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Abstract Past climates provide a test of models’ ability

to predict climate change. We present a comprehensive

evaluation of state-of-the-art models against Last Glacial

Maximum and mid-Holocene climates, using reconstruc-

tions of land and ocean climates and simulations from the

Palaeoclimate Modelling and Coupled Modelling Inter-

comparison Projects. Newer models do not perform better

than earlier versions despite higher resolution and com-

plexity. Differences in climate sensitivity only weakly

account for differences in model performance. In the gla-

cial, models consistently underestimate land cooling

(especially in winter) and overestimate ocean surface

cooling (especially in the tropics). In the mid-Holocene,

models generally underestimate the precipitation increase

in the northern monsoon regions, and overestimate summer

warming in central Eurasia. Models generally capture

large-scale gradients of climate change but have more

limited ability to reproduce spatial patterns. Despite these

common biases, some models perform better than others.

Keywords Climate-model evaluation � Climate

sensitivity � Last Glacial Maximum � Mid-Holocene

monsoons � Palaeoclimate Modelling

Intercomparison Project

1 Introduction

Simulations of the Last Glacial Maximum (LGM, ca

21,000 years ago) and mid-Holocene (MH, ca 6,000 years

ago) are included for the first time in the set of climate-

model simulations performed by the Coupled Model

Intercomparison Project (CMIP5: Taylor et al. 2012). This

development recognizes the unique opportunity to use pa-

leoclimates to evaluate, or benchmark, the models that are

used for future climate projections (Taylor et al. 2011;
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Braconnot et al. 2011). The LGM and MH are geologically

recent times with strong and contrasting climate forcing

(Braconnot et al. 2012), the response to which is docu-

mented by abundant palaeoenvironmental records (Harri-

son and Bartlein 2012). Braconnot et al. (2012) showed

that climate models can successfully reproduce the first-

order patterns of past climate changes, including the land-

sea contrast and high-latitude amplification of temperature

change and the impacts of changes in monsoon circulation

on precipitation patterns, but are unable to reproduce the

magnitude of observed regional changes in climate.

Quantitative evaluation of climate models using paleocli-

mates has generally focused on specific regions or phe-

nomena (e.g. Joussaume et al. 1999; Otto-Bliesner et al.

2009; Zhang et al. 2010; Valdes 2011; Braconnot et al.

2012; Harrison and Bartlein 2012). More systematic testing

is now possible using global syntheses of paleoclimate

reconstructions (e.g. MARGO Project Members 2009;

Leduc et al. 2010; Bartlein et al. 2011; Schmittner et al.

2011).

Here we present an evaluation of the MH and LGM

simulations from the CMIP5 archive against ten data sets

that include annual and seasonal climate variables over the

land and oceans. We begin by comparing the global per-

formance and the geographic expression of simulated cli-

mate changes in the CMIP5 simulations with an earlier

generation of LGM and MH simulations made during the

second phase of the Palaeoclimate Modelling Intercom-

parison Project (PMIP2), to determine whether recent

improvements in modelling schemes or the use of higher-

resolution models has resulted in differences in model

performance. We then provide an evaluation of the CMIP5

and PMIP2 models against the observational benchmarks,

using standard metrics to assess different aspects of the

goodness-of-fit and biases of individual models. Finally,

we present an overall assessment of model performance to

address the question of whether some models consistently

perform better than others.

2 Data and methods

2.1 The benchmark data sets

There has been a long history of making quantitative cli-

mate reconstructions using biological, isotopic and geo-

chemical records from land and ocean sites. More recently,

community efforts have focused on creating synthetic

global data sets for specific times and types of record. We

have created benchmark data sets through combining the

unique data points from existing syntheses, specifically

pollen- and plant macrofossil-based reconstructions of land

climate at the LGM and MH from Bartlein et al. (2011),

surface ocean reconstructions from the MARGO data set

for the LGM (MARGO Project Members 2009) and from

the GHOST data set for the MH (Leduc et al. 2010),

additional LGM land (5) and ocean (25) records from

Schmittner et al. (2011) and Antarctic ice-core estimates of

LGM temperatures from Braconnot et al. (2012). (Details

of the original data sets, including their treatment of

reconstruction uncertainties, are given in the SI.)

In addition to combining existing syntheses, we have

compiled and evaluated information from available spele-

othem records. Analyses of the stable isotopes, trace ele-

ments, luminescence and fabric of calcium carbonate

precipitates (speleothems) from limestone caves can pro-

vide precisely dated information about long-term climate

variability (e.g. Fairchild et al. 2006; Lachniet 2009).

However, the interpretation of these records, and the

unambiguous derivation of quantitative climate recon-

structions, is dependent on site-specific conditions. We

have reviewed and evaluated the published speleothem

records based on the reliability of the age model, the

presence of samples dated to either the MH or LGM, the

availability of information about modern-day conditions

(thus allowing quantitative calibration of the records), and

the robustness of the inferences about the palaeorecord (see

SI for details of the screening procedure). Of the 65 records

examined, lack of information about modern conditions

means that climate anomalies can only be provided for 37

sites (Figure S1) and only 6 of these provide quantitative

reconstructions (see SI). Nevertheless, these speleothem

reconstructions are useful because they provide informa-

tion from regions not covered by other kinds of data.

Site-based reconstructions from each of these sources

were combined to produce new quantitative reconstruc-

tions (with uncertainty estimates) of 10 climate variables

on a common 2� by 2� resolution land or ocean grid. The

climate variables are mean annual temperature (MAT),

mean temperature of the coldest month (MTCO), mean

temperature of the warmest month (MTWA), accumulated

temperature sum during the growing season (GDD5), mean

annual precipitation (MAP), and the ratio (a) of actual to

equilibrium evapotranspiration (i.e. evapotranspiration

from a large, homogeneous well-watered surface: Raupach

2001) over land (Figures S2 and S3); summer (SSTsum),

winter (SSTwin) and annual (SSTann) sea-surface tem-

peratures; and number of months with sea-ice cover (SIn-

mon) over the ocean (Figures S4 and S5). The gridded

estimates were produced using simple averaging and the

grid-cell uncertainty was calculated as the pooled estimate

of the standard error. Inspection of these values shows that

the uncertainties are much smaller than the standard errors

of spatial averages of the reconstructions. These uncer-

tainties are explicitly taken into account in the calculation

of fuzzy distance (see SI).
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2.2 Climate model simulations and processing

of model outputs

The LGM and MH simulations are equilibrium experi-

ments. The insolation, ice sheet and GHG forcings used for

each experiment are described in Braconnot et al. (2012).

Although other forcings are the same between the PMIP2

and CMIP5 experiments, the LGM ice-sheet forcing is

different: in PMIP2 the ice sheets were specified from

Peltier (2004) while in CMIP5 a blended product made

from three more recent ice-sheet reconstructions was used

(Braconnot et al. 2012).

We use the LGM and MH simulations in the CMIP5

(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) and

PMIP2 (http://pmip2.lsce.ipsl.fr/database/access/opendap.

shtml) archives as of 15th August 2012 (Table S6). Most

of these simulations are made with ocean–atmosphere

(OA) models. Some of the PMIP2 models simulated veg-

etation dynamics explicitly (i.e. were fully-coupled ocean–

atmosphere-vegetation models, OAVs). Processes associ-

ated with the terrestrial and marine carbon cycle were

ignored in PMIP2 experiments, but are included as inter-

active components of some of the models (here designated

as OACs) in CMIP5. MH simulations are available for 13

OAs and 6 OAVs from the PMIP2 archive and 10 OA

simulations and 5 OAC simulations from the CMIP5

archive. LGM simulations are available for 7 OA simula-

tions and 2 OAV simulation from the PMIP2 archive, and 3

OA and 3 OAC simulations from the CMIP5 archive.

There was no MH SSTann data archived by August 15th

2012 for the ECHAM, EARTH, FGOALSG2, and FGO-

ALS2 models, no LGM sea-ice data for the IPSL4 model,

and no SST or sea-ice data for the COSMOS model. For

these models, comparisons were restricted to the subset of

variables available.

Long-term means were calculated from the archived

time-series data on individual model grids for five climate

variables: near-surface air temperature (tas), precipitation

flux (pr), cloud-area fraction (clt), sea-surface temperature

(tos), and sea-ice fraction (sic). The temperature, precipi-

tation and cloud-cover means were bi-linearly interpolated

to a common 0.5� grid, in order to calculate bioclimatic

variables (GDD5, MTWA, MTCO, MAT, MAP and a) for

comparison with the benchmark data sets. Bioclimatic

variables were calculated using the anomalies on the 0.5�
grid using the approach of Prentice et al. (1992). The ori-

ginal routines of Cramer and Prentice (1988) and Prentice

et al. (1993) were modified to include snow-moisture

accounting and to use a multi-layer soil-characteristic data

set (IGBP-DIS). Finally, the bioclimatic variables and sea-

surface temperature and sea-ice fraction data were then

regridded to the 2� 9 2� grid of the palaeo-reconstructions,

using simple averaging, to facilitate comparisons and for

the calculation of ensemble-averages of model output. A

detailed description of the model output processing is given

in the SI.

2.3 Comparison of PMIP2 and CMIP5 simulations

To compare the two generations of simulations, we cal-

culated ensemble averages of the climate variables. The

differences between the ensemble-average anomalies for

individual variables illustrate the change in simulated

patterns between the two generations (PMIP2 and CMIP5)

of simulations. Given the number of available variables and

grid cells (16,200), such comparisons will inevitably reveal

many large or ‘‘significant’’ differences between the

ensemble averages for individual variables. However, the

issue is whether the different generations of simulations

differ overall.

To more formally assess the differences in the ensemble

averages between generations of simulations, we calculated

Hotelling’s T2 statistic (Wilks 2011) on the climate

anomalies, for each of the 2� 9 2� grid cells for particular

combinations of variables. Hotelling’s T2 is a multivariate

generalization of the ordinary t-statistic that is appropri-

ately used to examine differences in climate-model simu-

lations (Chervin and Schneider 1976). Like the t-statistic,

Hotelling’s T2 scales the difference between the means by a

measure of the variability of the groups of observations

being compared such that small values of the statistic could

result from small differences in the means, or large vari-

ability among (in this case) models. The climate anomalies

are approximately normally distributed and have similar

variance between the two sets of simulations. Hotelling’s

T2 is known to be sensitive to the trade-off between the

number of observations and the number of variables

(Rencher 2002), and so we limited the number of variables

considered. In its application here, the multiple variables

include either bioclimatic variables that are available

globally (i.e. MAT, MTCO, MTWA and MAP), or selec-

tions of monthly temperature and precipitation (tas and pre

for January, April, July and October), the observations are

the individual model simulations grouped by simulation

generation, and the null hypothesis is that the ensemble

means are equal between groups. Separate comparisons

were made for the MH and LGM simulations. Comparison

of subsets of simulations within generations (e.g. CMIP5

OA vs. CMIP5 OAC) is not warranted owing to sample-

size considerations.

A test statistic and associated significance level (p value)

is obtained for each grid point for a specific comparison,

and it is likely that some number of these local tests will

appear to be significant (i.e. p \ 0.05) simply by chance,

and so a simple count of those tests to determine a global

‘‘field significance’’ may be misleading (the ‘‘false

Climate model benchmarking 673
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discovery rate’’ issue, see Wilks 2006). In other words, in

the 16,200 individual tests, we should expect that five

percent (810) would appear as significant even if the null

hypothesis of no difference between simulation generations

were true. We therefore applied the approach of Ventura

et al. (2004) to evaluate the number of ‘‘significant’’

hypothesis tests in each comparison. In this approach, the

sorted individual ‘‘local’’ p values (one at each grid point)

are compared with a progression of false discovery rate

(FDR) criteria (see Ventura et al. 2004, eqn. 2), and the

proportion of the local p values that do not exceed those

criteria provides support (or lack thereof) for rejecting a

global null hypothesis of no difference between simulation

generations. In practice, the FDR approach requires a lar-

ger number (than five percent) of local tests to have p val-

ues below the usual threshold (i.e. p \ 0.05) before

declaring the overall hypothesis of no difference in

anomalies to be false. The anomaly patterns being com-

pared are generally large in spatial scale, leading to cor-

relations among the local tests, but Wilks (2006) shows that

the FDR procedure is still robust in such a situation.

2.4 Metrics for comparison of reconstructed

and simulated climate variables

Many metrics, each with different properties, have been

used in the geosciences literature to compare observed and

modelled quantities. Rather than focus on a single metric of

model skill, we use a range of different measures to

examine different aspects of model performance. We use

medians and the interquartile range (IQR), calculated using

only those grid cells where there are observations, to pro-

vide a basic measure of global agreement between model

and observation. The IQR provides a measure of spatial

variability in climate anomalies; comparison of simulated

and reconstructed IQR therefore assesses the agreement in

the amplitude of the anomalies. We assess the similarity of

simulated and observed geographic patterning in climate

anomalies using Kendall’s rank correlation coefficient tau

(s), which measures the similarity or difference of spatial

patterns regardless of magnitudes (Kendall 1938). We

present values as 1 - s, which takes the values of 0 when

patterns are identical and 1 when there is no correlation

between them. Distance measures provide an overall

measure of similarity. Fuzzy distance is a measure of the

distance or dissimilarity between two quantities which

takes account of measurement uncertainties: the effect of

increasing uncertainty is to increase the fuzzy distance

(Guiot et al. 1999; Tran and Duckstein 2002). The math-

ematical description of each of these metrics is given in

the SI.

These four metrics are calculated for each of the indi-

vidual model simulations from PMIP2 and CMIP5. In

addition, we calculate the metrics for various subsets of the

models (all models, all the PMIP2 simulations, all the

PMIP2 OA simulations, all the PMIP2 OAV simulations,

all the CMIP5 simulations, all the CMIP5 OA simulations

and all the CMIP5 OAC simulations). For each subset, we

create an ensemble average by calculating average values

for each grid cell across the suite of models; the global

metrics are then calculated from these ensemble averages.

For example, the median bias of the subset of CMIP5

models is calculated from an ensemble model created by

taking the median value of the grid-cell values of all the

CMIP5 models, grid cell by grid cell. The global metric is

the ‘‘multi-model ensemble median bias’’ (see Gleckler

et al. 2008).

2.5 Metric for overall evaluation of model performance

Rather than devising a single ‘‘skill score’’ for overall

performance, which necessarily involves making arbitrary

choices about the relative importance of individual vari-

ables and types of bias, we evaluate model performance for

each climate variable and metric. This also obviates over-

inflation of the skill score because of partial correlations

among the variables. Following Gleckler et al. (2008) the

metrics are normalized by the median model error to yield

an evaluation of how well a given model compares to the

typical model error. The median model error is calculated

as the median of the global error for each individual model

from CMIP5 and PMIP2. Thus, the normalization proce-

dure uses the ‘‘median errors within the distribution of

individual model errors’’ not the ‘‘multi-model ensemble

median error’’. This allows the metrics of the ensemble

models created from the various subsets of models

described above to be compared with the median model

error. The normalization procedure yields negative values

for models that perform better than the median model and

positive values for models that perform worse. Values \-

0.5 indicate that the models are 50 % better than the

median model error, whereas values [0.5 indicate models

that are 50 % worse than the median model error. In order

to visualize these results, the models are ordered from best

to worst, either based on an average of the normalized

values across all of the variables and metrics, or alterna-

tively for a single metric across all the variables.

3 Results

3.1 Comparison of CMIP5 and PMIP2 simulations

The CMIP5 palaeo-simulations were made with the version

of each model that is used for future projections, and at the

same resolution. Many PMIP2 simulations were made with
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lower-resolution and/or older model versions than those

now used for future projections. However, the range of

changes in seasonal temperature and precipitation, both

globally and regionally, is similar for both groups of

models (Fig. 1). Coupled ocean–atmosphere-vegetation

(OAV) models tend to show larger changes in climate (e.g.

increased MH warming over land, increased LGM cooling)

than the OA models; but similar changes are produced by

some models without considering vegetation feedbacks,

and the OA versions of these OAV models already tend to

show stronger changes than other OA models. In contrast,

there is no systematic difference between the mean cli-

mates simulated by the CMIP5 OA and OAC models.

The spatial patterns of simulated climate change in the

two sets of simulations are broadly comparable (Figs. 2, 3).

There are some systematic differences in the anomalies

related to the differences in the specification of the LGM

ice sheets in the two generations of simulations (right-hand

column of Fig. 2), including higher temperatures over the

Laurentide ice sheet in the CMIP5 simulations, and gen-

erally lower temperatures in the northern mid-latitudes

(Braconnot et al. 2012). The southern oceans in the CMIP5

simulations are somewhat warmer than in the PMIP2

simulations. The largest differences in the anomaly patterns

for temperature in the MH simulations lie over northern

North America, where the CMIP5 anomalies are a little

lower than the PMIP2 anomalies. The differences in the

LGM anomaly patterns of precipitation to some extent

reflect the temperature anomaly differences, and addition-

ally show some dipole patterns in the tropics reflecting the

latitudinal movement of the intertropical convergence

zone. The differences in precipitation anomalies for the

MH (Fig. 3) are generally smaller in magnitude than those

for the LGM, and similarly show some latitudinal dipoles

for precipitation in the tropics.

In general, the patterns of ‘‘significant’’ tests (i.e.

p \ 0.05) obtained from the local Hotelling’s T2 statistics

are quite noisy (Fig. 4), and there is little relation between

the p values and the patterns of the largest anomaly dif-

ferences. For the tests involving MAT, MTCO, MTWA

and MAP in the MH simulations there is a relatively large

area of p values \0.05 over northern North America, and

some latitudinally organized patterns in the tropics, but the

total number of p values \0.05 is still relatively small

(1,668 out of 16,200), and none of the p values fall below

the individual FDR threshold values (i.e. there are no more

‘‘significant’’ p values than would be expected by chance).

For the comparisons involving tas and pre in the MH

simulations, the number of p values \0.05 is larger (2,293),

but again none of the individual ranked p values fall below

the FDR threshold values. For the LGM simulations, the

numbers of p values less than 0.05 are smaller than for the

MH simulations (729 for the comparisons involving MAT,

MTCO, MTWA and MAP, and 879 for the comparisons

involving tas and pre). Consequently neither the map

patterns of the local Hotelling’s T2 statistics, nor the

number of ‘‘significant’’ local tests, provide support for the

idea that the two generations of simulations differ from one

another. Thus, the analysis provides no evidence that the

CMIP5 and PMIP2 simulations differ systematically.

3.2 Evaluation of LGM simulations

3.2.1 The glacial ocean

The ocean temperature, over the regions for which there

are SST reconstructions, was 1.9 �C colder at the LGM.

Year-round cooling is consistent with the year-round

forcing caused by the presence of large northern hemi-

sphere ice sheets and lowered greenhouse gas concentra-

tions. Most models overestimate the ocean cooling (Fig. 5).

Two models (CCSM, MIROC) produce good estimates of

the median change in annual sea-surface temperature (i.e.

within 0.1 �C of the reconstructed median value). In five

cases the median bias is larger than 0.5 �C (Table S9) with

the most extreme biases ([0.8 �C) shown by the HadCM3

(OAV) and ECHAM (OAV) models. Comparison of the

ensemble averages (Table S7) shows that the OAV simu-

lations are more inconsistent with the reconstructions than

the PMIP2 OA or CMIP5 models.

According to the reconstructions, ocean cooling occurs

equally in both seasons. The models show larger cooling in

summer (Fig. 5, Table S9). The PMIP2 OAV simulations

produce colder oceans in both seasons than the PMIP2 OA

or CMIP5 models, and again are more inconsistent with the

seasonal reconstructions (Table S7). The mismatch

between simulated and reconstructed annual (and seasonal)

SSTs arises because the models overestimate the cooling in

the tropics (30�N–30�S) and northern high-latitudes

([75�N). Conversely, they underestimate the cooling in the

mid-latitudes (Figure S6). Between 45�–60�N, the ensem-

ble median bias is larger than 1 �C. Some models have a

bias [2� in this region (i.e. the simulated cooling is only

about half of the reconstructed cooling).

The inter-quartile range (IQR) provides a measure of the

spatial heterogeneity of an observed and/or simulated cli-

mate variable. This is not a measure of uncertainty of the

median value, but rather shows the degree to which there is

geographic variability in a given quantity. The IQR of the

reconstructed SST anomalies is large (Fig. 5), both glob-

ally and in any zonal belt. Models consistently underesti-

mate this variability (i.e. they do not capture the

heterogeneity seen in the reconstructions even when grid-

ded to the same scale as the model outputs) except north of

60�N. Globally, the IQR of the models is between 18 and

72 % of the reconstructed IQR of 2.7 �C, which suggests
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that the spatial correlation scale in the models may be

longer than seen in the reconstructions.

There is considerable geographic patterning in recon-

structed climate changes over land and ocean at the LGM.

Cooling is most pronounced close to and downwind of the

northern hemisphere ice sheets, less marked upwind of the

Laurentide ice sheet, and small in the tropics. The spatial

patterns in reconstructed LGM SSTann anomalies, as

measured by 1 - s, are not well predicted by the models

(Table S9), with values ranging from 0.72 (ECBILT) to

0.96 (CNRM5). The seasonal SST anomalies show no

correlation with the reconstructions, with all of the models
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Fig. 1 Anomalies in global climate at the Last Glacial Maximum

(LGM, ca 21,000 year BP) and the mid-Holocene (MH, ca 6,000 year

BP) as simulated by the individual PMIP2 and CMIP5 models

compared to the ensemble average. For the LGM, climate space is

defined by (a) the change in mean annual temperature (MAT) and

mean annual precipitation (MAP) because the changes in climate

forcing operate to produce year-round cooling and drying compared

to present day. We also show (b) the relationship between changes in

annual sea-surface temperature (SSTann) and MAT. This graph

shows the expected enhancement of temperature changes over land

compared to the ocean. The change in insolation forcing during the

MH produces primarily seasonal responses, so the climate space

during this interval is defined by (c) the changes in mean temperature

of the coldest month (MTCO) and mean temperature of the warmest

month (MTWA). We also compare (d) seasonal changes in ocean

temperatures in summer (SSTsum, June, July, August in the northern

hemisphere and January, February, March in the southern hemi-

sphere) and winter (SSTwin, January, February, March in the northern

hemisphere and June, July, August in the southern hemisphere)
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obtaining values close to 1 for both SSTsum (0.94–1.03)

and SSTwin (0.95–1.02).

The fuzzy distance provides an overall measure of

model performance. Models with different median biases,

for example, can nevertheless have a similar distance score

if the model with the larger bias captures the spatial vari-

ability or patterning better. For example, GISS.E2 has a

slightly better overall score than MPI (ESM) for SSTann

(Table S9) because although GISS.E2 displays a larger bias

it has a more realistic range of variability. The distance

measures confirm that models generally reproduce SSTann

(1.18–1.50) better than SSTwin (1.28–1.71), which in turn

is better than SSTsum (1.44–1.93), consistent with the

unrealistically larger cooling in summer than winter. The

distance measures for SInmon show that the mismatch

between simulated and observed sea-ice cover is typically

one to 2 months, although FGOALS1 has a bias of

4 months.

3.2.2 The glacial continents

The reconstructions show year-round cooling over the

continents at the LGM (Fig. 5). Based on regions with

reconstructions, MAT was reduced by 6.4 �C. Winter

cooling was greater than summer cooling (-9.6 �C com-

pared to -4.3 �C). All but two models underestimate the

reconstructed annual cooling, with the largest median bias

nearly 3.5 �C and eight models having a bias larger than

1 �C. MIROC (ESM) and HADCM3 (OAV) overestimate

the reconstructed cooling (Fig. 5). The OA version of

HadCM3 also produces a greater year-round cooling than

most other models (close to the reconstructed change), but

Fig. 2 Simulated changes (anomalies between the experiment and

the pre-industrial control) in mean annual temperature (MAT), mean

temperature of the coldest month (MTCO), mean temperature of the

warmest month (MTWA) and mean annual precipitation (MAP) at the

Last Glacial Maximum (LGM) for the CMIP5 ensemble (left hand

column) and the PMIP2 ensemble (centre column). The ocean

temperatures are sea-surface temperature, except over areas with sea

ice where air temperature is used (see SI). The difference between the

two sets of simulations is also shown (right hand column)
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the OA version of MIROC is comparatively warm com-

pared to other models. The underestimation of MAT is

driven by underestimation of winter cooling. All the

models underestimate the MTCO reduction; the smallest

median bias is ?2.4 �C and the largest ?7.3 �C. Some

models underestimate and some overestimate the recon-

structed summer cooling. All models underestimate the

LGM reduction in MAP over land, consistent with the

underestimation of the change in temperature (Li et al. in

press). As a result, most models also underestimate the

increase in aridity (reduction in a). The bias in median

MAP ranges from ?10 to ?334 mm; nine models produce

changes in median MAP that are less than half of the

reconstructed change. The discrepancies between simu-

lated and reconstructed a are smaller, because the smaller-

than-reconstructed reduction in precipitation is offset by

the smaller-than-reconstructed reduction in temperature.

The IQR of modeled LGM land climates is smaller than

reconstructed for most, but not all, variables (Fig. 5). The

simulated spatial variability in MTWA is consistently

smaller than shown by the reconstructions: simulated

MTWA IQR is 29–86 % of the reconstructions. With the

exception of the COSMOS model (112 %), the simulated

IQR of GDD5 is between 40 and 70 % of the reconstruc-

tions. However, the simulated IQR of MAT ranges from

much smaller to somewhat larger (27–145 %), that for

MTCO is from 26 to 103 %, and that for MAP is

53–116 %. The variability in a is always larger than shown

by the reconstructions (155–419 %).

The geographic patterns in the sign of the changes over

land at the LGM during winter (MTCO) are in general

moderately well predicted, with values of 1 - s ranging

from 0.58 to 0.82 (Table S9). The prediction of GDD5 is

also moderately good (0.58–0.82). Three models score 1 or

Fig. 3 Simulated changes (anomalies between the experiment and

the pre-industrial control) in mean annual temperature (MAT), mean

temperature of the coldest month (MTCO), mean temperature of the

warmest month (MTWA) and mean annual precipitation (MAP) at the

mid-Holocene (MH) for the CMIP5 ensemble (left hand column) and

the PMIP2 ensemble (centre column). The difference between the two

sets of simulations is also shown (right hand column)

678 S. P. Harrison et al.

123



[1 for MTWA, i.e. there is no correlation between the

simulated and observed patterns, but the range for the other

models (0.63–0.97) is comparable to the other seasonal

variables. The simulation of the geographic patterns in

MAT is also moderately good (0.57–0.89), with the

exception of a single model (CNRM3.3), which scores 1.

The simulation of geographic patterning in a is poor, with a

range of values between 0.72 and 0.88 (Table S9). How-

ever, the simulation of the spatial pattern in precipitation is

poorer, with nine models having values of 1 - s greater

than 1. In general, the prediction of LGM temperature

anomaly patterns appears to be better over land than over

the ocean. This is apparent in comparing e.g. MAT with

SSTann where 15 out of 17 models have 1 - s values of

\0.80 for MAT compared to only 8 out of 16 models with

values \0.80 for SSTann. However, the simulation of

seasonal climate over land is very much better than sea-

sonal climates over the ocean, where all of the models have

values of close to 1 (i.e. no correlation) for geographic

patterning over the ocean.

The fuzzy distance scores (Table S9) suggest that

model performance is better for MAT (2.21–3.57) than

for seasonal temperatures (MTCO: 3.61–6.24; MTWA

3.05–6.30). This is probably because, despite generally

underestimating the annual cooling, the models capture the

spatial variability of temperature changes moderately well.

The range of the distance scores for MAP (135.91–387.37)

and a (0.09–0.17) reflect the differences in the median

biases: there is a large range for MAP but only small dif-

ferences in the scores for a between the models.

3.3 Evaluation of mid-Holocene simulations

3.3.1 The mid-Holocene ocean

According to the reconstructions, the global ocean in the

MH was slightly warmer than today (for regions with data);

none of the models reproduce this (Fig. 6). The largest

median biases are larger than 0.5 �C. OAV simulations

produce warmer oceans than the OA simulations (Fig. 6,

Tables S8 and S10), and are therefore more realistic. As at

the LGM, the simulated cooling signal in SSTann is a

reflection of cooling in the tropics (Figure S7). The models

underestimate the reconstructed warming in northern mid-

latitudes (30�–75�N). The models do not show warmer

conditions in the southern mid-latitudes, which is incon-

sistent with the changes inferred from the limited number

of reconstructions available. The seasonal nature of the

insolation forcing leads to seasonal variations in SSTs

(Fig. 3), with most models simulating a warmer ocean in

0.0 1.0

Fig. 4 Maps of the p values of Hotelling’s T2 for comparisons of the

PMIP2 and CMIP5 ensembles. The upper plots show the results of

tests using mean annual temperature (MAT), mean temperature of the

coldest month (MTCO), mean temperature of the warmest month

(MTWA) and mean annual precipitation (MAP) at the Last Glacial

Maximum (LGM: upper left hand plot) and the mid-Holocene (MH:

upper right hand plot). The lower plots show the results of tests using

mean January temperature (Tjan), mean April temperature (Tapr),

mean July temperature (Tjul) and mean October temperature (Toct)

and mean precipitation for the same four months (Pjan, Papr, Pjul,

Poct) for the LGM (lower left hand plot) and MH (lower right hand

plot) respectively
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summer and colder conditions in winter than today in the

northern hemisphere (Fig. 3). Individual site-based recon-

structions suggest that summer warming and winter cooling

are plausible (Yu et al. 2005; Morimoto et al. 2007; Giry

et al. 2012).

The observed IQR of SSTann is 1.2 �C, considerably

smaller than the estimate obtained for the LGM. However,

as at the LGM, the models consistently underestimate the

heterogeneity in SSTs, with IQR values between 17 and

56 % of the observed. The CMIP5 models generally show

more heterogeneity at high northern and southern latitudes

(Figure S10) than the PMIP models, but even so they

underestimate the IQR values at these latitudes.

MH SST reconstructions are sparse (Figure S5), but show

only moderate warming in the tropics and more pronounced

warming in the northern mid- to high-latitudes. In the sim-

ulations (Fig. 3), the tropics are characterized by lower SSTs

and there is a strong gradient in warming from the mid- to

high-latitudes of the northern hemisphere. The geographic

patterns in simulated MH SSTann anomalies, as measured by

1 - s, are poorly predicted by the models (Table S11), with

values ranging from 0.78 (MRI2) to 1.12 (HadCM3). Six

models have values [1 (i.e. show some degree of anti-cor-

relation with observations). The fuzzy distance measures

(0.45–0.75) reflect this poor performance (Table S9).

3.3.2 The mid-Holocene continents

The MH, in regions with reconstructions, is characterized

by slightly warmer summers, longer growing seasons, and

increased precipitation relative to present (Fig. 6). This

pattern reflects the distribution of the reconstructions,

which are biased towards the northern hemisphere where

insolation was increased in summer and reduced in winter

relative to today (leading to little overall change in MAT)

and increased seasonality amplified monsoonal rainfall.

The models consistently underestimate the reconstructed

change in MAP and a. As a result of underestimating the

increase in precipitation (and a), and therefore presumably

underestimating latent heat flux, the models overestimate

summer warming by 0.56–2.27 �C. The simulated changes

in MH winter temperature are not consistent between

models. Some simulate warmer-than-present (and too

warm) winters, others produce cooler-than-present (and too

cool) winters. Biases in simulated MAT changes reflect the

biases in the seasonal temperatures. Models that produce

lower than reconstructed MAT tend to have more winter

cooling and less summer warming than other models.

Models that produce MAT warmer than reconstructed, tend

to be warmer in both seasons.

Simulated MH land climates show consistently less

spatial variability than the reconstructed climates. The IQR

values of MAT (14–46 %), MTCO (14–56 %), MTWA

(22–55 %), GDD (15–57 %) and MAP (17–39 %) from the

simulations are consistently smaller than those of the

reconstructions. The IQR of a ranges from 48 to 130 % of

the reconstructions.

There is considerable geographic patterning in recon-

structed climate changes over land at the MH (Figure S3),

with a clear temperature gradient between the tropics and

the northern extratropics. Enhanced northern-hemisphere

monsoon circulation gives rise to increased precipitation in

the monsoon core region but increased aridity in regions of

descending air. Models’ ability to simulate geographic

patterning in the sign of climates in the MH is poorer than

at the LGM. For example, 1 - s values for MAT range

from 0.87 (IPSL and MRI2fa (OAV)) to 1.07 (FGOALS1).

The best scores are in the range from 0.77 (for MAP) to

0.93 (for MTWA), and for all of the variables (other than

MAT) between a third to a half of the models have scores of

[1 indicating no correlation with the observations.

Despite the fact that the simulated geographic patterning

is poorer in the MH than at the LGM, comparison of the

fuzzy distance measures for each variable show that the

overall performance of the models is better for the MH than

the LGM (i.e. the biases are less extreme). Thus, the range

of the fuzzy distances for MH MTCO is 1.34–1.91 com-

pared to 3.61–6.24 for the LGM (Table S9, Table S10).

The difference in the ranges is similar for MTWA

(1.33–2.51 for the MH, 3.05–6.30 for the LGM). As in the

LGM, the range for MAT (1.05–1.42) is better than for the

seasonal temperatures. Similarly, the range of the fuzzy

distances for MH MAP is 76–110, whereas the range for

the LGM is 135–388.

3.4 Assessment of overall model performance

At the LGM (Fig. 7a, Table S8), most models perform only

slightly better or worse (here defined as values between

Fig. 5 Comparison of median and interquartile ranges (IQR) of

observed and simulated climates at the LGM. The comparisons are

made using only the model land (or ocean) grid cells where there are

observations. Land climates are evaluated against the reconstructed

bioclimatic variables (growing degree days above a threshold of 5 �C,

GDD5; mean temperature of the warmest month, MTWA; mean

temperature of the coldest month, MTCO; mean annual temperature,

MAT; mean annual precipitation, MAP; the ratio of actual to

equilibrium evapotranspiration, a). Ocean climates are evaluated

against reconstructions of oceanic variables (summer sea-surface

temperature, SSTsum; winter sea-surface temperature, SSTwin; mean

annual sea-surface temperature SSTann; number of months with

[40 % sea ice cover, SInmon). The median value of the observations

is shown as a black vertical line, the IQR by dark grey shading and

5–95 percentile limits by light grey shading. The models are color-

coded to show whether they are PMIP2 or CMIP5 simulations, and

whether they are ocean–atmosphere (OA), ocean–atmosphere-vege-

tation (OAV) or OA carbon-cycle (OAC) models. The simulated

median for each model is shown by a vertical line, the box represents

the IQR and the whiskers the 5–95 percentile limits

c
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Fig. 6 Comparison of median and interquartile ranges (IQR) of

observed and simulated global climate variables at the MH. The

comparisons are made using only the model land (or ocean) grid cells

where there are observations. Land climates are evaluated against the

reconstructed bioclimatic variables (growing degree days above a

threshold of 5 �C, GDD5; mean temperature of the warmest month,

MTWA; mean temperature of the coldest month, MTCO; mean annual

temperature, MAT; mean annual precipitation, MAP; the ratio of

actual to equilibrium evapotranspiration, a). Ocean climates are

evaluated against mean annual sea-surface temperature (SSTann)

reconstructions. (There are no reconstructions of other ocean

variables for the MH). The median value of the observations is

shown as a black vertical line, the IQR by dark grey shading and the

5–95 percentile limits by light grey shading. The models are colour-

coded to show whether they are PMIP2 or CMIP5 simulations, and

whether they are ocean–atmosphere (OA), ocean–atmosphere-vege-

tation (OAV) or OA carbon-cycle (OAC) models. The simulated

median for each model is shown by a vertical line, the box represents

the IQR and the whiskers the 5–95 percentile limits
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MRI2fa (OAV) -0.2 to -0.4
GISS.E  0.0 to -0.2

BCC  0.0 to 0.2
ECBILT.LV  0.2 to 0.4
CSIRO3.6  0.4 to 0.6

HadCM3  0.6 to 0.8
FOAM (OAV)  > 0.8
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ECBILT.LV (OAV)
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Fig. 7 Summary diagram showing the relative error metrics for

(a) the Last Glacial Maximum (LGM, ca 21,000 year BP) and (b) the

mid-Holocene (MH, ca 6,000 year BP) simulations. (Numeric values

are given in Tables S9 and S10). Although the number of positive and

negative scores must be equal, overall and within each column for

each time period, the number of registrations within each positive or

negative colour class can differ among variables reflecting the

dispersion of the models from the median model. The ordering of the

models is based on the average score for the model across all metrics

and all variables
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Fig. 8 Summary diagram showing the ranking of models based on

the relative error metrics for median bias for all variables at (a) the

Last Glacial Maximum (LGM, ca 21,000 year BP) and (b) the mid-

Holocene (MH, ca 6,000 year BP) simulations. Models which score

\-0.5 (i.e. a relative error that is 50 % better than the mean model)

or[0.5 (i.e. a relative error that is 50 % worse than the mean model)

are distinguished. Although the number of positive and negative

scores must be equal, overall and within each column for each time

period, the number of registrations [?0.5 or \-0.5 reflects the

dispersion of the models from the median model. Here the models are

ordered based on the average score for that model for median bias

across all the variables
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-0.5 and ?0.5) than the median model error on the 1 - s
measure of geographical patterning or fuzzy distance

measure (i.e. there is considerable consistency among the

models). In contrast, at least some models perform much

better (here defined as values \-0.5) than the median

model error in terms of biases in the median and in terms of

heterogeneity as measured by the IQR. There are also

differences in performance between variables: in general,

the models are more consistent with one another in their

predictions of MTCO than MAT, MTWA or GDD

(Fig. 8a). More models perform much better than the

median model error for GDD than for either MTWA or

MTCO. There are large differences between models in the

simulation of MAP and a, but an equal number of models

perform much better than the median model error for a and

MAP. Over the ocean, there are more models that perform

much better than the median model error for SSTs, but the

simulation of sea ice cover (SInmon) is much worse (here

defined as [0.5) than the median model.

No model performs better than the median model error

across all climate variables at the LGM (Figs. 7a, 8a).

Nevertheless, the PMIP2 OAV models perform very much

worse than the median model error with respect to bias

across most variables compared to their OA counterparts

(Fig. 7a), as does FGOALS1 and models of the CNRM

family (CNRM3.3, CNRM5). These models also perform

much worse than the median model error with respect to

the IQR metric. Newer versions of a particular model

family do not necessarily perform better: CCSM for

example performs much better than the median model error

for ocean temperature and summer conditions over the

land, whereas CCSM4 scores worse than the median model

error for these variables. IPSL5 shows an improvement in

performance compared to IPSL4 with respect to biases in

MAT, MAP and a, but a degradation in the simulation of

seasonal and annual SST.

In the MH (Fig. 7b, Table S9), there is more consis-

tency among the models for the 1 - s and the fuzzy

distance metrics (i.e. most models perform only slightly

better or worse than the median model error) than for

median bias. With the exception of a, there is also con-

siderable consistency between models for the IQR ratio.

The simulation of MAP (e.g. as measured by bias: Fig. 8b)

is more consistent among models than the simulation of

any other climate variable. Although there are models that

perform much better than the median model error for

MAT, MTCO, MTWA and GDD, there are more models

that perform much worse than the median model error for

these variables. In contrast, there are more models that

perform better than worse than the median model error for

SSTann and a. Some models (e.g. ECHAM, ECBILT.LV)

consistently perform better than the median model error

across all variables as measured by bias, while some

models perform better than the median model error for six

out of the seven (GISS.E2, ECHAM (OAV), MPI (ESM))

variables. No model consistently performs worse than the

median model error across all variables, but some models

frequently are very much worse than the median model

across several variables (e.g. MIROC (ESM), MRI2,

CCSM4, IPSL4, FGOALS2). There is little consistency

between the ranking of models with respect to the median

model error in the LGM and MH simulations. Further-

more, the ranking of the models depends critically on the

choice of metrics and/or variables included (compare

Figs. 7 and 8).

3.5 Relationship between LGM biases and climate

sensitivity

Reconstructions of LGM climate have been used in

attempts to determine the climate sensitivity (see sum-

maries in Edwards et al. 2007; PALAEOSENS Project
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Fig. 9 Comparison of the bias in simulated changes in mean annual

temperature at the Last Glacial Maximum (LGM, ca 21,000 year BP)

for each model and the climate sensitivity of that model. a for global

temperature (K) and (b) for global land and (c) ocean temperature

separately. The model biases are only weakly correlated with climate

sensitivity
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Members 2012). We examine whether the CMIP5/PMIP2

ensemble provides a constraint on climate sensitivity by

plotting model temperature bias against climate sensitivity

for the PMIP2 (Crucifix 2006; M Crucifix unpublished

data) and CMIP5 (Andrews et al. 2012) models, on the

assumption that the model that best reproduces recon-

structed LGM climates is likely to have the most realistic

climate sensitivity under modern conditions. Global biases

in simulated LGM temperature are only weakly related to

climate sensitivity (Fig. 9); although climate sensitivity

(estimated as the point at which the bias in land and

ocean temperatures is zero) is ca 2.7 �C, the 12-member

model ensemble does not provide a tight constraint.

Furthermore, there are opposite biases in ocean and land

temperatures: ocean temperatures are globally low and

land temperatures globally high, compared with the

reconstructions.

4 Discussion

Braconnot et al. (2012) showed that the PMIP2 models

reproduce the first-order signals of LGM and MH climate

changes. The overall behavior of the CMIP5 models is not

different from the PMIP2 models. The models capture

major features of past climates such as the differential

response of land and ocean to warming/cooling, and the

tendency for temperature changes in the higher latitudes to

be more extreme than changes in the tropics. Model real-

ism in respect to these first-order signals is important

because these signals are features of future projections

(Meehl et al. 2007; Sutton et al. 2007; Allan and Soden

2008; Izumi et al. 2013; Li et al. in press). However,

although the CMIP5 models have similar success in cap-

turing large-scale climate changes, they display mis-

matches of similar magnitude between simulated and

reconstructed regional climates as their predecessors.

Evaluation of the LGM simulations could provide a

constraint on climate sensitivity, by assuming that the

model that best reproduces reconstructed LGM climates is

likely to have the most realistic climate sensitivity under

modern conditions. Using this approach, we estimate a

climate sensitivity of 2.7 �C. This is comparable to the

estimate of 2.7 ± 0.22 �C made by Annan and Hargreaves

(2012) based on the PMIP2 LGM multi-model ensemble

and 2.8 �C (with a 90 % confidence range of 1.6–4.7 �C)

obtained using an explicitly Bayesian approach with the

PMIP2 ensemble by Schmidt et al. (2013). Schmittner et al.

(2011), using results from a single model ensemble con-

strained by glacial MAT anomalies, estimated median

climate sensitivity as 2.3 �C with a likely range of

1.4–4.3 �C. The range of climate sensitivities for the

CMIP5 (Andrews et al. 2012) and PMIP2 (Crucifix 2006;

M Crucifix unpublished data) models is small; the multi-

model ensemble used here does not provide a tighter

constraint on climate sensitivity than Schmittner et al.

(2011). Within this group of models, global biases in

simulated LGM temperature are only weakly related to

climate sensitivity (Fig. 8). Furthermore, there are opposite

biases in ocean and land temperatures: ocean temperatures

are globally low and land temperatures globally high,

compared with the reconstructions.

Albedo feedback associated with changes in vegetation

cover should amplify land cooling (de Noblet et al. 1996;

Jahn et al. 2005), particularly in mid- to high-latitudes, and

indeed the single pair of PMIP2 simulations which allow us

to evaluate the impact of vegetation feedbacks show a

substantial additional LGM land cooling (1.2 �C colder

than the OA version of the model). However, this simu-

lation also produces (unrealistically) colder oceans than the

OA simulation.

The increased atmospheric dust loading at the LGM

(Kohfeld and Harrison 2001; Maher et al. 2010), which

should contribute to increased cooling, is not included in

the LGM experimental design. Model-based estimates

(Claquin et al. 2003; Mahowald et al. 2006) show the

change in dust forcing is larger over land than over ocean,

and the magnitude and even the sign of the forcing varies

latitudinally. This could potentially contribute to the lati-

tudinal differences found in the simulated temperature

biases (see e.g. Schmittner et al. 2011). Mahowald et al.

(2006) showed a small positive forcing over the equatorial

oceans, which could help to explain why the present gen-

eration of models tends to overestimate SST cooling in the

tropics. These two experiments (Claquin et al. 2003;

Mahowald et al. 2006) are both constrained by observed

LGM dust fluxes but give different results for the magni-

tude of the global dust forcing (-0.9 and -2.0 Wm-2) and

also show different spatial patterns. Furthermore, these

dust-forcing estimates do not take account of interactions

between dust and clouds. These limitations make it

impossible to infer the extent to which inclusion of dust

forcing would substantially reduce the biases in simulated

LGM temperatures.

The MH simulations also show systematic biases that

are different over land and ocean, and between seasons.

Land temperature anomalies, particularly in summer, are

generally too high and SST anomalies too low. The models

underestimate precipitation changes in the regions with the

largest summer warming. This bias probably reflects

problems in the simulation of land–atmosphere heat fluxes.

Wohlfahrt et al. (2004) showed that the IPSL OA model

overestimated MH aridity and summer warming in central

Eurasia, and this problem was exacerbated by vegetation
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feedbacks. The MH PMIP2 OAV simulations (except

FOAM) show more warming than the OA version of each

model, i.e. the inclusion of interactive vegetation amplifies

a problem already present in the OA model.

Previous model evaluations have emphasized regions

where models capture the direction of observed climate

changes but underestimate those changes (Braconnot et al.

2012). But models can either over- or under-estimate sea-

sonal climate changes. Over-estimation of one variable can

be related to underestimation of another, making it possible

to infer potential causes of model biases. The discrepancies

between simulated and reconstructed climates are generally

common to all models. All models overestimate the

reconstructed summer cooling of the tropics at the LGM,

just as all models underestimate the MH increase of Afro-

Asian monsoon precipitation. Explanations of these dis-

crepancies must lie in features common to all models.

Nevertheless, some models perform better than others. This

is particularly noticeable at the LGM, where the climate-

change signal is large, and more consistent across seasons

and regions.

Paleoclimate benchmarking provides an independent

evaluation of climate models, focusing attention on how

well models can simulate climate change. Our results

suggest that although models and data are in agreement on

the direction and spatial pattern of the large-scale features

of climate change (Braconnot et al. 2012; Schmidt et al.

2013; Izumi et al. 2013; Li et al. in press), there are still

shortcomings in the amplitude of simulated changes.

Recent work by Hargreaves et al. (2013) has shown that

this is not a function of the resolution at which the data-

model comparisons are made. It is likely that the incor-

poration of the dust forcing (for the LGM) and improve-

ments to the simulation of vegetation feedbacks (for both

LGM and MH) will improve the ability of state-of-the-art

models to reproduce past climate changes. However,

incorporation of such feedbacks does not obviate the need

for continued efforts by modelling groups to achieve

accurate simulations of fundamental climate processes.
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