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class number formula for H/F where H is the Hilbert class field of F, and an analog of
Kronecker's solution of Pell's equation for totally real multiquadratic fields. We also use
a well-known conjecture from transcendence theory on algebraic independence of
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1 Introduction and statement of results

The celebrated Kronecker limit formula expresses the constant term in the Laurent
expansion at s = 1 of the Dedekind zeta function {x (s, A) of an ideal class A of an imag-
inary quadratic field K in terms of the value of log|n(z)| at a Heegner point t4 in the
complex upper half-plane H where 7(z) is the Dedekind eta function

00
n(z) = q1/24 1_[(1 _ qn)’ q:= 2z,

n=1

There are many interesting applications of this formula to algebraic number theory,
including relative class number formulae and Kronecker’s “solution” to Pell’s equation
(see e.g. [8] Chapter II). Roughly speaking, to prove the Kronecker limit formula, one
computes the constant term in the Laurent expansion at s = 1 of the SL;-Eisenstein series

Ezs):= Y Im(yz), zeH, Re(s)>1
¥ €Too\SL2(2)

then appeals to a classical identity of Dirichlet/Hecke relating Zx (s, A) to the value of
E(z,s) at the Heegner point t4. Note that Hecke proved a similar limit formula for real
quadratic fields by relating the ideal class zeta function to an integral of E(z,s) over a
Heegner cycle in H.
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In the early 1980’s, Bump and Goldfeld [2] proved a Kronecker limit formula for real
cubic fields. This was based on an intriguing identity relating the integral of a minimal
parabolic SL3-Eisenstein series over a Heegner cycle to the Rankin/Selberg integral of a
Hilbert modular Eisenstein series. Kudla [7] showed this identity was an instance of the
so-called “basic identity” associated to a see-saw dual reductive pair. Efrat [4] later gave a
Kronecker limit formula for non-real cubic fields by instead using the maximal parabolic
SLs-Eisenstein series. These results are just the tip of the iceberg. Indeed, as Bump and
Goldfeld [2] remarked,

“Much work remains to be done in this direction, and one can only begin to see a whole
new world of limit formulae emerging into view”.

In this paper we will prove a Kronecker limit formula for the zeta function ¢{r(s, A) of a
wide ideal class A of a totally real number field F of degree n > 2, thereby extending the
limit formulae of Hecke and Bump/Goldfeld (see Theorem 1). This formula relates the
constant term in the Laurent expansion of {r(s, A) at s = 1 to a toric integral of a SL,,(Z)-
invariant function log G(Z) along a Heegner cycle in the symmetric space of GL,(R). We
will give some applications of the limit formula to algebraic number theory, including a
relative class number formula for H/F where H is the Hilbert class field of F, and an
analog of Kronecker’s solution of Pell’s equation for totally real multiquadratic fields (see
Theorems 2 and 3). We will also use a well-known conjecture from transcendence theory
on algebraic independence of logarithms of algebraic numbers to study the transcendence
of the toric integral of log G(Z) (see Corollary 1). Explicit examples are given in Section 2
for each of these results.

To prove the limit formula we will generalize the method of Efrat [4]. New difficulties
arise when working with the maximal parabolic SL,-Eisenstein series for arbitrary n > 2,
though many of these may be overcome by appealing to work of Friedberg [5], Goldfeld
[6] and Terras [10]. A key step in the proofis an identity relating ¢r (s, A) to a toric integral
of the maximal parabolic SL,-Eisenstein series along a Heegner cycle in the symmetric
space of GL,(R).

In order to state our results we fix the following notation. Let H"” = GL,(R)/O,(R)R*
be the symmetric space of GL,(R). By the Iwasawa decomposition, each coset Z € H"
has a unique representative of the form

1 %12 %13 ... %1, Y1y2 - Yn—-1
1 x3 ... %, Y1y2: - Yn—2
1 Xn—1,n 1
1 1

wherex;; € Rfor1 <i <j<mnandy; € Ry for1 <i <n— 1. Left matrix multiplication
induces an action of GL,(Z) on H”". For more details concerning these facts, see ([6]
Section 1.2).

Let P be the maximal parabolic subgroup of SL,(Z), which consists of those matrices
with bottom row (0, . . ., 0, 1). Define the maximal parabolic Eisenstein series

E«Zs):== Y  Det(y-2)" Re(s)>1
y €P\SLy(Z)
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where Det(y - Z) is the determinant of the unique representative of the coset y - Z € H”
of the form (1) and s € C. Note that E,,(Z, s) is well-defined since Det(p - Z) = Det(Z) for
all p € P. The completed Eisenstein series

ENZ,s):=m /21 (ns/2) ¢ (1) En(Z, 5)

satisfies the functional equation

E(Z,s) = E ((ZT>1 1 —s)

and extends to a meromorphic function on C with simple poles ats = 0, 1.
Given Z € H", we may write

ZZT— erT
“\r S

where

m= 2+ yu-1)> + @129192 - Yn=2)* + @139192 - Yu—3)> + - + a1,

X1,2Y1Y2 " Yn—2
X1,3Y1Y2 " Yn-3

X1,n
with

1x23 ... %0, Y1y2 - Yn—2

1 xy-14 n
1 1

and S = Z1Z1. Let
q=S"'r.

We will prove the following result.

Proposition 1. The Laurent expansion of E;(Z,s) at s = 1 is given by

2/n 2 _
Ey(Z,5) = — +y —log(dn) — — log (yw% - ~yZ_}) —4logg(Z) + O(s — 1)),
where y is Euler’s constant and

A\ /(1)
(3-) " B @un/n— 1)

gZ):=exp| —

4

X l_[ ‘1 — exp (—2nwl/2 (bTS_1b>1/2 + 2niqu) ‘ .

n—1
b (mod =+1)
b#0

Remark 1. The function g(Z) is a GL, analog of |n(z)| which generalizes the GL3 analog
defined in ([4] p. 175).
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Let F be a totally real number field of degree n and U be the group of units of F. Let A
be a wide ideal class of F and define the ideal class zeta function

1
Ce(s,A) == E N Re(s) > 1
AecA
A#£0

where N (2) is the norm. The completed zeta function is defined by
tF(s,A4) = 0 (s/2)" DY ¢r (s, A),

where Dr is the discriminant of F. The function £/ (s, A) satisfies the functional equation
(r(s,A) = (1 —5,A)

and extends to a meromorphic function on C with a simple pole at s = 1. We will calculate
the constant term in the Laurent expansion of ¢/ (s,A) at s = 1 by relating ¢7(s,A) to a
toric integral of E}:(Z,s) along a Heegner cycle in H" associated to A and appealing to
Proposition 1.

Fix an ideal B € A~L. Let a1, 9, ...,q, be a Z-basis for B and aY),aéi), .. ,a,(f) for
i=1,2,...,n denote their images under the real embeddings of F. Define the matrix
1 2 -1 _
(Xi )tl (X% )tz cee (XYI )tn—l Ol%n) (tity - - ty—1) 1
1 2 -1 _
Oéé )tl Oéé )tz cee Olén )tnfl Olén) (L1t - - ty—1) 1
Mg (t) ==
1 2 -1 _
a’ty oty o o PVt e (it b))

where t = (t1,22,...,t4—1) € R:’__l, and let
Qs () == Mss (M ()"
The positive definite, symmetric matrix Qsg (t) may be written as

Qs (1) = Det(Q ()" (11 (0" 19202 - - y,1() "3 (O T (1),

where
1 x12(t) x1,3(1) ... x1,0(1) y1(®)y2(t) - - yu—1(t)
1 xp3(t) ... xpu(0) y1(0)y2(t) - - - yp—2(t)
T8 (t) =
1 xy—1,0(t) y1(t)
1 1

is in H". Here we have suppressed the dependence of the variables x;;(t) and y;(t) on B
and the Z-basis a1, a3, . .., ay.

Given a unit ¢ € U, let €1, ¢y, ..., &, denote the images of ¢ under the real embeddings
of F. There is an action of the unit group U on R:’__l given by

£ Rf’[l — Rfl,
(tl, t,..., tnfl) i (|81|tl; |82|t2, ey |8n71|tn71)-
Let R:’__l /U denote a fundamental domain for this action. Then {1'% t: te R:’__l Ju }

defines a Heegner cycle in H".
We will establish the following identity.

Page 4 of 20
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Proposition 2. Let F be a totally real number field of degree n and A be a wide ideal
class of F. Then

f;(S,A) = p2"1 / . /EZ(T‘B(t),S)@ o dt,_1

5] In—1

2)

RN U
where {ts(t) : te RTI/U} is the Heegner cycle associated to B € A~
Remark 2. Although the Heegner cycle {‘L’sB t: te Rf’[l Ju } depends on the ideal

B € A~! and the choice of integral basis for B, the integral on the right hand side of (2)
depends only on the ideal class A.

Remark 3. One can identify R~ with
n
Tn= (tlrt21"'rtnflrtn)€Ri : Htl=1}'
i=1

Using this identification, (2) can be written as an integral over T” /U with respect to the
U-invariant measure on 7",

By combining Propositions 1 and 2, we will obtain the following Kronecker limit
formula for the zeta function of a wide ideal class of a totally real field.

Theorem 1. Let F be a totally real number field of degree n and A be a wide ideal class
of F. Then

2'vol (R~ /)
lim | ¢ (5,4) = —————= | =
s—

s—1
dt dt,—
n2"Lyvol (Ri—l/u) . / . f log G(ss (£)) L ... Znl
51 Ip1
R U
where
1\ 2/n
6@2)i=4x (- yl) @
and {rsz; t: te Rf’[l/u} is the Heegner cycle associated to B € A~1,
Proof. We may write the Laurent expansion in Proposition 1 as
" 2/n
E,(Z,s) = 1Y —logG(2) + O(ls — 1)) 3)

where G(Z) is defined as in the statement of the theorem. In particular, this shows that
G(2) is SL,(Z)-invariant. Inserting (3) into the integral on the right hand side of (2)
immediately yields the result. O

Remark 4. By Remark 2, the integral appearing in Theorem 1 depends only on the ideal
class A of F. In some of the applications which follow, it will be convenient to denote this
integral by
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dtn—l
tn—1 ‘

dh
put) = [ -+ [togGrea )P+

RV U

We now give some applications of Theorem 1 to algebraic number theory in the spirit
of Siegel ([8] Chapter II). Given a number field K, let CL(K) be the wide ideal class group,
hg be the class number, Rx be the regulator, wx be the number of roots of unity, and
Dy be the absolute value of the discriminant. We will prove the following relative class
number formula for H/F where H is the Hilbert class field of F.

Theorem 2. Let F be a totally real number field of degree n and H be the Hilbert class
field of F. Write the ideal class group of F as

CL(F) = {[1] = [OF], 2], ..., [ ]} -

Then

( l)hp 12hp th Ry G(TQ[ lQlk(t)) dtl dty[71
S| [P
-1 e Rp ‘L’Q[[(t)) t tn—1

k,e
wherel < k, £ < hp — 1.
We will also prove the following analog of Kronecker’s solution of Pell’s equation for

totally real multiquadratic fields. A result of this type for real quadratic fields is given in
([8] p- 97, Proposition 13).

Theorem 3. Let F be a totally real abelian number field with Gal(F/Q) = (Z.)27)". Let
E be an unramified real quadratic extension of F with Gal(E/Q) = (Z)27)** and XE/F
be the genus character of F associated to E/F by class field theory. Then

1/2 2 log(ei)h;

D XepApy () = = =

AeCL(F) i=1

where A; > 0 for 1 < i < 2% are the discriminants of the quadratic subfields K; of E which
are not contained in F, ¢; is the fundamental unit of K;, and h; is the class number of K;.

Next, let
L:={log(a): o€ @*}

be the set of logarithms of algebraic numbers. The following is a well-known conjecture

on algebraic independence from transcendence theory (see e.g. [11] Conjecture 1.15).

Conjecture 1 (Algebraic Independence of Logarithms). If 11, Ag, . . ., Ag are Q-linearly
independent elements of L, then A1, Ay, . . ., Mg are algebraically independent over Q.

Assuming Conjecture 1, we will prove the following result.
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Corollary 1. Let notation and assumptions be as in Theorem 3. If Conjecture 1 is true,
then

D xep(A)py(A)
A€eCL(F)

is transcendental.

Organization. The paper is organized as follows. In Section 2 we give some explicit
examples of Theorems 2 and 3. In Sections 3 and 4 we prove Propositions 1 and 2, resp.
In Sections 5, 6 and 7, we prove Theorems 2, 3 and Corollary 1, resp.

2 Examples
In this section we give some explicit examples of Theorems 2 and 3.

Example 1. Consider the tower of fields

QCFCFenCH

where F = Q(+/5,/3-29), Fgen = Q/3,+/5,429,v7 + 24/5) is the genus field of F,
i.e., the maximal unramified extension of F which is abelian over @, and H is the Hilbert
class field of F. The genus field Fge, was determined in ([12] Example 2.2 (1)). Note that
because F has class number 4 = 4 and Fgen/F is an unramified abelian extension of
degree 4 = hr =[H : F], the genus field Fge, is actually the Hilbert class field . Now, the
ideal class group of F is CL(F) = Z/27Z & Z/2Z. A set of representatives of the (nontrivial)
ideal classes CL(F) = {[21] = [ OFf], [2(2], [™A3], [A4] } is given by

9 5
Ay = A" =<19, (—2v3-29+3)f—2¢3-29+198>
1 1 25
W=2A3" = (31, -5v3-29+13 «/——?\/3-29“5
4 1 3 3 45
Ay =2A;" = (3, —?/3.29—5 \/§+5\/3.29+5.

Applying Theorem 2 to these particular fields yields the following formula for the class

number of H = Q(\/g, 5,4/29,v7 + 2«/5),

R u11 U2 U13
hy = —SZ—FDet Uo1 Uy U3 (4)
Ry
U3l Usz U3z
where
Gty 19, 0D\ dpy dty dt
///lg — e e )T <ke<3
G(Tm(t)) ly b t3

R /U
In particular, if A denotes the determinant on the right hand side of (4), we have
RF

—A €
Ry Q

Remark 5. A formula for the ratio of regulators Ry /Rr may be deduced from ([3]
Theorem 1).
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Example 2. Consider the tower of fields
QCFCECFen=H

where F and Fgen = H are as in Example 1 and £ = Q(«/§, /5, \/ﬁ). Then F is a real
biquadratic field and E is an unramified real quadratic extension of F with Gal(E/Q) =
(Z./27)3. Recall the set of representatives CL(F) = {[2;]=[OF], [Aa], [As], [A4] } for
the ideal class group of F that were given in Example 1. Since the ideal 24 becomes prin-
cipal in E (it is generated by V/3), the genus character xg/r : CL(F) — {£1} is given by
xe/E([21]) = xe/p([2a]) = 1and xg/r([RA2]) = xe/r([2A3]) = —1. The discriminant
of F is Dr = 3027600 = 2* . 3% .52 . 292, The quadratic subfields of E not contained
in F are K; = Q(v/3), Ko = Q(+/29), K3 = Q(+/3-5) and K3 = Q(+/5 - 29). The cor-
responding class numbers and discriminants are iy = 1, iy = 1, h3 = 2, hy = 4, and
Ay =12, Ay =29, A3 = 60, Ay = 145, resp. The fundamental units are 1 = 2 + /3,
g2 = (54 +/29)/2, e3 = 4+ /15 and g4 = 12 + /145. Applying Theorem 3 to these
particular fields yields the identity

/// o G(‘L'Qll—l (t))G(Tle 1) @@@ B
B\ Gl )Gy 0)) 00 12 15

R3 /U

— 4log(2 + v/3) log((5 + +/29)/2) log(4 + v/15) log(12 4 +/145).
Moreover, by Corollary 1 (which assumes Conjecture 1) the number

///1 G(Tgll’l (t))G(TQlZI 1) dty dty dts
o e
& G(‘L'le—l (t))G(‘L'ngl X)) t b t3

RS /U

is transcendental.

3 Maximal parabolic Eisenstein series on SL,(7)
In this section we compute the Laurent expansion at s = 1 of the maximal parabolic
Eisenstein series on SL,(Z) and thus prove Proposition 1. We follow closely the work of
Efrat [4], Friedberg [5], Goldfeld [6] and Terras [10].

For convenience, we recall the setup from Section 1. Let H” = GL,(R)/0,(R)R* be
the symmetric space of GL,(R). By the Iwasawa decomposition, each coset Z € H" has a
unique representative of the form

1x12 %13 ... X1 Y1y2 - Yn-1
1 %3 ... %, Y1y2 - Yn—2
Z= : (5)
1 X1 N
1 1

wherex;; e Rfor1 <i <j<wmandy; € Ry for1 <i < n — 1. Left matrix multiplication
induces an action of GL,(Z) on H".

Let P be the maximal parabolic subgroup of SL,(Z), which consists of those matrices
with bottom row (0, ..., 0, 1). Define the maximal parabolic Eisenstein series
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E«Zs):= Y  Det(y-2)', Re(s)>1
Y €P\SLu(Z)

where Det(y - Z) is the determinant of the unique representative of the coset y - Z € H”
of the form (5) and s € C. The completed Eisenstein series

ENZ,s):=m /21 (ns/2)¢ (1) En(Z, 5)
satisfies the functional equation
Ey(Zs)=Ex((Z) L1~

and extends to a meromorphic function on C with simple poles ats = 0, 1.

Define
Q=Qz=2Z"
and let
ai
aj
Qla]:=a’Qa for a=
an

Then one has the identity (see e.g. [6] p. 308-309, eq. (10.7.4))

L (ns)E,(Z,s) = Det(2)°¢ (ns/2,Q), ®)
where
s n
{(6s,Q) == XZ:”Q[a] ,  Re(s) > 3
a0

is the Epstein zeta function of Q. In particular, since

Det(Z) = y; 7 '95 %+ yua

we have
N
EX(Z,s) = 1"/ (ns/2) (yla—%,—z . yH) 3" Qla) 2. )
aeZ”
a#0

We now compute the Laurent expansion of E%(Z,s) at s = 1 by splitting the sum in (7)
into terms with a; = 0 and terms with a; # 0.
Write

m !
r S
where

m=(y1y2+ - Yu-1)> + @12Y12 - Yn—2)® + x139192 - Yn3): - +xin,

X1,2Y1Y2 - Yn—2
X1,3Y1)2 * * * Yn—3

X1,n
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with

1wz ... %o Y1y2 - Yn—2

1 xu—1n 1
1 1

and S = Z1Z!I'. Also, write a = (1) where

az

as
b:

ay

If a; = 0 then Q[ a] = S[b], hence the contribution of the terms with a; = 0 in (7) is

n—ns/ZF(ns/z) (y;ilflygf2 . -yn_1)s Z S[b]—ns/Z
bez" 1
b#0
_1\8/(n=1)
= (3 i) " B @un/n- D),

Lets =1 to get

A\ 1l/n=1)
(3-a) " B - 1), ®)
Next, suppose that a; # 0. We need to analyze
N
720 ns/2) (952 e ) Y QLal T )
acZ”
a1#0

Letq=S"'rand w = m — q7Sq. Then
= (19)- ()09 )
r S L1 S/I\q I
so that
Qla]=w[ai] +S[qa1 +b].

Hence (9) may be written as

S

70 ns/2) (TR ) Y Y wla] 4+ Slaa +b) 2 (10)
a1€Z bezr1
a17&0

We wish to apply the Poisson summation formula to the sum over b € Z"~! in (10).
Define

fx,8) = wla1] +S[qa1 +x]) ™/, xeR" L
The Fourier transform is given by
fys) = / (wla1] +S[qa1 +x]) 7"/ exp (—2m’yTx) dx.
Rn—1

Write S = WT W and make the change of variables u = (w[a1] y~1/2 W(qa; + x). Then

x=wla)'?Wlu—-qa
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and
dx = wla)) "V Det(W) 'du = (wla1]) "~ V/*Det($) "' du,
so that

f(y, s) = (wla1] )”T_l_% Det(S)~1/? exp <2m'qua1> 1 (27r(w[a1] y1/2 (yTW_l)T,ns/2>

where

- -1
I(y,s) := / (1 + xTx) ’ exp(—inx)dx, Re(s) > L.
Rn—l 2

We now evaluate I(y, s). For y = 0, we have (see [10] p. 480-481)

1(0,5) = N(H)/zw, (11)

Fory # 0, we follow ([10] p. 481). By ([9] Theorem 3.3, p. 155), we have

oo
— —s n— 3_n
I(y,s) = (2m) "~V /0 A +2) 72 s (Il (lylle) 22 dx,

where
T 1
Jo(®) == (1/2x) 7~ Y20 (n 4+ 1/2) 71 / exp(—ix cos(t)) sin(£)2dt, Re(v) > -3
0
is the J-Bessel function of the first kind and ||y|| = (y'y)'/%. Then by ([1] p. 488, eq.
(11.4.44)), we have

977 (1=1)/2 ys—(1-1)/2
SRR/ (12)

I(Y! S) =
where

1> 1 vl i
K,(z2) := 5/ exp(—z(u + ;)/2)14 du, |arg(z)| < 3
0

is the modified K-Bessel function.
Apply the Poisson summation formula to the sum over b € Z"~! in (10) to get

PP Gsy2) (g 1) Y Y T, (13)

a1 €L bezr1
al #0

To analyze this expression we separate the casesb = 0 and b # 0. If b = 0, then (11)
yields

-~

F(0,5) = wlai])"T ~ % Det(S)"121 (0, ns/2)

r (ﬂ _ n;l) 1
— Det(s)—l/zn(}’l—l)/z 2 2 W%_%Vlﬂ(n_l)_ns.

['(ns/2)
Hence the contribution of b = 0 to (13) is
ns n—1

S ns | (n—
2Det(S)"1/? (y¥71y2’72 . -y,,_l) 3+ (2 -

) w%_%g(ns —(n—1)),
(14)

where we used

1
_ _ _ (n—1)—ns
§(ns — (n 1))—2§ la]| .
a1€Z
a1#0
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To compute the Laurent expansion of (14) at s = 1, note that

S
(i mn) = g (1 g )log (915 ) = 1)
+0(s—17),
_ms, (=1 ns n—1 nyo
N =1+ 22— +0(s— 1
e (2 2) + =D+ (Is—1/%)
where Y9 = —y — log(r) — 21og(2) (here y is Euler’s constant),
W = w2 = Dlogmw 2 = 1) + 0 (s~ 11),
and
1/n
tns—(m—1)) = o1 +y +0(s—1).
Then multiplying terms yields the Laurent expansion
2Det(Syw) 2 (Y1152 90
s—1
+ 27 Pet W)™ (1 g
2 - 1 -2 1 -2 nyo n
+ = (Det(S)w) 1z (y'f ¥y ---yn_1> (log (y’f i ~--yn_1> + -5 10g(W)>
4+ O(ls — 1])
2/n 2 1o
= 2 oy ot 2log () — logw) + (s — 1)
-1 n
2/n 2 1 -
= ﬁ +y — log(4m) + - log <y§’ lyg‘ 2. -yn_1> —log(w) + O(ls — 1)), (15)
where we used
2 n—1,n—2 2
Det(S)w = Det(Q) = Det(2)? = (yl [ yn_l) , (16)
We now calculate w = m — q7 Sq. We have
X1,2Y1)2 - Yn—-2 X1,2Y1Y2 "+ Yn—2

. N X1,3Y1)2 ** Yn-3 1| *13Y1y2c Yn-3
q=S8"'r= (Z1> VAR VA . =(Zl) .

X1,n X1,n
Therefore

X1,2Y1Y2 * * " Yn—2

T 1 ™o |FL3Y1Y2 e Yn-3
qQ Sq=(X1,2Y1Y2 - * - Yn—2:X1,3Y1Y2 " * Yn—3s "=+ »X1,n)Z] <Z121 )(Zl) .

X1,n
= (X120192 - Yn—2)> + (X13Y192 - - Yu—3)> + - + xiw
so that
w=m— qTSq
=2+ 1)’ Gy yn2)? + @iy a3+ a7,
— (120192 - yn—2)® + 13y1y2 - Yue3)? + -+l )
= (w2t yu-1)>
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Substituting this formula for w into (15) and simplifying yields the Laurent expansion

2/n 2 -
i 1 +y —log(4m) — - log (yly% . 'J’Z—}) + O(ls — 1). (17)

If b # 0, then (12) yields

F(b,s) = wla1]) T~ Det(S)" /2 exp (2mqua1) I (Zn(w[ a])V? (bTW—l) r ns/2)

= (w[a1] )y'Tfl_%Det(S)_l/2 exp (Zm‘qual)

(27)(n=D)/2 <||2n(w[a1] )2 (bTW_1>T “/2) o
I'(ns/2)
X I(n;l_% (||27r(w[a1] )12 (bTW—l)T ||>

2

X

= (w[a1] )ﬂT_l_gDet(S)_l/2 exp (Zniqua1>

—_

n—

N‘

(27)=D/2 (% L2mwl/2 (s71[b] )/ |al|)%_
['(ns/2)
s (27TW1/2 (Sfl[b] )1/2 |a1|> ,

n-1_ns
2 2

X

x K
where we used

1/2 _ 1/2
2 = 22w (s711b]) " |ay .

T
127 (wlan )" (b7 W) || = 27 (wlan] S [b])
Now, using the functional equation K_, (z) = K, (z) and the identity
Kipa(2) = (/22)' %7,

we have

f(b, 1) = wla1])"/?Det(s)"1/2 exp <2m’qua1)

1/2
X (271)("_1)/2% exp (—anl/z (S_l[b] )1/2 |a1|>

_(n—1,1n-2 -1 "2 (WT . 1/2 (o1 1/2
_<y1 o ...yn_l) || 1_‘(}’1/2)exp(27'rl<b qai+iw'/* (S7'[b]) |a1|>),

where we again used (16). Hence if s = 1, the contribution of the terms with b = 0 to (13)

is

>y |a1|_1exp(2m’(qud1+iw1/2(S_1[b])1/2|a1|>>

a1€Z pezr1
@70 b0

=4 i > ﬂilRe (exp ((—2nw1/2(5‘1[b] )24 2mqu) a1>)

ar=1 bEZn_l
b (mod =+1)
b#0

=4 > —log|1—exp(—2mw! AT [b)2 + 27bTq) |
b (mogijl:l)
b£0

= —4log l_[ |1 — exp (—anl/z(S_l[b] W24 27[1’qu>
n—1

b (mod =+1)
b#0

, (18)
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where we used

x _k
Re (Z Z/{) = —log|l —2|.

k=1

Finally, by combining (8), (17) and (18), we get the Laurent expansion

2/n 2 _
ENZ,5) = s_% +y — log(4m) — —log (m% - ~yZ_%) —4logg(Z) + O(ls — 1)),
where
_\1/(n=1)
(o3 n) B @/ -1y
g2y =exp| -

4

X 1_[ |1 — exp (—anl/z(Sfl[b] Y2 4 27Ziqu> |
n—1
b (mod £1)
b0

This proves Proposition 1.

4 Dedekind zeta functions of totally real fields
In this section we relate the zeta function of a wide ideal class of a totally real number
field of degree # to the integral of the maximal parabolic Eisenstein series E;;(Z, s) along a
Heegner cycle in 4" and thus prove Proposition 2.

Let F be a totally real number field of degree n and U be the group of units of F. Let
A be a wide ideal class of F and fix B8 € A~!. Then the ideal class zeta function may be

written as
1 S 1
Lk (s, A) = 212;: Nay —N® AE;/U NoE Re® =1 (19)
A£0

where N(20) is the norm and 8* = B\{0}. Let A1, Ay, . . ., A, denote the images of 1 € B
under the real embeddings of F. Then

INQI = [AMAz - Al

Note that for x > 0,

1 o0 2 dt
- _ —X tts/27'
YT e /0 ‘ ‘

Then for ay,as,...,a, > 0,

(a1a3 - - a,)"°T'(s/2)" =

00 poo 00 ) ) 2 s/Zdtl dty
| exp(—(ath +agty + - anty)) (Bity - 1) —— -
o Jo 0 h ot tn

Consider the change of variables

Page 14 of 20
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2
ty—1 =%, W
-2
th = (X1%2 - Xp—1) "W
and the corresponding Jacobian
J = n2" xqxp -2 1) T

Then making this change of variables in (20) yields

(amaz---a,)"°T'(s/2)" =

00 0O 00 00 n—1 dw
o1 / / .. / / exp | — Zulz(xi + uﬁ(xl .. .xn_l)—Z w ) w222
o Jo 0 0 =1 w

dx1 dxz dxn_l

X1 X2 Xn

—1
1 —ns/2
= 12" 1T (ns/2) ST - nZaz 2 4 q? -2
— kxk+ﬂn(x1"'xn—l)
0 0 0
k=1

dx1 dxz dxy,,l
X — =

. (21)
X1 X2 Xn—1

We now apply the identity (21) in (19) to get
cr(s, AT (s/2)" = n2" T (ns/2)N (°B)*

% roo oo (11 e dt, dt dt,
x A2t 402t tye1) 2 andgrr | %n-l
Z /0 /0 ./0 (; Kk " g i1 b ty—1

reB*/U

(22)

Given a unit ¢ € U, let &1, €9, ..., &, denote the images of ¢ under the real embeddings
of F. There is an action of the unit group U on RTI given by

. n—1 n—1
£ R+ — ]R+ ’
(tlr ;... rtnfl) > (|81|t1; |£2|t21 s |8n71|tn71)'

Let R:’L_l /U denote a fundamental domain for this action. Then using this action, (22)

becomes
¢r(s, AT (s/2)" = n2" 1T (ns/2)N(B)*
s/2
ﬁ dtn—l

n—1 —ns/
<> [ (Zkit,%—l—kﬁ(tlnin_l)_Z) oSl )
k=1 N

}\. *
B ]R”Jr’l/u

Letaq, ay, ..., a, be a Z-basis for B and aii), aéi), e, a,(f) fori =1,2,...,ndenote their

images under the real embeddings of F. Given A € B, write

A= may + mooiy + - - - + myuay

Page 15 of 20
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where m1, ms, ...,m, € Z. Then
n—1
>oadg ik ) = mT (Mn OMz(©7 ) m
k=1
where
mi
my
m =
my
and

1 2 -1 _
Oti )tl Oti )tz Otin )t,,_l Olin)(tltz ceetyl1) 1

1 2 —1 _
Pty aPty ol P,y @ity b))
Mx(t) :=

1 2 -1 _
o Pty ol Ve U;Eln)(tltZ"'tn—l) !

where t = (t1,22,...,t4—1) € Rf’[l.
Define
Qs (1) == My (OMx (07,

and let

Qu®[m]:=m’ Qu(®t) - m
be the quadratic form associated to Qg3 (t). Then the identity (23) becomes
¢ (s, AT (5/2)" = n2" T (ns/ 2N (B)' / - / ¢(n5/2, Qs (t))”lt—j1 - iL‘ll, (24)
R U
where
£6Qu®) = Y Qu®[m™, Re( >
meZ”"

m#0

is the Epstein zeta function of Qs (t).

The positive definite, symmetric matrix Qsg (t) may be written as

—2/n
Q6 = Det(Qu ()" (' ©)® 31 (®) T3 ®TR®T

where
1 x1,2(8) %1,3(6) ... x1,4(t) y1(©)y2(0) - - yu—1(0)
1 x2,3(8) ... x2,(F) 71(©y2(0) -+ - yu—2(t)
3 ()= .
1 Xy1a(®) y1(t)
1 1

is in H". Here we have suppressed the dependence of the variables x;;(t) and y;(t) on B
and the Z-basis a1, &, . ..,a,. Then {ts(t) : t € Rf‘fl/U} defines a Heegner cycle in H".
Now, by (6) we have the identity

¢ (ns/2, Qs (1)) = Det(Qus (£) ~*/2¢ (ns)E (15 (1), 5).
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Moreover,
‘Xil) oc?) oei")
aél) ozéz) aén)
Det(Qss (t)) = Det

ol q@ g

= disc(*B)
= N(B)*Dr

where Dr is the discriminant of F. Then if

ti(s,A) i= T (s/2)" D} ¢r (s, A)

denotes the completed ideal class zeta function, (24) yields

£ (s, A) =n2n*1/.../E:(T%(t)’S)@.Hdtn_1.

h ln—1

RN u

This proves Proposition 2.

5 Proof of Theorem 2
Given a number field K, let CL(K) be the wide ideal class group, /g be the class number,
Rg be the regulator, wi be the number of roots of unity, and Dg be the absolute value of
the discriminant. Given an ideal class group character x of K, the class group L—function
is defined by
Le(x,9) = Y x(Aik(sA), Re(s) >1
AeCL(K)

where ¢x (s, A) denotes the ideal class zeta function of A € CL(K).

If yx is trivial, then L(x,s) = ¢x(s) is the Dedekind zeta function of K. The Dedekind
zeta function ¢k (s) extends to a meromorphic function on C with a simple pole ats = 1

with residue
2" (2m) 2 hg Rk

wi/Dr

where r1 (resp. 2ry) is the number of real (resp. complex) embeddings of K.

Ress=14x(s) = (25)

Suppose now that F is a totally real number field of degree » and H is the Hilbert class
field of F. By class field theory, one has the factorization

CH(S)

- Lr(x,5).
oo = L L
Y €CL(E)

x#1

Since F is totally real of degree n and H is unramified at the infinite primes, H is totally
real with # - sir real embeddings. It follows from (25) that

lim =D EHO) _ ouie—1) 1 Re | DF (26)
s—>1 (S — 1) E[-‘(S) ]’lF RF D]—[

Here we used wr = wy = 2, since these fields are totally real and hence have only the

roots of unity 1. On the other hand, by Theorem 1 and orthogonality, for x # 1 we have

ﬂ2n71
LrGuD) =~ > x(A)pa(A) (27)
F  AeCL(F)

Page 17 of 20
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where we recall that

d
pu(A) :=/---/logG<r%<t>)till---

R U

dtn—l

ty—1

and B € A~!. Then combining (26) and (27) yields the identity

DlE?
(=D~ 12" 1 by Ry Dy
nhr—1 hF RF D]/z = l_[ Z X (A) pu(A).

4 €CL(F) A€CL(E)
x#1
. _ hp/2  n1/2
Since Dy = D', we have D/'"/D;;” = 1. Moreover, by a well-known result of

Frobenius on group determinants (see e.g. [8] p. 78), we have

[T X x@e@ =Det(pu (4 4c) = pu (4)),

4 eCL(E) A€CL(F)
x#1

where 1 < k, £ < hr — 1. It follows that

hp—19hp—1
) )

Finally, if we write the ideal class group of F as
CL(F) = {A1 =[204]=[OF], Az =[202], ..., Ap, =[]},
then

Pn (A;lAg) — P (A/;l) =/---/Iog M at | dtna

G(a, (1) 15 In—1

This proves Theorem 2.

6 Proof of Theorem 3

Let F be a totally real abelian number field with Gal(F/Q) = (Z/27Z)%, and let E be an
unramified real quadratic extension of F with Gal(E/Q) = (Z/2Z)‘*!. Then the zeta
function g (s) (resp. ¢r(s)) factors as ¢ (s) times the product of the Dirichlet L—functions
associated to the quadratic subfields of E (resp. F). Note that there are 2¢ — 1 quadratic
subfields of F, 27! —1 quadratic subfields of E, and 2¢ quadratic subfields of E that are not
contained in F. By class field theory, the unramified quadratic extension E/F gives rise to

areal ideal class group character xg/r of F (a genus character) whose L-function factors as
CE(s)
¢r(s)

Then by the preceding facts we obtain the factorization

Lr(XE/FsS) =

Le(xe/e,s) = [ [ L(xors),

where x; for1 <i < 2¢ are the Kronecker symbols associated to the quadratic subfields
K; of E which are not contained in F.
By Dirichlet’s class number formula, we have

2log(ei)h;

L(xi1) = VA
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where A; > 0, ¢; and /4; are the discriminant, fundamental unit, and class number of Kj,
resp. Therefore

¢ 1 log(e; h
Lr(xg/r, 1) = 22 l—[ 0g(ei) (28)

i=1 Y i

Let 7 = 2¢ in (27) and equate this with (28) to get

1/2 2!

| ; hl
Y @@ = -5 1—[ og(a)

AeCL(F)

This proves Theorem 3.

7 Proof of Corollary 1
Conjecture 1 asserts that if A1, A, .. ., A are Q-linearly independent elements of

L:={log(a): a € Q')

then Ay, A9,..., A are algebraically independent over Q (recall that algebraic indepen-
dence over Q means that if P(X3, Xy, ...,X) is a nonzero polynomial with coefficients
in Q, then P(A1,Ag,..., ;) # 0). It follows that if R(X7, X>,...,Xy) is a nonconstant
polynomial with coefficients in Q, then the number R(A1, A, . . ., A) is transcendental.
Now, because the units ¢;, 1 < i < 2¢, are multiplicatively independent, the numbers
log(e;), 1 < i < 2%, are Q-linearly independent. Define the (nonconstant) polynomial

1/2 2¢

Dy —
R(X1,X2,...,X50) := Yy HO[,‘X,‘ € Q[ X1, X2, ..., Xy]
i=1
where
h;
o =

T

Then assuming Conjecture 1, the number

R (log(sl), log(e2), .. -, log(ezz))

is transcendental. However, by Theorem 3 we have

R (log(e1),log(g2), . . ., log(eqe)) = Z XE/E(A) poe (A).
AeCL(F)

This proves Corollary 1.
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