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Abstract In this paper, the variational iteration method

(VIM) has been used to investigate the non-linear vibration

of single-walled carbon nanotubes (SWCNTs) based on the

nonlocal Timoshenko beam theory. The accuracy of results

is examined by the fourth-order Runge–Kutta numerical

method. Comparison between VIM solutions with nu-

merical results leads to highly accurate solutions. Also, the

behavior of deflection and frequency in vibrations of

SWCNTs are studied. The results show that frequency of

single walled carbon nanotube versus amplitude increases

by increasing the values of B.

Keywords Carbon nanotubes � Variational iteration

method (VIM) � Non-linear vibration � Timoshenko beam

theory � Frequency

Introduction

Nanotechnology is an industrial revolution and one of the

hottest fields of research. In the last few years, carbon

nanotubes (CNTs) have attracted extensive research ac-

tivities due to their exceptional mechanical, physical,

chemical and thermal properties. CNTs were first discov-

ered by Iijima (1991).

Carbon nanotubes (CNTs) are unique nanostructured

materials that comprise a basic element of nanotechnology.

Given their extraordinary mechanical and physical prop-

erties, together with their large aspect ratio and low den-

sity, CNTs are ideal components of nanodevices. Carbon

nanotube research is one of the most promising domains in

the fields of mechanics, physics, chemistry, and materials

science. A wide range of applications of CNTs have been

reported in the literature, including applications in nano-

electronics, nanodevices, and nanocomposites (Iijima

1991; Hai-Yang and Xin-Wei 2010; Lai et al. 2008;

Deretzis and La Magna 2008; Chowdhury et al. 2009;

Mehdipour et al. 2011; Hornbostel et al. 2008; Hwang et al.

2010).

It is important to have accurate theoretical models for

the vibrational behavior of CNTs. The natural frequencies

of CNTs play an important role in nanomechanical

resonators.

Since the vibrations of CNTs are of considerable im-

portance in a number of nanomechanical devices such as

oscillators, charge detectors, field emission devices and

sensors, many researches have been so far devoted to the

problem of the vibrations of CNTs (Ru 2002; Yoon and Ru

2002; Zhang et al. 2005; Yoon et al. 2003). A good review

on the vibration of CNTs is given by Gibson et al. (2007)

including a concise review of as many of the relevant

publications as possible. Based on the theory of thermal

elasticity mechanics, Wang et al. (2008) studied the vi-

bration and instability analysis of fluid-conveying single-

walled carbon nanotubes (SWNTs) considering the thermal

effect.

However, most of the investigations conducted on the

vibration of CNTs have been restricted to the linear
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regime and fewer works were done on the non-linear vi-

bration of these materials. Recently, Fu et al. (2006)

studied the non-linear vibrations of embedded nanotubes

using the incremental harmonic balanced method (IHBM).

In that work, single-walled nanotubes (SWNTs) and

double-walled nanotubes (DWNTs) were considered for

the study. In recent years, many phenomena in engineer-

ing, physics, biology, fluid mechanics and other sciences

can be described very successfully using mathematical

modeling.

Most differential equations of engineering problems do

not have exact analytic solutions so approximation and

numerical methods must be used. A great deal of effort has

been expended in attempting to find robust and stable nu-

merical and analytical methods for solving differential

equations of physical interest.

These numeical methods include the finite difference

method (Ghasemi and Mehdizadeh Ahangar 2014), finite

element method (Imani et al. 2014) and finite volume

method (Ghasemi et al. 2013a, b). Also the analytical

methods include the homotopy perturbation method (HPM)

(Ghasemi et al. 2013c; Mohammadian et al. 2015), ado-

mian decomposition method (ADM) (Ghasemi et al. 2012),

variational iteration method (VIM) (Ghasemi et al. 2012),

modified homotopy perturbation method (MHPM) (Gha-

semi et al. 2014a), least square method (LSM) (Ghasemi

et al. 2014b), optimal homotopy asymptotic method

(OHAM) (Ghasemi et al. 2013c; Vatani et al. 2014), dif-

ferential transformation method (DTM) (Ghasemi et al.

2014c, d), and reconstruction of variational iteration

method (RVIM) (Nikaeen et al. 2013).

The Variational iteration method (VIM) is a new ap-

proach for finding the approximate solution of linear and

non-linear problems using a general Lagrange’s multiplier,

which can be determined optimally by variational theory.

This method was first proposed by He (Finlayson 1972; He

1997, 1998a, b, c). It has been used to solve effectively,

easily and accurately a large class of non-linear problems

with approximations. These approximations converge

rapidly to accurate solutions.

Ghasemi et al. (2012) investigated the motion of a

spherical solid particle in a plane couette fluid flow by

variational iteration method. They applied the VIM to

solve the couple of equations of a spherical particle motion

in a plane Couette fluid flow and their results showed that

variational iteration method give approximations of a high

degree of accuracy and least computational effort for

studying particle motion in Couette fluid flow.

In this paper, an analytical approach based on He’s

variational iteration method is suggested to obtain the non-

linear vibration of single-walled carbon nanotubes

(SWCNTs). Also, the frequency and deflection for

vibrations of single-walled carbon nanotubes are investi-

gated in this work.

Mathematical modeling of single-walled carbon

nanotube

Figure 1 shows a single-walled carbon nanotube (SWCNT)

modeled as a Timoshenko nanobeam with length L, radius

r, and effective tube thickness h.

It is assumed that the SWCNTs vibrate only in the x–z

plane. Based on Timoshenko beam theory, the displace-

ments of an arbitrary point in the beam along the x- and z-

axes, denoted by U
^

x; z; tð Þ and W
^

x; z; tð Þ, respectively, are

U
^

x; z; tð Þ ¼ U x; tð Þ þ zuðx; tÞ, W
^

x; z; tð Þ ¼ Wðx; tÞ
where U (x, t) and W (x, t) are the displacement compo-

nents in the midplane, / is rotation of beam cross-section

and t is time. The non-linear equations of motion for the

nonlocal SWCNTs modeled as a Timoshenko nanobeam is

given by:

EA
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where

Fig. 1 A single wall carbon nanotube (SWCNT) modeled as a

nonlocal Timoshenko nanobeam
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where A is the cross-sectional area of the beam, I is the

second moment of area and q is the mass density of beam

material, E and G are Young’s modulus and shear modulus,

respectively. The constitutive relations in classical

elasticity theories can be recovered by setting the

nonlocal parameter e0a = 0 and Ks is the shear

correction factor depending on the shape of the cross-

section of the beam. Introducing the following

dimensionless quantities:

f ¼ x

L
; u;wð Þ ¼ ðU;WÞ

r
; u ¼ w;

I1; I3ð Þ ¼ ðqA
qA

;
qI

qAr2
Þ; g ¼ L

r
;

l ¼ e0a

L
; a11; a55; d11ð Þ ¼ EA

EA
;
KsGA

EA
;

EI

EAr2

� �
;

s ¼ t

L

ffiffiffiffi
E

q

s
ð4Þ

Equations (1), (2), (3) can be expressed in

dimensionless form as:
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Assuming w f; sð Þ ¼ u fð ÞvðsÞ, and w f; sð Þ ¼ f fð ÞgðsÞ with

ignoring U, where u(f), f fð Þ is the first eigenmode of the

beam (Tse et al. 1978) and applying the Galerkin method,

the equation of motion is obtained as follows:

€g sð Þ þ a1g sð Þ þ a2v sð Þ þ a3g
3ðsÞ ¼ 0 ð8Þ

€v sð Þ þ b1v sð Þ þ b2g sð Þ ¼ 0 ð9Þ

where a1,a2, a3,b1 and b2 are as follows: a1 ¼

�a55
r

1

0
f fð Þf 00 fð Þdf

r
1

0
f 2 fð Þdf

, a2 ¼ �a55g
r
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r
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The Eqs. (8) and (9) are the governing non-linear vibration

of Timoshenko beams.

The center of the beam subjected to the following initial

conditions:

g 0ð Þ ¼ A; _g 0ð Þ ¼ 0; v 0ð Þ ¼ B; _v 0ð Þ ¼ 0 ð11Þ

where A, B denotes the non-dimensional maximum am-

plitude of oscillation.

Fundamentals of variational iteration method

To illustrate the basic concepts of the variational iteration

method (VIM), we consider the following differential

equation:

Luþ Nu ¼ gðtÞ ð12Þ

where L is a linear operator, N a non-linear operator and

g(t) an inhomogeneous term. According to VIM, we can

write down a correction functional as follows:

unþ1 tð Þ ¼ un tð Þ þ r
t

0

k Lun gð Þ þ Nu
^

n gð Þ � g gð Þ
� �

dg ð13Þ
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where k is a general Lagrange multiplier which can be

identified optimally via the variational theory (He 1998a).

The subscript n indicates the nth approximation and ~un is

considered as a restricted variation d~un ¼ 0.

Results and discussions

To solve Eqs. (8) and (9) by means of VIM, we start with

an arbitrary initial approximation:

g0 sð Þ ¼ A cos xsð Þ; v0 sð Þ ¼ B cos xsð Þ ð14Þ

From Eq. (8), we have:

€g sð Þ ¼ �a1g sð Þ � a2v sð Þ � a3g
3 sð Þ )

€g sð Þ ¼ �a1A cosðxsÞ � a2B cosðxsÞ � a3A
3 cos3ðxsÞ

ð15Þ

Integrating twice yields:

g1 sð Þ ¼ a1A cosðxsÞ
x2

þ a2B cosðxsÞ
x2

þ a3A
3

4

cosð3xsÞ
9x2

þ 3 cosðxsÞ
x2

� �
ð16Þ

Fig. 2 Frequency of single

walled carbon nanotube versus

amplitude

Fig. 3 Frequency of single

walled carbon nanotube versus

amplitude for different values

of B
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Equating the coefficients of cos(xs) in g0 and g1, we

have:

xVIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ

a2B

A
þ 0:75a3A2

r
ð17Þ

And therefore,

g0 sð Þ ¼ A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ

a2B

A
þ 0:75a3A2

r
s

 !
ð18Þ

Where d~un ¼ 0 is considered as restricted variation.

gnþ1 sð Þ ¼ gn sð Þ þ r
s

0

k
d2gn
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3
n
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dg

ð19Þ

vnþ1 sð Þ ¼ vn sð Þ þ r
s

0

k
d2vn

dg2
þ b1vn þ b2gn

� �
dg ð20Þ

Its stationary conditions can be obtained as follows:

1 � k0jg¼t ¼ 0 ð21Þ

kjg¼t ¼ 0 ð22Þ

k00 þ x2k ¼ 0 ð23Þ

Therefore, the multiplier, can be identified as

k ¼ 1

x
sinxðg� sÞ ð24Þ

As a result, we obtain the following iteration formula:

gnþ1 sð Þ ¼ gn sð Þ þ
Zs

0

1

x
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By the iteration formula (25) and (26), we can directly

obtain other components as:

g1 sð Þ ¼ A cos xsð Þ þ 1

32x2
ð�a3A

3 cos xsð Þ

þ 16x3As sin xsð Þ � 16xa1As sin xsð Þ
� 16xa2Bs sin xsð Þ � 12xa3A

3s sin xsð Þ
þ a3A

3 cos 3xsð Þ ð27Þ

where x is evaluated from Eq. (17). In the same manner,

the rest of the components of the iteration formula can be

obtained.

The frequency of single wall carbon nanotube versus

amplitude is plotted in Fig. 2.

Figure 3 shows the effect of amplitude of vibration on

frequency of single wall carbon nanotube for different

values of B.

Fig. 4 Deflection of single

walled carbon nanotube versus

time and amplitude at

a1 ¼ 2:910191164,

a2 ¼ 9:828472866, and a3 ¼
0:4357628396 for B = 0.005

Table 1 Comparison between VIM soloutions with numerical results

for g(s) when t = 0.5 and a1 = a2 = a3 = 1

A g numerical gVIM ErrorVIM

0.01 0.010098371 0.009945 0.000153

0.1 0.10008375 0.099490 0.000593

0.2 0.200067529 0.198956 0.001111

0.3 0.300051358 0.298362 0.001689

0.4 0.400035263 0.397678 0.002357

0.5 0.500019267 0.496874 0.003144

1 0.999941663 0.990026 0.009915
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Figure 4 depicts the deflection of single wall carbon

nanotube versus time and amplitude at a1 = 2.910191164,

a2 = 9.828472866, and a3 = 0.4357628396 for B = 0.005.

The solutions are also compared for t = 0.5 in Table 1.

It can be observed that there is an excellent agreement

between the results obtained from VIM with those of

fourth-order Runge–Kutta numerical method.

Conclusion

In this work, the non-linear vibrations of single-walled

carbon nanotubes (SWCNTs) has been studied using novel

computational technique. The Variational iteration method

(VIM) is proved to be very convenient and powerful

mathematical tool to solving non-linear oscillators and the

solutions obtained are in good agreement with numerical

values. The proposed method does not require small pa-

rameter in the equation which is difficult to be found for

non-linear problems. The results show that magnitude of

the amplitude for vibration has strong effect on the fre-

quency and deflection of single-walled carbon nanotubes.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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