in patients with early diabetic
nephropathy [20]. We have also demonstrated that treat-
ment with RCR ameliorates derangements of glucose and
lipid metabolism in Zucker diabetic fatty rats [21]. Salidro-
side, one of the prominent active components contained
in Rhodila species, ameliorates insulin resistance in db/db
mice [22]. In addition, Rhodila species have also been used
to treat fatigue and depression [17, 18]. Based on the
research findings, we hypothesized that the underlying
mechanisms of action of Rhodila species for their
traditional use were associated with improvement of
insulin resistance.
Strong evidence suggests that chronically high con-

sumption of fructose in rodents leads to dyslipidemia,
fatty liver, insulin resistance, obesity, and type 2 diabetes

mellitus [23]. During obesity an increase in the circulat-
ing fatty acids released from the abdominal fat depots
leads to increased uptake by non-adipose tissues, such
as skeletal muscle, thereby inhibiting glucose oxidation
and reducing insulin sensitivity [24]. Thus, abnormal
fatty acid metabolism, especially in skeletal muscle, is
linked to insulin resistance [25]. Membrane uptake of
long-chain fatty acids is the first step in cellular fatty
acid utilization and a point of metabolic regulation. Fatty
acid translocase/CD36, a multi-functional glycoprotein,
facilitates a major fraction of fatty acid uptake by some
key tissues, such as skeletal muscle, and plays an import-
ant role in membrane transport and utilization of long-
chain fatty acids [26]. CD36 is involved in a number of
metabolic pathways, and contributes to development of
insulin resistance and the metabolic syndrome [25, 26].
Research has shown that sugar-sweetened nonalcoholic
beverages, such as soft drinks, appear as the major
source of fructose for all classes of age considered, ex-
cept for children younger than 6 years and adults older
than 50 years [23]. To better understand the traditional
application of Rhodila species, the present study investi-
gated the effect of an extract of RCR on insulin resistance
and the possible involvement of CD36 in the underlying
mechanisms of action in liquid fructose-fed rats.

Methods
Preparation and identification of an aqueous-ethanolic
extract of RCR
RCR was collected in Tibet, China. A voucher specimen
(No: PS0183) was deposited in Pharmafood Institute,
Kyoto, Japan. Dried RCR was identified botanically by
Professor Johji Yamahara, who is an expert in taxonomy.
The aqueous-ethanolic extract used in the present study
was prepared. Briefly, dried RCR materials were ground
into crude powder, immersed in 7 volumes of 50 % etha-
nol (50 °C) with intermittent shaking for 5 h, and fil-
trated. The residue was extracted for additional 2 times
using the same method. The combined filtrate was evap-
orated under reduced pressure below 45 °C. The yield of
the extract was 15 %. The extract was quantified by the
HPLC method previously described [21] to contain
2.5 % salidroside, one of prominent active components
contained in Rhodila species. HPLC fingerprints of RCR
extract and salidroside standard (inset) at 275 nm are
shown in Fig. 1.

Animals, diet and experimental protocol
All experimental procedures were carried out in accord-
ance with the internationally accepted principles for la-
boratory animal use and care, and approved by the Animal
Ethics Committee, Chongqing Medical University, China.
Male Sprague–Dawley rats weighing 210–230 g and

the standard chow were supplied by the laboratory
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animal center, Chongqing Medical University, China.
Rats were housed in a temperature controlled facility
(21 ± 1 °C, 55 ± 5 % relative humidity) with a 12-h light/
dark cycle. Animals were allowed free access to water
and the standard chow for at least 1 week prior to start-
ing the experiments.
Fructose in drinking water used for the present study, has

been described previously [27–31]. Thirty-three rats were
divided initially into 2 groups: water control free access to
water (n = 6), and fructose group free access to 10 % fruc-
tose solution (w/v, preparation every day) (n = 27). This
fructose group was further divided into the following 3
groups (n = 9) 13 weeks after study commencement and
had continued free access to 10 % fructose solution until
the end of week 18: fructose control, fructose RCR 10 mg/
kg and fructose RCR 50 mg/kg. Animals in RCR-treated
groups were administered RCR extract at the dosages of 10
and 50 mg/kg (suspended in 5 % Gum Arabic solution, gav-
age once daily), respectively. The rats in the corresponding
water- and fructose-control groups received vehicle (5 %
Gum Arabic) alone. All rats had free access to the standard
chow. To avoid stress and increase monitoring accuracy of
fructose and chow intakes, only 2–3 rats were housed in a

cage at any given time. The consumed chow and fructose
solution were measured daily and the intake of fructose
was calculated. At the end of week 17, blood samples were
collected by retroorbital venous puncture under ether
anesthesia under overnight-fasted condition. Here, the
plasma concentrations of glucose (kit from Kexin Institute
of Biotechnology, Shanghai, China), insulin (kit from
Morinaga Biochemical Industries, Tokyo, Japan), triglycer-
ide (Triglyceride-E kit, Wako, Osaka, Japan), non-esterified
fatty acids (NEFA) (NEFA-C kit, Wako, Osaka, Japan) and
total cholesterol (kit from Kexin Institute of Biotechnology,
Shanghai, China) were determined using enzymatic
methods or by ELISA. Immediately followed, OGTT was
performed. Animals were weighed and euthanized after be-
ing fasted overnight at the end of week 18. Epididymal fat
and gastrocnemius (right) were collected. Segments of
gastrocnemius were individually snap frozen in liquid nitro-
gen and stored at -80 °C for subsequent determination of
the content of triglyceride and/or gene expression.

OGTT
After being fasted overnight, all rats received a glucose so-
lution (2 g/kg in 5 ml) by the oral gavage. Blood samples
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Fig. 1 HPLC fingerprints of the aqueous-ethanolic extract of Rhodiola crenulata root (RCR) and salidroside standard (inset) at 275 nm
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were collected prior to and 20, 60 and 120 min after ad-
ministration of glucose solution. Plasma concentrations of
glucose and NEFA were determined. The homeostasis
model assessment of insulin resistance (HOMA-IR) index
{[fasted insulin (μIU/mL) × fasted glucose (mM)]/22.5}
and the Adipo-IR index [Adipo-IR index = fasted insulin
(mmol/L) × fasted NEFA (pmol/L)] were calculated [32,
33]. The clearance of plasma NEFA was calculated as the
following formula: the concentration under fasted condi-
tion (0 min) – the concentration at the time-point (20, 60
or 120 min) after glucose administration. The area under
the curve (AUC) of plasma concentrations and/or clear-
ances of glucose and NEFA was calculated, respectively.

Determination of triglyceride content in skeletal muscle
Triglyceride content in the gastrocnemius was deter-
mined as described previously [28, 31]. Briefly, 100 mg
of tissue was homogenized and extracted with 2 mL of
isopropanol. After centrifugation (625 × g), the triglycer-
ide content in supernatant was determined enzymatically
(Wako, Osaka, Japan).

Measurement of fatty droplet accumulation in skeletal
muscle
A portion of gastrocnemius was frozen, and six-micron
sections were cut and stained with Oil Red O for exam-
ination of fatty droplet accumulation (BX-51, Olympus
Corporation, Tokyo, Japan). Forty fields in individual
section were randomly selected, and the Oil Red O-
stained and total fiber areas were measured using an
ImageJ 1.43 analyzing system. The ratio of the Oil
Red O-stained area to the total tissue area was calcu-
lated (%).

Real time PCR
Real time PCR was performed as described previously
[31]. Total RNA was isolated from gastrocnemius of in-
dividual rats using TRIzol (Takara, Dalian, China).
cDNA was synthesized using M-MLV RTase cDNA Syn-
thesis Kit (Takara, Dalian, China) according to the man-
ufacturer’s instructions. Real time PCR was performed
with the CFX 96 Real Time PCR Detection System
(Biorad Laboratories Inc, Hercules, CA, USA) using the
SYBR® Premix Ex Taq™ II (Takara, Dalian, China). The
sequences of primers are shown in Table 1. The gene
expression from each sample was analysed in dupli-
cates and normalized against the internal control gene
β-actin. Levels in control rats were arbitrarily assigned
a value of 1.

Western blot
Western blot was performed basically as described previ-
ously [28, 31]. Total protein was prepared from gastrocne-
mius using the T-PER tissue protein extraction reagent

kits (Pierce Biotechnology, Rockford, IL, USA), according
to the manufacturer’s instructions. Protein concentration
was determined using the Bradford method (Bio Rad
Laboratories, Hercules, CA, USA) using bovine serum al-
bumin as a standard. Protein (30 μg) was subjected to
SDS-PAGE analysis on a 10 % gel, then electrotransferred
onto Polyvinylidene Fluoride Membrane (Amersham,
Buckinghamshire, UK). CD36 (dilution 1:1000, Abcam,
Cambridge, Massachusetts, USA) was detected with a
rabbit polyclonal antibody. Detection of signal was per-
formed using the ECL Western blot detection kit (Pierce
Biotechnology, Rockford, IL, USA) with anti-rabbit horse-
radish peroxidase-conjugated IgG (dilution 1:5,000, Santa
Cruz Biotechnology, Santa Cruz, CA, USA) as second
antibody, respectively. Polyclonal rabbit β-actin antibody
(Cell Signaling Technologies, Beverly, MA, USA) was used
as loading control to normalize the signal obtained for
CD36 protein. The immunoreactive bands were visualized
by autoradiography and the density was evaluated using
ImageJ 1.43. Levels in control rats were arbitrarily
assigned a value of 1.

Immunofluorescence staining
To examine CD36 distribution in rat skeletal muscle fi-
bers, cryosections were immunofluorescently labeled
and analyzed by confocal microscopy. Transverse cryo-
sections from gastrocnemius were transferred to glass
slides, and allowed to dry at room temperature. The sec-
tions were blocked with normal goat serum for 30 min
and incubated with rabbit polyclonal anti-CD36 antibody
(dilution 1:200, Abcam, Cambridge, Massachusetts,

Table 1 Primer sequences for real time PCR assays

Gene Accession number Primer Sequences

β-actin NM_031144.2 Forward: ACGGTCAGGTCATCACTATCG

Reverse:
GGCATAGAGGTCTTTACGGATG

Adiponectin NM_144744.3 Forward:
CGTTCTCTTCACCTACGACCAGT

Reverse: ATTGTTGTCCCCTTCCCCATAC

CD36 NM_001109218 Forward:
AACCCAGAGGAAGTGGCAAAG

Reverse:
GACAGTGAAGGCTCAAAGATGG

DGAT-1 NM_053437.1 Forward: GGACAAAGACCGGCAGACCA

Reverse: CAGCATCACCACGCACCAAT

DGAT-2 NM_001012345.1 Forward: CCTGGCAAGAACGCAGTCAC

Reverse: GAGCCCTCCTCAAAGATCACC

PPAR-γ AB_011365.1 Forward:
GCCCTTTGGTGACTTTATGGAG

Reverse: GCAGCAGGTTGTCTTGGATGT

Sequences: 5’ to 3’
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USA) in blocking buffer at 4 °C overnight. Sections were
rinsed with PBS three times and incubated with CY3-
labeled goat anti-rabbit IgG as secondary antibody in
blocking buffer for 30 min. Sections were rinsed with
PBS three times again and nuclei were counterstained
with DAPI (Molecular Probes/Invitrogen Life Technolo-
gies, Carlsbad, CA, USA). Finally, sections were mounted
and analyzed as described previously [34]. Images were
collected with confocal microscope (A1 + R confocal
microscope, Nikon Corporation, Tokyo, Japan). Imaging
settings were set so that no signal was detected in the re-
spective negative controls and a low fraction of pixels
showed saturation intensity values when imaging the
stained samples.

Semi-quantification of CD36 expression [34]
On transverse cryosections from gastrocnemius stained
with anti-CD36, skeletal muscle fiber was rated 1, 2 or 3
based on the intensity of the sarcolemmal CD36 fluores-
cent signal by a person who was blinded. To check inter-
observer variability, another blinded person also rated

the intensity of the fluorescence signal with similar re-
sults. In each sample, ~100 fibers were rated. The per-
centage of fibers rated 1, 2, and 3 each sample was
calculated respectively.

Data analysis
All results are expressed as mean ± SEM. Data were ana-
lyzed by ANOVA using StatView, and followed by
Student-Newman-Keuls testing to locate the differences
between groups. P < 0.05 was considered to be statisti-
cally significant.

Results
Effects on intakes of fructose and chow, body weight
increase and epididymal fat weight in rats
Fructose control and fructose RCR groups consumed
similar amount of fructose during the last five weeks
(Fig. 2a). Intake of fructose decreased chow intake in the
same manner in both fructose control and fructose RCR
groups (Fig. 2b).
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There was no significant difference in body weight in-
crease between water control and fructose control or
fructose RCR groups (Fig. 2c). However, long term fruc-
tose consumption increased epididymal fat weight,
whereas treatment with RCR did not affect epididymal
fat weight in fructose-fed rats (Fig. 2d).

Effects on glucose metabolism in rats
Although fructose feeding did not alter plasma glucose
concentration at the baseline (under fasted condition)
(Fig. 3a), it had a trend to increase glucose concentra-
tions during OGTT (Fig. 3e, f ). Strikingly, fructose con-
sumption increased basal plasma insulin concentration
and the HOMA-IR index by three folds (Fig. 3b, c). Fur-
thermore, fructose feeding decreased the ratio of glucose
to insulin (Fig. 3d). RCR treatment did not affect plasma
glucose concentrations both under fasted condition
(Fig. 3a) and during OGTT (Fig. 3e, f ) in fructose-fed

rats. However, RCR dose-dependently suppressed the in-
creases in basal plasma insulin concentration and the
HOMA-IR index (Fig. 3b, c), and had a trend to restore
the decreased ratio of glucose to insulin (Fig. 3d).

Effects on lipid metabolism in rats
Fructose feeding did not induce a significant change in
plasma total cholesterol concentration (Fig. 4a), but in-
creased plasma triglyceride and NEFA concentrations at
the baseline (Fig. 4b, c), and the Adipo-IR index (Fig. 4d).
Fructose feeding decreased the ratio of NEFA to insulin
(Fig. 4e). RCR treatment minimally affected the fasting
plasma concentration of total cholesterol, triglyceride
and NEFA (Fig. 4a-c), whereas RCR (50 mg/kg) sup-
pressed the increased Adipo-IR index (Fig. 4d) and had a
trend to restore the decreased NEFA to insulin ratio
(Fig. 4e).
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Oral glucose administration decreased plasma NEFA
concentration in all groups; there was no significant
difference in plasma NEFA concentration (Fig. 5a)
and the AUC of plasma NEFA concentration (Fig. 5b)
during OGTT. However, the clearance of plasma
NEFA (Fig. 5c) and the AUC of plasma NEFA clear-
ance (Fig. 5d) after oral glucose administration were
increased in fructose controls compared to water con-
trols. RCR treatment did not affect plasma NEFA
concentration (Fig. 5a) and the AUC of plasma NEFA
concentration (Fig. 5b), but dose-dependently de-
creased the clearance of plasma NEFA (Fig. 5c) and
the AUC of plasma NEFA clearance (Fig. 5d) in
fructose-fed rats.
Long term fructose consumption also increased trigly-

ceride content (Fig. 6a) and Oil Red O stained area in
the gastrocnemius, which was attenuated by RCR treat-
ment (50 mg/kg) (Fig. 6d-g).

Gene/protein expression profile in rats
As treatment with RCR at 10 mg/kg showed less effect
on all parameters observed, gene expression analysis and
comparisons were restricted in water control, fructose
control and fructose RCR 50 mg/kg groups. By Real-
time PCR and Western blot, fructose feeding did not
significantly affect total muscular expression of CD36
mRNA and protein; RCR treatment was without effect
in fructose-fed rats (Fig. 6b, c).
Fructose feeding decreased the percentage of fibers ex-

pressing sarcolemmal CD36 weakly (rating 1), but in-
creased the percentage of fibers expressing sarcolemmal
CD36 abundantly (rating 3), whereas it did not alter the
percentage of fibers rated 2 (Fig. 7a-f ). RCR treatment
completely reversed fructose-induced change in sarco-
lemmal CD36 expression (Fig. 7a-f ).
Also in the gastrocnemius, fructose feeding did not

alter mRNA expression of peroxisome proliferator-
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activated receptor (PPAR)-γ (Fig. 8a), adiponectin
(Fig. 8b), acyl-coenzyme A:diacylglycerol acyltransferase
(DGAT)-1 (Fig. 8c) and DGAT-2 (Fig. 8d). RCR treat-
ment showed minimal effect on expression of these
genes (Fig. 8a-d).

Discussion
The present study clearly demonstrated that treatment
with RCR extract suppressed fructose-induced hyperin-
sulinemia, and increases in the HOMA-IR index and the
Adipo-IR index in rats. In addition, the treatment had a
trend to restore the ratios of glucose to insulin and
NEFA to insulin. These results suggest that RCR extract
treatment ameliorates fructose consumption-induced in-
sulin resistance in rats.
Skeletal muscle is regarded as the major site of insulin

resistance in obesity and type 2 diabetes [35]. Mounting
evidence indicates that insulin resistance is highly associ-
ated with excessive intramyocellular triglyceride accu-
mulation [36–38]. High fructose diets are known to
cause insulin resistance [39] and triglyceride accumula-
tion [40] in the skeletal muscle of rodents. In healthy

subjects with and without a family history of type 2 dia-
betes, fructose overconsumption also increases lipid ac-
cumulation in skeletal muscle [41]. Rhodiola species
enhance energy levels to increase physical endurance
and work productivity [17, 18]. Salidroside, one of the
major active components found in RCR, has been dem-
onstrated to stimulate glucose uptake in skeletal muscle
cells [42]. These findings suggest that skeletal muscle is
one of the major target sites of Rhodila species. In the
present study, triglyceride accumulation and Oil Red O-
stained area in rat skeletal muscle were increased after
chronic fructose consumption. Treatment with RCR ex-
tract ameliorated the excessive lipid accumulation in
fructose-fed rats.
The increased lipid deposition in muscle is secondary

to increased fatty acid transport in obese Zucker rats
[43], high fat-fed rats [44] and obese, insulin-resistant
humans [45]. The increased concentration of blood glu-
cose after oral glucose administration during OGTT
strongly stimulates the β-cells to secrete and release in-
sulin, subsequently inhibits adipose lipolysis. Release of
fatty acids from adipose tissue under fasted condition is
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Fig. 5 Plasma NEFA concentrations (a), the AUC of plasma NEFA concentrations (b), plasma NEFA clearance (c), and the AUC of plasma NEFA
clearance (d) during OGTT in rats. The fructose controls (Rhodiola 0 mg/kg) and fructose Rhodiola (50 mg/kg) group had free access to 10 %
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means ± SEM (n = 6-9 each group). * P < 0.05
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shifted to uptake of fatty acids by key tissues, such as
skeletal muscle, after oral glucose administration. Thus,
the clearance of plasma fatty acids during OGTT reflects
the status of uptake of fatty acids by the key tissues. In
the present study, fructose feeding increased clearance
of plasma NEFA during OGTT. This acceleration was
attenuated after RCR extract treatment. These results
suggest that RCR extract treatment may decrease
fructose-induced excessive triglyceride accumulation in
the skeletal muscle by inhibiting the increased uptake of
fatty acids by skeletal muscle.
The fatty acid transport from blood circulation to skel-

etal muscle involves the translocation of CD36, but not
plasma membrane fatty acid–binding protein, from
intracellular membrane compartments to the sarco-
lemma [46]. In muscle from diabetic rodents and
humans, more CD36 is recruited to the plasma

membrane, leading to persistent enhancement of fatty
acid uptake, thereby possibly contributing to the impair-
ment of insulin signaling and glucose utilization [24].
Fructose feeding has been demonstrated to increase
CD36 expression in the sarcolemma, but not in whole
tissue homogenates from the skeletal muscle, in rats,
suggesting a fructose-induced redistribution of this
protein associated with fatty acid uptake across the
plasma membrane [47]. In the present study, fructose
feeding did not alter CD36 expression at the mRNA
and protein level in whole skeletal muscle. However,
the semi-quantitative assessment by confocal im-
munofluorescence revealed that sarcolemmal CD36
was overexpressed, while intracellular CD36 distribu-
tion in the gastrocnemius was downregulated after
fructose feeding. The fructose-induced redistribution
of CD36 was restored by RCR extract treatment.
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Taken together, our findings suggest that RCR extract
treatment-elicited insulin-sensitizing action is associ-
ated with modulation of CD36 redistribution in the
skeletal muscle.
CD36 is a well-known target of PPAR-γ ligands [48].

PPAR-γ agonists stimulate the production of adiponec-
tin, which promotes fatty acid oxidation and insulin sen-
sitivity in muscle and liver [49]. DGATs are the enzymes
that catalyze the final step and rate-limiting reaction in
triglyceride synthesis. Both DGAT-1 and DGAT-2 in
skeletal muscle play a specific role in regulating insulin
sensitivity [50]. In the present study, however, fructose
feeding did not alter muscular expression of PPAR-γ,
adiponectin, DGAT-1 and DGAT-2. RCR extract treat-
ment also showed minimal effect on expression of these
genes in fructose-fed rats. Thus, these results do not

support an association of modulation of CD36 by RCR
extract treatment with muscular PPAR-γ and a link of
decreased lipid content to triglyceride synthesis in the
skeletal muscle.
Zheng et al. have reported that salidroside ameliorates

insulin resistance in db/db mice [22]. The authors also
have demonstrated that in vitro salidroside activates the
AMP-dependent protein kinase-mediated pathway in
the mitochondria of hepatocytes. CD36 and poten-
tially other lipid binding proteins have been demon-
strated to function as dynamic regulators of fatty acid
transport by relocating from intracellular compart-
ments to the plasma membrane in skeletal muscle in
response to pharmacological activation of the AMP-
dependent protein kinase by 5-aminoimidazole-4-car-
boxamide ribonucleoside [51]. This finding suggests a
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link of CD36 to the AMP-dependent protein kinase.
Thus, it needs to further investigate whether modula-
tion of sarcolemmal and intracellular CD36 redistri-
bution in the skeletal muscle by Rhodiola crenulate
root extract is associated with activation of the mus-
cular AMP-dependent protein kinase-mediated path-
way pathway.
Although CD36 is also particularly abundant in adi-

pose tissue, it is still unclear whether CD36 function in
adipocytes influences ectopic fat distribution and the
pathogenesis of insulin resistance in muscle and liver
[25]. In the present study, RCR extract treatment did
not affect body weight increase and epididymal fat
weight in fructose-fed rats. However, this study still can-
not exclude the role of adipose CD36 in RCR extract
treatment-elicited amelioration of insulin resistance.
On the other hand, we have recently demonstrated

that mangiferin, a xanthone glucoside, also mitigates
fructose-induced insulin resistance via modulation of
CD36 redistribution in the skeletal muscle of Wistar-
Kyoto rats [52]. It would be interesting to further in-
vestigate whether RCR extract, salidroside, mangiferin
and other herb-derived insulin sensitizers share the
similar mechanisms to modulate CD36 in ameliorat-
ing insulin resistance.

Conclusions
In conclusion, our present results demonstrate that
treatment with RCR extract ameliorates insulin resist-
ance by modulating sarcolemmal and intracellular redis-
tribution in the skeletal muscle of fructose-fed rats. Our
findings may provide a better understanding of the trad-
itional use of Rhodila species.

a b

c d

Fig. 8 Skeletal muscular mRNA expression of peroxisome proliferator-activated receptor (PPAR)-γ (a), adiponectin (b), acyl-coenzyme A:diacylglycerol
acyltransferase (DGAT)-1 (c) and DGAT-2 (d) in rats. The fructose controls (Rhodiola 0 mg/kg) and fructose Rhodiola (50 mg/kg) group had free access
to 10 % fructose in their drinking water over 18 weeks. The water controls (Rhodiola 0 mg/kg) had free access to a tap water. Rhodiola (50 mg/kg)
was administered by gavage daily during the last 5 weeks. The water and fructose controls received vehicle (5 % Gum Arabic) alone. mRNA was
determined by Real-time PCR and normalized to β-actin. Expression in water control was arbitrarily assigned a value of 1. Data are means ± SEM
(n = 6-9 each group)
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