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1 Motivation

With the first LHC revenues we have begun to gain experimental evidence for all sectors

of the Standard Model (SM). Not having found signs of beyond the SM (BSM) physics,

it is time to ask which directions in the parameter space of “deformations” of the SM are

still unprobed. This can provide a useful guidance for future experiments.

The purpose of this paper is to take steps towards addressing this question. We

will mainly focus on flavor-independent observables, and how these constrain electroweak

symmetry breaking (EWSB) effects in gauge-bosons and Higgs physics. As a model-

independent parametrization of BSM physics, we will use the Wilson coefficients of the

independent dimension-six operators. This is a valid parametrization as long as the BSM

scale is heavier than the electroweak scale, as we will assume here. Instead of an exhaustive

fit to the SM, including all available data, our goal is to show which are the most rele-

vant experiments that constrain the different directions in the parameter space of Wilson

coefficients, and provide the corresponding bounds.

We will classify the bounds in different groups [1]. First, those arising from Z-pole

observables, W mass and some low-energy experiments that constrain, at the per-mille

level, deviations in W/Z propagators and gauge-boson couplings to fermions. In a second

group, we have bounds, a factor ∼ 10 weaker, from measurements of the triple gauge-boson

couplings (TGC), that will be crucial to constrain certain directions in the parameter space,
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left unbound by the first group of experiments. Finally, we will have bounds from Higgs

physics arising from the recent LHC data.

One of the main purposes of our fit is to extract indirect constraints on possible de-

viations from the SM in future Higgs measurements. In particular, we will find that only

Γ(h → Zγ) can still hide large deviations from the SM prediction, while deviations in

h → V f̄f are already constrained by other experiments, as they can be related to TGC

measurements. Since the LHC can in principle do better measurements of TGC from pro-

cesses such as pp→Wγ,Zγ,WW,ZZ, this will be a more optimal way to constrain BSM

physics than from h→ V f̄f or V V → h.

There have been several groups also addressing these questions [2–8]. Contrary to ours,

however, most analyses have considered operators one by one, setting the rest artificially

to zero, and the combined effect of more than one operator is rarely taken into account.

The analysis that goes closer in spirit to the one presented here is the one of ref. [2]. Our

analysis differs from theirs in several aspects. First of all, our analysis is extended to include

Higgs physics and tries to understand where BSM effects can be found in future Higgs

measurements. Secondly, and importantly, our choice of basis [1, 9, 10] allows to separate

operators that are constrained at different level. This choice minimizes the correlations

between Wilson-coefficient constraints and makes the results easy to interpret. The analysis

of ref. [2] was made using the basis of ref. [11], and led to ref. [7] to erroneusly conclude that

constraints from electroweak observables were much weaker than what they actually are.

In section 2 we study the constraints on the CP-even Wilson coefficients arising from

electroweak (non-Higgs) observables. In section 3 we present the relevant Wilson coeffi-

cients for Higgs physics, show their constraints, and study new physics in h → V f̄f . In

section 4 we briefly comment on CP-odd operators. We leave for appendix A the details

concerning Z-pole observables, and in appendix B we show how LHC data can constrain

the relevant four-fermi interactions entering in our analysis.

2 Constraining BSM physics from EW observables

We will assume that the BSM sector is heavy, with a mass scale Λ much larger than the

weak-scale. This allows us to parametrize in a model-independent way all BSM effects

by dimension-six operators added to the SM [11, 12]. There are many options for the

choice of the dimension-6 operator basis. Here we will follow the basis of [1, 10] that we

find more suitable for our analysis than that of ref. [11], due to its better connection with

experiments. Assuming lepton and baryon number conservation, the full set of operators

in this basis can be found in tables 1 and 2 of ref. [1]: these contain 5 redundancies that

we use to eliminate the 5 operators O2W,2B,2G and OlL,O
(3) l
L .

In table 1 we show the dimension-6 operators of our basis that enter in the observables

that we are interested in. We assume minimal flavor violation (MFV) [13], that is to say

that the BSM sector respects a U(3)5 flavor-symmetry up to corrections proportional to the

SM Yukawa couplings. This allows us to concentrate on flavor-independent constraints. In

particular, MFV implies that dipole operator for fermions, as well as (iH̃†
↔
DµH)(ūRγ

µdR),

are proportional to small Yukawa couplings and can then be neglected. In the operators
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OH = 1
2 (∂µ|H|2)2

OT = 1
2

(
H†
↔
DµH

)2
O6 = λ|H|6

OW = ig
2

(
H†σa

↔
DµH

)
DνW a

µν

OB = ig′

2

(
H†
↔
DµH

)
∂νBµν

OBB = g′2|H|2BµνBµν

OGG = g2s |H|2GAµνGAµν

OHW = ig(DµH)†σa(DνH)W a
µν

OHB = ig′(DµH)†(DνH)Bµν

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ

Oyu = yu|H|2Q̄LH̃uR + h.c. Oyd = yd|H|2Q̄LHdR + h.c. Oye = ye|H|2L̄LHeR + h.c.

OuR = (iH†
↔
DµH)(ūRγ

µuR) OdR = (iH†
↔
DµH)(d̄Rγ

µdR) OeR = (iH†
↔
DµH)(ēRγ

µeR)

OqL = (iH†
↔
DµH)(Q̄Lγ

µQL)

O(3) q
L = (iH†σa

↔
DµH)(Q̄Lσ

aγµQL)

O(3) ql
LL = (Q̄Lσ

aγµQL) (L̄Lσ
aγµLL) O(3) l

LL = (L̄Lσ
aγµLL) (L̄Lσ

aγµLL)

Table 1. Set of CP-even dimension-6 operators that defines our basis. We are including only

the four-fermion operators that affect our observables. We omit dipole operators for fermions and

OudR = y†uyd(iH̃
†
↔
DµH)(ūRγ

µdR) since they are suppressed by light fermion Yukawas under the MFV

assumption. Also O3G is not included since it does not enter in our observables. The complete set

of operators can be found in ref. [1].

of table 1 we assume a contraction of family indices i, j inside each parenthesis, e.g.,

(Q̄Lγ
µQL) = (Q̄iLγ

µQiL), and yuQ̄LuR = yiju Q̄iLu
j
R, as implied by the MFV assumption at

the leading order in a Yukawa expansion. The top quark, having a large Yukawa coupling,

could depart from the MFV assumption. For this reason we will also consider the impact

of treating top operators separately.

CP-odd operators are not included in table 1, since they do not interfere with the SM

contributions to the observables that we are considering. Their Wilson coefficients only

enter quadratically in these processes and can then be neglected at the linear level that we

are working. In section 4, however, we will briefly discuss their implications for TGC and

h→ V f̄f .

2.1 Experimental input values

We take the SM as defined by the 3 parameters g, g′ and v ' 246 GeV, that we relate

with the well-measured values of the Fermi constant GF as measured in muon decays,

the fine-structure constant αem, and the Z-boson mass mZ . New physics, parametrized

through the dimension-6 operators of table 1, affects these 3 input observables. The subset

of relevant operators is

∆Linput =
cT
v2
OT +

c+V
m2
W

(OW +OB) +
c
(3) l
LL

v2
O(3) l
LL , (2.1)

where we have defined

c±V =
1

2
(cW ± cB) , (2.2)
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and cW,B are the Wilson coefficients of the operators OW,B. The orthogonal combination

OW −OB does not affect the input parameters. Notice that, instead of a common suppres-

sion scale Λ, we are suppressing the operators of eq. (2.1) by the weak scale, either mW

or v, meaning that we have absorbed the dependence on Λ into the Wilson coefficients.

With this normalization the Wilson coefficients must be considered smaller than O(1) for

our expansion to make sense.

The modifications of the 3 input observables due to the dimension-6 operators are

given by
δαem

αem
= −2s2θW Ŝ ,

δm2
Z

m2
Z

= −T̂ + 2s2θW Ŝ ,
δGF
GF

= −2c
(3) l
LL , (2.3)

where we have defined sθW ≡ sin θW (and similarly for other trigonometric functions),

being θW the weak mixing angle, and

Ŝ = 2c+V , T̂ = cT , (2.4)

characterize the dominant contributions to the W/Z propagators [14, 15].

Our fits for electroweak observables are performed using a χ2 analysis; the experimental

data including correlations, are taken from refs. [16, 17], while the SM predictions, including

the dominant loop corrections, are taken from refs. [18, 19] (we have checked that our

results including only Ŝ and T̂ agree with ref. [18] at the percent level). Henceforth when

referring to SM predictions to observables we will always be considering predictions given

as a function of these 3 input experimental values, GF , αem and mZ .

2.2 Z-pole observables for leptons and the W mass

Among the most accurate experimental tests of the SM, stand the Z-pole observables

measured at LEP-I/SLC, and the Tevatron measurement of the W mass. In a first set

of constraints, we single out the leptonic observables that are measured at the per-mille

level. The relevant dimension-6 operators that contribute to these quantities are, apart

from ∆Linput,

∆Lleptons =
ceR
v2
OeR . (2.5)

It is important to notice that, being at the Z-pole, four-fermion operators can be neglected.

LEP-I and SLC measurements afford only 3 observables for the lepton sector, that we can

think of as ΓlLZ ≡ Γ(Z → l̄LlL), ΓlRZ ≡ Γ(Z → l̄RlR) and ΓνZ ≡ Γ(Z → ν̄ν). These can

be extracted from the correlated set of observables Al, Rl, σ
0
had,ΓZ defined in eq. (A.6) of

appendix A, where ΓνZ = ΓZ −Γvisible
Z since we assume that there are no extra light degrees

of freedom. The modifications of these quantities with respect to the SM predictions due

to the dimension-6 operators are given by (see appendix A for details)

δΓνZ
ΓνZ

= T̂ − δGF
GF

,
δΓlLZ

ΓlLZ
=

1

c22θW

(
T̂ − δGF

GF
− 4s2θW Ŝ

)
, (2.6)

δΓlRZ

ΓlRZ
= − 1

c22θW

(
T̂ − δGF

GF
− 2Ŝ

)
−

ceR
s2θW

. (2.7)
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This gives 3 observables to constrain 4 Wilson coefficients. As an additional observable

needed to constrain all 4 coefficients, we take the W mass, whose correction from the SM

value is given by
δmW

mW
=

1

2c2θW

[
c2θW T̂ − s

2
θW

(
δGF
GF

+ 2Ŝ

)]
. (2.8)

Using this subset of observables, we can fit cT , c+V , ceR and c
(3) l
LL . Marginalizing over all but

one coefficient at a time we find the 95% C.L. intervals:

cT ∈ [−5, 1]× 10−3 , c+V ∈ [−6, 0]× 10−3 , (2.9)

ceR ∈ [−5, 0]× 10−3 , c
(3) l
LL ∈ [−12, 2]× 10−3 .

Other four-lepton operators, apart from O(3) l
LL , can be constrained by LEP-II measurements

of the cross-sections e+e− → l+l− [20]. These operators and their experimental constraints

are completely orthogonal to our analysis and can be studied independently. We will not

pursue them further.

2.3 Quarks

Experimental data for quark physics abounds. The most accurate measurements come,

again, from LEP-I physics at the Z-pole. Assuming flavor-universality, the relevant

dimension-6 operators for this type of physics are, apart from ∆Linput,

∆Lquarks =
cqL
v2
OqL +

c
(3) q
L

v2
O(3) q
L +

cuR
v2
OuR +

cdR
v2
OdR . (2.10)

Eq. (2.10) contains 4 new parameters that need 4 new observables in order to be con-

strained. We take Rb, Γhad
Z , Ab and Ac as defined in appendix A. They are affected by

dimension-6 operators as

δΓhad
Z

Γhad
Z

' 0.7 cqL + 2.3 c
(3) q
L + 0.3 cuR − 0.2 cdR − 1.5 δs2θW + T̂ − δGF

GF
, (2.11)

δRb
Rb
' 1.6 cqL − 0.05 c

(3) q
L − 0.3 cuR − 0.1 cdR + 0.2 δs2θW , (2.12)

δAc
Ac
' −0.9 cqL + 0.9 c

(3) q
L − 2.3 cuR − 4.2 δs2θW , (2.13)

δAb
Ab
' 0.1 cqL + 0.1 c

(3) q
L + 0.8 cdR − 0.6 δs2θW , (2.14)

where δs2θW is the correction to the effective weak mixing angle:

δs2θW =
1

c2θW

[
s2θW Ŝ −

s22θW
4

(
T̂ − δGF

GF

)]
. (2.15)

Only the first two observables, Γhad
Z and Rb, are measured at the per-mille level [16] and

can give strong constraints on c
(3) q
L and cqL, since, accidentally, they enter respectively with

large coefficients in eq. (2.11) and eq. (2.12).
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The above hadronic observables can be complemented with information from low-

energy measurements. One of the most relevant, due to its high accuracy, is the determi-

nation of the unitarity of the CKM matrix by KLOE and β-decays [21]. This result can

be interpreted as a measurement of the Fermi constant in quark-lepton weak interactions,

G
(q)
F , normalized to GF as extracted from µ-decays:(

G
(q)
F

GF

)2

= 0.9999(12) at 95 % C.L. . (2.16)

Dimension-six operators modify this SM prediction:

δ

(
G

(q)
F

GF

)2

= 4c
(3) l
LL + 2c

(3) q
L − 2c

(3) ql
LL , (2.17)

which also includes a contribution from 4-fermion operators:

∆Lquark-lepton =
c
(3) ql
LL

v2
O(3) ql
LL . (2.18)

Now, using recent LHC data [22] for the measurement of the high-energy differential cross-

sections of q̄q → l̄ν, we can independently constrain c
(3) ql
LL , as shown in appendix B. This

allows us to use eq. (2.17) to put an independent constraint on c
(3) q
L . Putting all the

above information together and marginalizing (since the observables eqs. (2.11)–(2.14) are

also sensitive to ∆Linput, we must include also the leptonic operators and observables and

perform a global fit: the resulting constraints on the coefficients of ∆Linput will be given

in the conclusion), we obtain the 95% C.L. intervals:

cqL ∈ [−1, 4]× 10−3 , c
(3) q
L ∈ [−7, 4]× 10−3 ,

cuR ∈ [−8, 0]× 10−3 , cdR ∈ [−53, 1]× 10−3 , (2.19)

c
(3) ql
LL ∈ [−2, 3]× 10−3 .

It is interesting to consider the case in which operators made of the top quark have

different coefficients from those associated to operators made with the first two families.

This is motivated by the largeness of the top Yukawa coupling that suggests that there

can be large deviations from flavor-universality. We then add the following operator to

our analysis:1

∆Ltop =
c+ q3
L

v2

(
Oq3L +O(3) q3

L

)
, where c+ q3

L =
1

2
(cq3L + c

(3) q3
L ) , (2.20)

that, due to the presence of bL inside the 3rd family doublet QL, gives an extra contribution

to the observables of eqs. (2.11)–(2.14):

δΓhad
Z

Γhad
Z

∣∣∣∣
q3

' 0.5 c+ q3
L ,

δRb
Rb

∣∣∣∣
q3

' 1.8 c+ q3
L ,

δAb
Ab

∣∣∣∣
q3

' 0.1 c+ q3
L . (2.21)

1The other operators involving top-quarks, (Oq3L − O
(3) q3
L ) and OtR, affect only top couplings to gauge

bosons and their constraints arise from top physics at the LHC. We will not discuss them here.
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We have now 5 coefficients in the quark sector, eq. (2.10) and eq. (2.20), but also 5 observ-

ables, those of eqs. (2.11)–(2.14) and eq. (2.16). KLOE data, which in the flavor-universal

case was only used to slightly improve the numerical constraints, is now crucial to avoid

unconstrained directions. The analysis gives:2

c+ q3
L ∈ [−7, 13]× 10−3 . (2.22)

Other four-quark operators, apart from eq. (2.17), can be constrained by LHC di-jet

measurements [23, 24]. As for the lepton case, these bounds do not interfere with our

analysis, neither are relevant for Higgs physics; for this reason they can be studied in a

separate context.

2.4 Triple gauge-boson couplings

Extra important experimental data needed to further constrain our set of operators is the

measure of the ZWW and γWW couplings. The best measurements still come from

e+e− → W+W− at LEP-II, although LHC data is starting to be competitive. The

dimension-6 operators involved in this process are, apart from eqs. (2.1) and (2.5),

∆LTGC =
κ+HV
m2
W

(OHW +OHB) +
c−V + κ−HV

2m2
W

O+ +
κ3W
m2
W

O3W , (2.23)

where we have defined

κ±HV =
1

2
(κHW ± κHB) , (2.24)

with κHW,HB the Wilson coefficients of OHW,HB, and

O± ≡ (OW −OB)± (OHW −OHB) . (2.25)

Notice that in order to connect with the different experiments, we are, for convenience,

working with the orthogonal combinations {OW + OB,OHW + OHB,O±} instead of the

original subset {OW ,OB,OHW ,OHB} given in table 1. It is easy to show that the co-

efficients of O± are given by the combinations (c−V ± κ
−
HV )/2. In eq. (2.23) we have not

included the operator O− since it does not enter in TGC, and it is only relevant for Higgs

physics as we will see later. Indeed, one finds the following contributions to the ZWW and

γWW vertices [25]:

∆L3V = igδgZ1 cθWZ
µ
(
W− νW+

µν −W+ νW−µν
)

+ ig (δκZcθWZ
µν + δκγsθWA

µν)W−µ W
+
ν

+
ig

m2
W

(λZcθWZ
µν + λγsθWA

µν)W−ρν W+
ρµ , (2.26)

where Vµν ≡ ∂µVν − ∂νVµ for V = W±, Z,A, and

δgZ1 =
cW + κHW

c2θW
=

1

c2θW

(
c+V + c−V + κ−HV + κ+HV

)
,

δκγ = κHW + κHB = 2κ+HV , δκZ = δgZ1 − t2θW δκγ ,
λZ = λγ = κ3W . (2.27)

2Introducing this extra parameter slightly alters the limits of eqs. (2.9) and (2.19), as we will show later.

– 7 –



J
H
E
P
0
1
(
2
0
1
4
)
1
5
1

Notice that out of the 5 quantities in eq. (2.26), only 3 are independent if one considers

only dimension-6 operators; we take these to be δgZ1 , δκγ and λγ . This means that data

from the differential cross-sections of e+e− → W+W− can only constrain 3 extra com-

binations of Wilson coefficients that corresponds to those of eq. (2.23): κ+HV , c−V + κ−HV
and κ3W .3 Unfortunately a three-parameter analysis has not been provided by the full

LEP-II collaboration [17, 20], but only by DELPHI [26]. Nonetheless, a small value κ3W is

expected in most theories where the SM gauge bosons are assumed to be elementary above

the BSM scale Λ. Neglecting this contribution (and then taking λγ = 0), we can use the

two-parameter fit of gZ1 and κγ from ref. [17], to obtain the 95% C.L. intervals:

c−V + κ−HV ∈ [−4.4, 6.6]× 10−2 , κ+HV ∈ [−5.5, 3.9]× 10−2 . (2.28)

Including in the fit κ3W does not change considerably our results; using DELPHI data [26]

(which is however strongly correlated with ref. [17]) one finds results similar to eq. (2.28)

and κ3W ∈ [−4, 7]× 10−2.

3 Higgs physics

We now extend our analysis to Higgs physics. Apart from the operators already introduced

before that could also affect Higgs physics, we have 8 CP-even dimension-six operators that

give contributions only to Higgs physics and not to other SM processes. These are those

operators that can be built from the Higgs modulus, i.e., |H|2. In our basis, table 1, these

operators are

∆LHiggs =
cH
v2
OH +

∑
f=t,b,τ

cyf
v2
Oyf +

c6
v2
O6 +

κBB
m2
W

OBB +
κGG
m2
W

OGG+
c−V − κ

−
HV

2m2
W

O− , (3.1)

which holds for one family, taken to be the 3rd one as it is the most relevant for Higgs

physics. The presence of O− must be traced back [1] to the fact that the operator OWW =

g2|H|2Wµν aW a
µν , that can obviously affect only Higgs physics, when written in our basis

is given by

OWW = 4O− +OBB . (3.2)

Now, the operator O6 is in one-to-one correspondence with a deviation in the triple-Higgs

coupling that has not yet been measured at the LHC. Therefore, we will not be considering

it any longer. The 7 remaining operators of eq. (3.1) affect the main Higgs branching ratios,

as well as Higgs production cross-sections at the LHC. In particular, we have that the 4

Wilson coefficients cyb , cyτ , κBB, κ−HV enter respectively in BR(h → bb), BR(h → ττ),

BR(h → γγ), BR(h → Zγ), while κGG affects σ(GG → h); the coefficient cH gives

a contribution to the Higgs propagator and then enters universally in all Higgs processes

(affecting, in particular, vector-boson fusion), while cyt modifies the ht̄t coupling that enters

indirectly in BR(h → γγ) and BR(h → Zγ) at the one-loop level [9], and also enters in

3Other Wilson coefficients entering in the process e+e− →W+W−, such as those of eqs. (2.1) and (2.5),

can be neglected since their constraints, derived in our previous analysis, are stronger than the ones we will

be obtaining here.
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the associated production process pp → ht̄t that the LHC can become sensitive to in the

near future. The Lagrangian for these processes is determined by

LSMh + ∆Lh , (3.3)

where

LSMh =
1

2
(∂µh)2+(

√
2GF )1/2 h

[
−mf (f̄LfR+h.c.)+m2

ZZµZ
µ+2m2

WW
+
µ W

−µ
]
+· · · , (3.4)

gives the SM contribution to single-Higgs processes written as a function of the physical

masses, mf , mZ and m2
W = m2

Z

(
1 +

√
1− 23/2παem/m2

ZGF

)
/2, while

∆Lh =
cH
2

(∂µh)2 +
h

v

[
δghff (f̄LfR + h.c.) + δghZZZµZ

µ + δghWWW
+
µ W

−µ

+ 4κBBs
2
θW
AµνA

µν + 4κGG
g2s
g2
GAµνG

µν A + 4tθW κZγZµνA
µν

]
, (3.5)

gives the contributions proportional to the Wilson coefficients of ∆Linput, ∆LHiggs, and

also that of O+ in eq. (2.23) that enters in hZγ. The first line of eq. (3.5) includes the

corrections to the SM hf̄f and hV V interactions (V = W,Z) due to the Wilson coefficients

entering in the input parameters, in the wave-function renormalization of V and in direct

contributions arising from OT . They read

δghZZ
gSMhZZ

= −cT −
δGF
2GF

,
δghWW

gSMhWW

= 2
δmW

mW
− δGF

2GF
,

δghff

gSMhff
= −cyf −

δGF
2GF

. (3.6)

With the exception of cyf , we know from the analysis of section 2 that these effects are small.

The second line of eq. (3.5) gives the corrections to hγγ, hGG and hZγ coupling, where

κZγ = −1

2
κ−HV − 2s2θW κBB . (3.7)

The dominant modifications from eq. (3.5) to BR(h → f̄f), BR(h → γγ), BR(h →
Zγ) and σ(GG → h) can be found in [9]. We confront these with a combination of

ATLAS [27] and CMS [28–30] data (for technical details see ref. [31]). For this fit we also

include the measurements of pp→ h→ V V ∗ and vector-boson fusion pp→ V V qq → hqq;

there are extra contributions to these processes, as we will see in the next subsection

(eqs. (3.9) and (3.10)), but these, we can advance, are found to be small and can be

neglected here. Strong bounds can be found for Wilson coefficients entering at tree-level

in the effective Higgs couplings to GG, γγ and Zγ, as they arise in the SM at the one-loop

level. Indeed, marginalizing over cH and cyf , we obtain at the 95% C.L.

κGG ∈ [−0.8, 0.8]× 10−3 , κBB ∈ [−1.3, 1.8]× 10−3 , κZγ ∈ [−6, 12]× 10−3 . (3.8)

Notice that the constraints on g2S κGG are comparable to those on g′2κBB, and that the

bound on the hZγ coupling is quite strong even though the experimental data is only

sensitive to BR(h → Zγ) that are ∼ 10 above the SM value [32, 33]. For the Wilson
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coefficients cH and cyf we do not find significant bounds after marginalizing over the others

(for this reason we do not report them). Although this implies that there is room for BSM

here, we recall that these coefficients cannot be larger than one if we want our expansion

(in higher-dimensional operators) to be reliable.

This ends our analysis for getting the most important constraints on the operators of

table 1. Our results can be particularly useful to bound possible new physics effects in future

new Higgs measurements. We show this below with the example of the h→ V f̄f decay.

3.1 New physics effects in h→ V f̄f

The decays h → V f̄f (V = W,Z) are potentially much richer than two-body decays,

since the different differential partial-widths can give in principle extra information on

BSM contributions [7, 34–39]. Nevertheless, as we will show, most of the new information

that we could extract from measuring the various differential partial-widths of the decay

h→ V f̄f is already constrained by other experiments.

Contributions to h → V f̄f can come from corrections to hV V vertices and contact-

interactions hV f̄f . Apart from the contributions given in eq. (3.3), we have

∆LhV V = 2
h

v

[
ĉW

(
W−µ DµνW+

ν + h.c.
)

+ ĉZ ZµDµνZν + (ĉW − ĉB)tθW ZµDµνAν
]

−2
h

v

[
cWW W+µνW−µν + cZZ Z

µνZµν

]
, (3.9)

∆LhV ff =
h

v

∑
f=fL,fR

[
ghWff ′Wµf̄γ

µf ′ + ghZff Zµf̄γ
µf
]
, (3.10)

where Dµν = ∂µ∂ν −2ηµν and

ĉW = cW + κHW , ĉZ = ĉW + ĉBt
2
θW

, ĉB = cB + κHB , (3.11)

cWW = κHW , cZZ =
1

2
(κHW + κHBt

2
θW

)− 2
s4θW
c2θW

κBB . (3.12)

Eq. (3.10) gives the contributions to the contact hV f̄f vertices that is found to be correlated

with those to the V f̄f vertices:

ghZff =
2

v
δgfZ and ghWff ′ =

2

v
δgfW , (3.13)

where δgfZ and δgfW are given respectively in eqs. (A.3) and (A.11) of appendix A.

The CP-even part of the total amplitude for the process h→ V f̄f can be written as4

M(h→ V Jf ) = (
√

2GF )1/2ε∗µ(q) JV νf (p)
[
AVf ηµν + BV

f (p · q ηµν − pµ qν)
]
, (3.14)

where q and p are respectively the total 4-momentum of V and the fermion pair in the JVf
current (JµfL,R = f̄L,Rγ

µfL,R), εµ is the polarization 4-vector of V , and we have defined

AVf = aVf + âVf
p2 +m2

V

p2 −m2
V

, BV
f = bVf

1

p2 −m2
V

+ b̂Vf
1

p2
(̂bVf = 0 for V = W ) . (3.15)

4We neglect terms proportional to the light fermion masses (see however ref. [38]). Also we omit a

term proportional to CWf εµναβ p
α qβ that could be CP-even if CWf is pure imaginary. None of the Wilson

coefficients of the dimension-6 operators contribute to this term at tree-level.
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The above coefficients are in one-to-one correspondence with the coefficients of the La-

grangians eqs. (3.5), (3.9) and (3.10):

aZf =−gfZ

(
1+

δghZZ
m2
Z

)
+2eQf (ĉW−ĉB)tθW +vghZff , aWf =−gfW

(
1+

δghWW

2m2
W

)
+ vghWff ′ ,

âZf = gfZ

(
1 +

δghZZ
m2
Z

+ 2ĉZ

)
, âWf = gfW

(
1 +

δghWW

2m2
W

+ 2ĉW

)
,

bZf = 8gfZcZZ , bWf = 4gfW cWW ,

b̂Zf = −8eQf tθW κZγ , (3.16)

where we have not included the universal contribution from cH that drops when calculating

BR. All contributions to the 7 quantities in eq. (3.16) correspond to Wilson coefficients

that have already been constrained by other experiments. Indeed, the terms proportional to

δghV V of eq. (3.6) and the universal part of the shifts in gfV , given in eqs. (A.4) and (A.11),

are constrained, as we have shown, at the per-mil level, and can be readily neglected. Sim-

ilarly, κBB that appears in eq. (3.12) is constrained from BR(h→ γγ). The contributions

proportional to ghZff that depends, in particular, on cu,dR , are also constrained but, as

shown in eq. (2.19), only at the per-cent level. Nevertheless, their effects in total ampli-

tudes squared, when summed over the different flavors, can be constrained much more.

This is due to the interesting relation

∑
f=quarks

gfZ ghZff =
2

v

∑
f=quarks

gfZ δg
f
Z =

1

v

δΓhad
Z

Γhad
Z

∑
f=quarks

(gfZ)2 +O(Ŝ, T̂ , δGF /GF ) , (3.17)

where in the first equality we have used eq. (3.13) and in the second we have used the

hadronic part of eq. (A.9) that is true up to pieces proportional to Ŝ, T̂ and δGF /GF . Since

all quantities on the right-hand side of eq. (3.17) are very well measured (per-mille level),

we obtain a constraint on the effect of ghZff at this level. Neglecting these terms, we are

left with only 3 Wilson coefficients, c−V and κ±HV , that are constrained by the measurements

of the Z(γ)WW and hZγ couplings and whose bounds are not so strong. Using eq. (2.27)

and eq. (3.7), we can relate the 7 coefficients of eq. (3.16) with the 3 experimental values

of δgZ1 , δκγ and κZγ . The result is

aZf ' −g
f,SM
Z + 2eQf

(
s2θW δg

Z
1 − tθW δκγ

)
, aWf ' −g

f,SM
W ,

âZf ' g
f,SM
Z (1 + 2c2θW δg

Z
1 + 2t2θW δκγ) , âWf = gf,SMW (1 + 2c2θW δg

Z
1 ) ,

bZf '
2gf,SMZ

c2θW
(δκγ − 4c2θW κZγ) , bWf ' 2gf,SMW (δκγ − 4κZγ) ,

b̂Zf ' −8eQf tθW κZγ . (3.18)

We can use the experimental constraints on δgZ1 , δκγ and κZγ to put a constraint on the
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size of these 7 quantities. For example, for the case of h→ Zl̄l, we find

δaZlL
aZlL
∈ [−0.2, 0.1] ,

δâZlL
âZlL
∈ [−8, 7]× 10−2 , bZlL ∈ [−2, 5]× 10−2, b̂ZlL ∈ [−2, 5] ,×10−2,

δaZlR
aZlR
∈ [−0.2, 0.3] ,

δâZlR
âZlR
∈ [−8, 7]× 10−2, bZlR ∈ [−3, 2]× 10−2, b̂ZlR ∈ [−2, 5]× 10−2 .

Although the allowed range in aZlL,R is quite large, we notice that their impact

on the total amplitude, when summed over lepton chiralities, is much smaller,

2
∑

l=lL,lR
glZa

Z
l /
∑

l=lL,lR
(glZ)2 ∈ [−6, 4]× 10−2.

It is interesting to notice that in the limit g′ → 0 the result of eq. (3.18) is custodial

invariant, i.e., one finds equal corrections for Z and W . This is because, for g′ → 0, the

only Wilson coefficients breaking the custodial symmetry are cT and cfL,R [1] that, being

constrained at the per-mille, have been dropped from eq. (3.18). We then find that the

test of the custodial symmetry used at LHC [40] defined as

λ2WZ ≡
Γ(h→WW (∗))

ΓSM(h→WW (∗))

ΓSM(h→ ZZ(∗))

Γ(h→ ZZ(∗))
, (3.19)

is constrained by

λ2WZ − 1 ' s2θW [0.9cW − 2.6cB + 3κHW − 3.9κHB]

' 0.6δgZ1 − 0.5δκγ − 1.6κZγ ∈ [−6, 8]× 10−2 , (3.20)

where the numerical values of the first line have been taken from [5]. We see that eq. (3.20)

puts a bound on λWZ much stronger than the present direct experimental limit given

by [27]:5 (λWZ − 1) ∈ [−0.5, 0.1].

Along the lines presented here we could also study the corrections from Wilson coeffi-

cients to the Higgs production modes f̄f → V h and V V → h that we could similarly show

that are constrained by our previous analysis.

4 CP-odd operators

For completeness, we show here how CP-odd operators enter in TGC and in the process

h→ V f̄f , and how they can be related. These operators are6

O
BB̃

= g′2|H|2BµνB̃µν , O
GG̃

= g2s |H|2GAµνG̃Aµν ,

O
HW̃

= ig(DµH)†σa(DνH)W̃ a
µν , O

HB̃
= ig′(DµH)†(DνH)B̃µν , (4.1)

O
3W̃

=
1

3!
gεabcW

a ν
µ W b

νρW̃
c ρµ ,

5The experimental bound on λWZ is extracted not only using eq. (3.19) but also considering custodial

breaking effects in vector-boson fusion. The impact of these latter effects is however negligible.
6A CP-odd operator involving 3 gluon field-strengths and the operators iyf |H|2f̄LHfR+h.c. complete

the list of CP-odd operators; since they do not enter in the observables discussed here, they have been

omitted.
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where Ṽ µν = εµνρσVρσ/2 for V = W,B,G. These operators affect TGC as [25]:

∆L
3Ṽ

= ig
(
δκ̃ZcθW Z̃

µν+δκ̃γsθW Ã
µν
)
W−µ W

+
ν +

ig

m2
W

(
λ̃ZcθW Z̃

µν + λ̃γsθW Ã
µν
)
W−ρν W+

ρµ ,

where

δκ̃γ = κ
HW̃

+ κ
HB̃

, δκ̃Z = −t2θW δκ̃γ , λ̃Z = λ̃γ = κ
3W̃

. (4.2)

Although the experimental collaborations have not devoted explicit searches for these types

of structures, constraints on the above coefficients can be obtained in a near future. For ex-

ample, ref. [41] finds that with 10 fb−1 the 14 TeV LHC can potentially obtain |δκ̃γ | . 0.06.

The contribution from CP-odd operators to Higgs physics can be read from the

Lagrangian

∆L
hV Ṽ

= −2
h

v

[
c
WW̃

W+µνW̃−µν + c
ZZ̃

ZµνZ̃µν − 2tθW κ̃Zγ A
µνZ̃µν

−2κ
BB̃
s2θWAµνÃ

µν − 2κ
GG̃

g2s
g2
GAµνG̃

µν A

]
, (4.3)

where, quite analogously to the CP-even case, we have

c
WW̃

= κ
HW̃

, c
ZZ̃

=
1

2
(κ
HW̃

+κ
HB̃

t2θW )−2
s4θW
c2θW

κ
BB̃

, κ̃Zγ =
1

4
(κ
HB̃
−κ

HW̃
)−2s2θW κBB̃ .

(4.4)

Finally, the CP-odd contribution to the h→ V f̄f amplitude is given by

M(h→ V Jf ) = (
√

2GF )1/2ε∗µ(q) JV νf (p)
[
CVf εµναβ p

α qβ
]
, (4.5)

where we find [42]

CVf = cVf
1

p2 −m2
V

+ ĉVf
1

p2
(ĉVf = 0 for V = W ) , (4.6)

with

cZf = 8gfZcZZ̃ , cWf = 4gfW cWW̃
, (4.7)

ĉZf = −8eQf tθW κ̃Zγ . (4.8)

Using eq. (4.2) and eq. (4.4), we find the relations

cZf =
2gfZ
c2θW

(
δκ̃γ − 4c2θW κ̃Zγ − 2s22θW κBB̃

)
, cWf = 2gfW

(
δκ̃γ − 4κ̃Zγ − 8s2θW κBB̃

)
. (4.9)

To our knowledge, the only CP-odd observables measured at present are those in

the decay h → ZZ∗ → 4l [29], but only very weak constraints can be extracted for the

respective Wilson coefficients. Nevertheless, the experimental bound on BR(h→ Zγ) and

BR(h → γγ) can also be used to constrain the squared of κ̃Zγ and κ
BB̃

.7 One obtains

similar constraints to their CP-even counterparts, since the interference term involves the

SM contribution that is one-loop suppressed. Neglecting κ̃Zγ and κ
BB̃

in eq. (4.9), one

obtains a one-to-one relation between the CP-odd contributions to h→ V f̄f and the TGC

parameter δκ̃γ that can be measured in the near future.

7The CP-odd and CP-even contributions add quadratically in the Higgs branching ratios, giving then

independent bounds on the corresponding Wilson coefficients.

– 13 –



J
H
E
P
0
1
(
2
0
1
4
)
1
5
1

-0.010 -0.005 0.000 0.005

cT

cR
e

cV
+

cLL
H3L l

cLL
H3L ql

-0.05 -0.025 0. 0.025

cL
q

cL
H3L q

cR
u

cR
d

cL
q3+cL

H3L q3

Figure 1. Bounds on the Wilson coefficients of eqs. (2.1), (2.5), (2.10) and (2.18), from LEP-I,

SLC and KLOE data (and the necessary information from pp→ lν̄ at the LHC — see appendix B).

Solid red lines denote the 95% C.L. intervals after marginalizing over all other parameters (dashed

lines do not include KLOE data); blue lines are obtained by setting all other coefficients to zero.

The global fit including the operator of eq. (2.20) corresponds to the orange lines.

5 Conclusions

We have made a first step towards a complete SM fit, focusing here on EWSB effects in

gauge-bosons and Higgs physics. We have characterized all possible deformations from SM

physics using the Wilson coefficients of the independent dimension-6 operators, the relevant

ones for our analysis given in table 1. Assuming flavor-universality (but also including the

top-quark operators separately) and taking as the input data mZ , GF , αem and mf , mh, we

have grouped the operators according to their impact on the different experimental data.

In a first group we have the operators that can affect the gauge-boson propagators and

their couplings to fermions. These receive strong constraints from well-measured quanti-

ties, mainly the Z-pole observables at LEP-I and SLC, the W mass at Tevatron, together

with the check of the CKM unitarity from low-energy data. The constraints on the cor-

responding Wilson coefficients from a global fit are summarized in figure 1. To stress the

correlation between the various operators, we compare the 95% C.L. contours obtained

by marginalizing all other coefficients (in red) with the contours obtained by setting all

other coefficients to zero (in blue). More data, such as the low-energy determination of

the ν-nucleon and ν-e scattering or atomic parity violation experiments, could be added

to our analysis. Nevertheless, due to their poorer resolution, we do not expect these data

to affect substantially our results.

In a second group we have operators affecting triple gauge-boson vertices, that con-

trary to the previous group, receive milder constraints. Our basis is suitable for treating

separately these two groups, while other bases, such as the one of ref. [11] used in the fit of

ref. [7], makes this separation more difficult, due to strong correlations between bounds on

different Wilson coefficients. We have 3 (combinations of) Wilson coefficients parametriz-

ing these deviations, given in eq. (2.23). Using the 2-parameter fit of LEP-II [17] where
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-

-0.002 -0.001 0.000 0.001 0.002

ΚGG

ΚBB

Figure 2. Left: bounds on some of the Wilson coefficients of eq. (2.23) from LEP-II TGC data and

BR(h → Zγ). Right: bounds on some of the Wilson coefficients of eq. (3.1) from measurements

of the Higgs BR at the LHC. Color code as in figure 1, with green lines including the theoretical

prior on the coefficients cH and cyf that cannot introduce modifications larger than 50% on SM

predictions.

λγ (and therefore κ3W ) is neglected, we have presented bounds on two of them, eq. (2.28).

Even if we allow for a nonzero λγ , LEP-II data is expected to be able to constrain all

the 3 coefficients at the per-cent level [26], but a combined three-parameter fit is still not

available. In figure 2 we show our results as bounds on the two coefficients c−V and κ+HV
(once the data on BR(h→ Zγ) is also used to constrain the coefficient κ−HV ).

Finally, there are the operators that only affect Higgs physics. These are 8 CP-even

operators (for a single family) that can affect, independently, the Higgs BR to fermions,

γγ and Zγ, as well as production cross-sections both in the gluon-gluon and vector-boson

fusion modes (and also the triple-Higgs coupling). In figure 2 we present the model-

independent constraints on the Wilson coefficients entering in the hγγ and hGG effective-

couplings. These are very severe bounds as the BSM contributions enter at the tree-level

and can then compete with the SM contributions arising at the one-loop level. Constraints

on other Wilson coefficients, cH and cyf , are at present very mild and therefore not shown.

The Wilson coefficient κ−HV enters in BR(h → Zγ) and is constrained, as we said, only

form the present experimental bound BR(h→ Zγ) . 10×BR(h→ Zγ)SM [32, 33], leaving

still room for large deviations from the SM.

Having determined all Wilson coefficients, any other (Higgs) process will depend on the

above physics and therefore their BSM effects can be indirectly constrained. In particular,

we have studied h → V f̄f . Neglecting corrections tightly bounded from the first group

of observables, we have shown that the different form-factors of the h → V f̄f amplitude

are related with TGC and BR(h→ Zγ). These latter are at present already constrained,

and in the future LHC can considerably improve these bounds, being more competitive

than looking for deviations in the h → V f̄f decays. Similar arguments apply to CP-

odd operators.

Possible deviations in the approximate relations derived here, eq. (3.18), eq. (3.20) and

eq. (4.9), would imply the breakdown of our assumptions, hinting possibly towards a non-

linear realization of EWSB, in which h is not part of a Higgs doublet and no connection

between Higgs and gauge-boson physics can be made.
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A Corrections to V f̄f couplings and Z-pole observables

The couplings between the Z-boson and fermions are altered as

gfZ = gf,SMZ + δgfZ + δgf,uniZ , (A.1)

where

gf,SMZ = mZ

(√
2GF

)1/2 (
T 3
Lf −Qfs2θW

)
, (A.2)

is the SM value, T 3
Lf andQf are respectively the weak-isospin and charge of the fermion f =

{fL, fR}, and s2θW ≡
(

1−
√

1− 23/2παem/m2
ZGF

)
/2. We have divided the corrections

into a fermion-specific part δgfZ ,

δgfLZ = mZ

(√
2GF

)1/2(
T 3
L,fc

(3) f
L −

cfL
2

)
, δgfRZ = −mZ

(√
2GF

)1/2 cfR
2
, (A.3)

(notice that for leptons δglLZ = 0 in our basis) and a universal part,

δgf,uniZ = −mZ

(√
2GF

)1/2
Qf δs

2
θW

+
gfZ
2

(
T̂ − δGF

GF

)
, (A.4)

which includes modifications to the wave-function of the Z-boson, δΠ′Z(m2
Z) = 2Ŝs2θW ,

corrections to the input parameters, and contributions to ΠγZ(m2
Z) through

δs2θW =
1

c2θW

[
s2θW Ŝ −

s22θW
4

(
T̂ − δGF

GF

)]
. (A.5)

This is enough to compute the corrections to the observables that we use in the fit (the

uncorrelated subsets {Al, Rl, σ0had,ΓZ} and {Rb, Rc, A0,b
FB, A

0,c
FB, Ab, Ac} from ref. [16]):

Al ≡
(glLZ )2 − (glRZ )2

(glLZ )2 + (glRZ )2
, Rl ≡

Γhad
Z

ΓlZ
, σ0had ≡

12π

m2
Z

ΓlZΓhad
Z

Γ2
Z

, (A.6)
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and

Rq =
(gqLZ )2 + (gqRZ )2

3[(gdLZ )2+(gdRZ )2]+2[(guLZ )2+(guRZ )2]
, Aq =

(gqLZ )2−(gqRZ )2

(gqLZ )2+(gqRZ )2
, A0,q

FB =
3

4
AqAl , (A.7)

where q = b, c at LEP. The partial widths are defined as,

ΓlZ =
mZ

24π
[(glLZ )2 + (glRZ )2], Γhad

Z =
mZ

24π

(
3Nc[(g

dL
Z )2 + (gdRZ )2] + 2Nc[(g

uL
Z )2 + (guRZ )2]

)
,

ΓνZ =
mZ

24π
(gνZ)2, ΓZ = Γhad

Z + 3ΓlZ + 3ΓνZ . (A.8)

Notice that the universal corrections due to δΠ′Z(m2
Z) cancel out from the observables

eq. (A.6), but enter in the total width (and similarly for the partial widths) which is

corrected as

δΓZ
ΓZ

= 2

∑
f g

f
Z(δgf,uniZ + δgfZ)∑

f (gfZ)2
. (A.9)

Finally, the couplings of W -bosons to fermions are modified as

gfW = gf,SMW + δgfW + δgf,uniW , (A.10)

where

gf,SMW =
mWG

1/2
F

21/4
,

δgfW

gfW
= c

(3) f
L ,

δgf,uniW

gfW
=
δmW

mW
− δGF

2GF
. (A.11)

B qq̄′lν̄ contact-interactions at the LHC

Since the fermion-fermion scattering amplitude mediated by contact-interactions grows

with energy, these can be tested with accuracy at the LHC. We are interested here to

put a bound on the 4-fermion operator O(3) ql
LL . This operator affects in particular the

cross-section of pp→ lν̄ that has been measured at the LHC. Nevertheless, the only LHC

analysis [22] has been on the helicity non-conserving (HNC) operator (QrLūR)εrs(L
s
LēR),

which also modifies pp → lν̄. Contrary to O(3) ql
LL , however, the HNC operator does not

interfere with the SM contribution, so that the results of ref. [22] cannot be used for O(3) ql
LL

and a dedicated analysis is necessary.

A signal sample needs to be considered for every value of c
(3) ql
LL and then compared

with the data. Other operators entering in pp → lν̄, such as the HNC operator, are sup-

pressed by small Yukawa couplings under the MFV assumption, that we consider here, and

can be neglected. We simulate the effects of O(3) ql
LL by integrating out a heavy W ′-boson,

implemented with FeynRules [43] and generate parton-level events with MadGraph [44].

We divide the signal and the data in 3 regions, according to the transverse mass of electron

and neutrino: MT ∈ [1, 1.5] TeV, MT ∈ [1.5, 2] TeV and MT > 2 TeV, which we treat as sta-

tistically independent. Ref. [22] reports, respectively, the observation of 22, 0 and 1 events

in these regions. We compute C.L. contours, assuming a Poissonian distribution around

the signal+background and treating errors as nuisances (an estimated 5% systematic error

– 17 –
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Figure 3. The χ2-distribution for the Wilson coefficient of the operator O(3) ql
LL .

in the signal plus a 4.4% in the luminosity are summed in quadrature). We checked that

such estimates reproduced satisfactorily the results in the case of the HNC model. Our

results, in form of the χ2-distribution, are summarized in figure 3 and imply

− 0.001 . c
(3) ql
LL . 0.004 at 95% C.L. . (B.1)

Combining it with the muon channel can give better limits in flavour-universal BSM models,

as the ones considered here. Notice that bounds on c
(3) ql
LL from the differential distribution

of pp→ l+l− at the LHC [24] are weakened once the contributions from other operators are

taken into account. Therefore, eq. (B.1) provides at present the best model-independent

bound on this Wilson coefficient.
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