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Abstract. We revisit the problem of the existence of asymptotic massless boson fields in
quantum field theory. The well-known construction of such fields by Buchholz (Com-
mun. Math. Phys. 52:147–173, 1977; Commun. Math. Phys. 85:49–71, 1982) is based on
locality and the existence of vacuum vector, at least in regions spacelike to spacelike
cones. Our analysis does not depend on these assumptions and supplies a more general
framework for fields only very weakly decaying in spacelike directions. In this setting, the
existence of appropriate null asymptotes of fields is linked with their spectral properties
in the neighborhood of the lightcone. The main technical tool is one of the results of
a recent analysis by one of us (Herdegen in Lett. Math. Phys. 104:1263–1280. doi:10.1007/
s11005-014-0710-5, 2014), which allows application of the null asymptotic limit separately
to creation/annihilation parts of a wide class of nonlocal fields. In vacuum representation
the scheme allows application of the methods of the Haag–Ruelle theory closely analogous
to those of the massive case. In local case this Haag–Ruelle procedure may be combined
with the Buchholz method, which leads to significant simplification.
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1. Introduction

This work is a sequel to an earlier article by one of us [10], in which the infraparti-
cle problem was investigated as the question of the existence of asymptotic fields
with energy–momentum transfer on the mass hyperboloid. The idea was tested on
a model of asymptotic fields in electrodynamics.

In the present paper we turn attention to massless fields. In quantum electro-
dynamics photons do not carry electric charge, so they are not plagued by the
infraparticle problem. As long as their energy content stays away from zero (or at
least vanishes fast enough in the neighborhood of zero), they pose no problems
and may be interpreted as decent zero-mass particles described by Fock represen-
tation built in standard way on the vacuum state. However, this picture, although
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accepted without much ado in most standard textbooks on quantum field theory,
breaks down as soon as interaction with charged particles is turned on.

A symptom of the problem appears already at the classical level: if a parti-
cle carrying charge q is scattered from an incoming four-velocity v to an outgo-
ing four-velocity u, then the radiation (retarded–advanced) field produced in this
process has a long-range tail Fl.r. of the Coulomb decay rate:

Fl.r.(x)=2q x ∧
(

v

[(v · x)2 − x2]3/2
− u

[(u · x)2 − x2]3/2

)
, x2<0.

However, such nonzero tail produces in the momentum space the small-energy
content which excludes the possibility of representing the field, upon quantization,
as a photonic state in the standard Fock space. This is reflected in the appear-
ance of infrared divergencies in the perturbative quantum electrodynamics. On a
more elevated level of general structural analysis, as considered within the alge-
braic approach to QFT, one realizes that the Fock space picture is insufficient for
an adequate description of state space of quantum electrodynamics.

In this article we obtain, in a wide context, a relation between null asymptotic
behavior of fields and their spectral properties in the neighborhood of the light-
cone in the energy–momentum space. Fields are assumed to satisfy some weak
condition on the decay of their commutators in spacelike directions, but need not
be local. We believe that the limits of strict locality may be too narrow in a con-
strained theory like QED; we refer the reader to our earlier papers [10,11] for more
comments on nonlocality and our specific choice of commutator laws. The smear-
ing applied here to the fields still cuts the infrared-singular degrees of freedom,
but no further assumptions beside relativistic positivity of energy spectrum in the
Hilbert space are needed. In particular, we do not assume the existence of the vac-
uum vector. The main tool for this analysis is a recently obtained estimate on the
norms of creation/annihilation components of fields in the assumed class [11]. If a
nonzero asymptotic limit of a field exists, it defines a field with energy–momentum
transfer on the lightcone, satisfying the wave equation. Its creation/annihilation
components describe particle excitations, but the particle interpretation need not
be complete, even in regions spacelike to spacelike cones, as considered in [4].

Next, we show that in vacuum representation the scheme allows the application
of the Haag–Ruelle procedure in close analogy with the massive case. One needs
here a spectral condition of the Herbst type, as well as some weak clustering con-
dition (satisfied in local case). In strictly local case the spectral condition is redun-
dant, if one follows the method used by Buchholz [2]. The proof of the existence
of asymptotic fields and scattering states is then greatly simplified as compared to
[2], due to the independent bounds on creation/annihilation components.

Our notation, mostly standard, is as in the article [11], which is a prerequisite
for the present analysis. Here we recall only a few basic conventions: M is the
Minkowski vector space (‘configuration space’ with fixed central point), M̂ is the
‘momentum space’ isometric with M . The unit, future-pointing vector of the cho-
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sen time axis is denoted by t ; �x is the 3-space part of the vector x , and |x |2 =
|x0|2 +|�x |2. Moreover, for x ∈ M , p ∈ M̂ , we shall denote

x̂ = �x
|�x | , p̂ = �p

| �p| .

Our conventions and notation for Fourier transforms are:

f̃ (ω)= (F1 f )(ω)= 1
2π

∫
eiωs f (s)ds,

(F3g)( �p)= 1
2π

∫
e−i �p·�x g(�x)d3x,

χ̂(p)= (Fχ)(p)= 1
(2π)2

∫
ei p·xχ(x)dx, ϕ̂=F−1ϕ.

Throughout the article λ is a fixed parameter of the physical dimension of length.
We devote a few words to the lightcone geometry. The term ‘lightcone’ itself is

ambiguous, thus we specify: the solid, closed future lightcone will be denoted by
V+, and for the set of (nonzero) future null vectors we shall write:

C+ ={l | l · l =0, l0>0}.
It will also prove useful to denote

Ct+ =C+ ∩{l | t · l =1},
which may be interpreted as t + S2, where S2 is the unit sphere in the space
orthogonal to t . We also recall that if f is a complex measurable function on C+,
which in addition is homogeneous of degree −2: f (γ l)=γ−2 f (l), then the integral
defined by∫

f (l)d2l =
∫

Ct+
f (l)d�t (l),

where d�t (l) is the angle measure on the unit sphere, does not depend on the
choice of the vector t (Lorentz invariance; see, e.g., [7,12]). Finally, we shall denote

Lab = la
∂

∂lb
− lb

∂

∂la

—intrinsic differential operators on the lightcone, and recall that∫
Lab f (l)d2l =0.

2. Null Asymptotes

In what follows the following functional spaces will play an important role.
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DEFINITION 1. Let ε >0. We define the following vector spaces:

(i) Sε : the space of smooth complex functions on R×Ct+ satisfying the bounds

|La1b1 · · · Lak bk ∂
m
s f (s, l)|� constk,m

(λ+|s|)m+1+ε , ai ,bi ∈{1,2,3}.

This space depends on the choice of t (not to burden notation we do not
make this dependence explicit).

(ii) Sn
ε : the space of complex functions on R × C+ which are homogeneous of

degree n: f (γ s, γ l)=γ n f (s, l), and which satisfy the bounds

|La1b1 · · · Lak bk ∂
m
s f (s, l)|�constt,k,m (t · l)n−m

(λ+|s|/t · l)m+1+ε , ai ,bi ∈{0,1,2,3}.

This space does not depend on the choice of vector t (only bounding con-
stants change).
Each function in Sε may be extended to a function in Sn

ε by homogeneity.
Conversely, each function in Sn

ε belongs to Sε when restricted to R×Ct+; such
restriction will be called the t-gauge.

We recapitulate some facts on classical fields satisfying the wave equation (in the
form presented in [7]). Solutions which may be obtained as radiation fields (i.e.,
retarded minus advanced fields) of some matter source (point particles or massive
fields) stabilizing in remote past and future may be written in a convenient integral
representation as

B(x)=− 1
2π

∫
ḃ(x · l, l)d2l, (1)

where ḃ(s, l)∈S−2
ε for some ε >0 (in electrodynamics this applies to the potential

in Lorenz gauge). It follows that ḃ(s, l)=∂b(s, l)/∂s, where b is smooth, homoge-
neous of degree −1, and has finite limits b(±∞, l) (an overdot will always denote
the s-derivative). Field B(x) has well-defined null asymptotes:

lim
r→∞ r B(x ± rl)=±b(x · l, l)∓b(±∞, l)≡bout

in
(x · l, l) (2)

and its long-range spacelike behavior is given by (y2<0)

lim
r→∞ r B(x + r y)=− 1

2π

∫

b(l) δ(y · l)d2l, (3)

where 
b(l)= b(+∞, l)− b(−∞, l) and δ is the Dirac measure. Function b(s, l)
is defined up to an addition of an s-independent term; specifying b(−∞, l) =
−b(+∞, l) one makes it unique.

As the above useful representation does not seem to be widely known, we make
some additional comments on its relation to more standard knowledge. Let B(x)
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be a solution of the wave equation. Choose any time axis st , s ∈R, t a unit, future-
pointing vector, and draw the past lightcone with vertex in s0t on the axis. For x
inside this cone the Kirchhoff formula (see, e.g., [12]) gives the value of B(x) in
terms of the values of this field on the cone (solution of the null Cauchy problem).
If the field has well-defined future null asymptotes, then taking the limit s0 → ∞
one arrives at Equation (1) with b as defined in (2). We draw attention of the
reader to the fact that the spacelike 1/r -tail of such fields is even in the argu-
ment. One shows that fields with odd spacelike 1/r -tail do exist and may also be
represented by the integral of the form (1), but with b not satisfying the decay
properties; these fields do not have well-defined null asymptotes. Fortunately, such
fields are not produced in scattering processes. (It is easy to see that the Lorentz
potential of the field Fl.r. given in Introduction is even.) The whole picture may be
reflected in time.

Another way to view representation (1), (2) is by its relation to the Fourier rep-
resentation. Let ˜̇b(ω, l) be the Fourier transform of ḃ(s, l) in s, as defined in Intro-
duction. The (−2)-homogeneity of ḃ implies the scaling property ˜̇b(γ−1ω,γ l)=
γ−1̃ḃ(ω, l), therefore the relation c(ωl)=−˜̇b(ω, l)/ω is a consistent definition of the
function c(k) on the lightcone. Expressing ḃ in (1) in terms of its transform ˜̇b one
can obtain the usual Fourier representation of the field:

B(x)= 1
π

∫
c(k)δ(k2) sgn(k0)e−ik·x d4k.

Note that 
b(l) = ˜̇b(0, l)/(2π); infrared-singular fields are those for which this
function does not vanish, and produces a 1/r -spacelike tail [as given by (3)]. In
those cases c(k) is singular in k =0, but ωc(ωl) is a regular function of ω. Again,
c(k) becomes more singular for fields with odd spacelike tails.

Relations (1) and (2) show that the field B(x) may be reconstructed from its null
(future or past) asymptote. This is to be compared with the massive case, where
a (sufficiently regular) free field ψ(x) may be reconstructed from timelike (future
or past) asymptotic (i.e., for λ→ ∞) behavior of λ3/2ψ(±λv), functions of v on
the unit hyperboloid H+ ={v |v2 =1, v0>0}. For interacting fields one expects that
in remote future (and past) they separate into free fields, so that their appropriate
asymptotes may serve to define free asymptotic fields. Although this separation is
in fact not complete in a constrained theory like electrodynamics, it holds true for
infrared-regular components.

For quantum fields, even if they are regular functions of x as is the case for
translations of a large class of bounded operators, limiting is singular and one
needs preparatory smearing. In general, if B(x) is a bounded and continuous clas-
sical or quantum field and ν is a complex Borel measure, then we denote

B(ν)=
∫

B(x)dν(x).
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In particular, if χ is an integrable function (with respect to dx), then B(χ) =∫
B(x)χ(x)dx ; for future use we also note that B(χ)(ν)= B(ν)(χ)= B(χ ∗ν).
The above discussion of classical asymptotes supplies now possible choices for

asymptotic smearings. The extraction of massive contributions may be expected to
result from limiting in λ of the operator λ3/2

∫
ψ(λv)g(v)dμ(v), where g is a test

function on H+ and dμ(v) is the standard Lorentz-invariant measure on H+—in
this case the measure ν is supported on the hyperboloid x2 =λ2, x0>0. Discussion
along these lines of fields (anti-)commuting asymptotically in spacelike directions
was the subject of [10]. We found a general relation between asymptotic behav-
ior of this limit and spectral properties of the field in the inside of the lightcone
in momentum space; no further assumptions were needed. In case of vacuum rep-
resentation the scheme yields a Lorentz-invariant formulation of the Haag–Ruelle
theory. Moreover, the scheme has been shown to work in a model of asymptotic
electrodynamics.

In the present article we analyze smeared null asymptotes. We choose a time axis
crossing the origin, with unit future vector t . For (s, l)∈R×Ct+, the set of points
st +rl represents a timelike cylinder, product of a sphere of radius r and the time
axis. Parameter s is the retarded time of a point on this cylinder. Let r be large
enough for this cylinder to be well outside the interaction region. Then smearing
a field over a patch on this cylinder may be interpreted as measuring ‘radiation’
going out into a chosen solid angle over a defined retarded time-span (similarly,
incoming radiation and advanced time for a picture reversed in time; in both cases
ν is supported on the cylinder).

Motivated by this discussion, we introduce:

DEFINITION 2. Let B(x) be a bounded classical or quantum continuous field.
Choose t and let f ∈Sε . Then we denote

B[r, f ]= r

2π

∫
B(st + rl) f (s, l)ds d�t (l). (4)

Moreover, let g be a real continuous function with compact support in (0,∞).
Then we shall write

B[g, f ]=
∫

g(r)B[r, f ]dr. (5)

Both B[r, f ] and B[g, f ] depend on t (not to burden notation we do not indi-
cate this explicitly), but the limit asymptote for classical wave equation solution is
invariant:

PROPOSITION 1. If B(x) is the classical free field (1) and f ∈S−2
ε , then

lim
r→∞ B[r, f ]=

∫
bout(s, l) f (s, l)ds d2l,

which is a Lorentz-invariant quantity.
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An easy proof of this fact is based on relation (2) and on the following fact: if
F ∈S−3

ε , then the integral
∫

F(s, l)ds is a function of l homogeneous of degree −2.
Therefore, the integral

∫
F(s, l)ds d2l is a Lorentz-invariant quantity. We shall see

later, that similar invariance holds in quantum case.

3. Asymptotic Relations

We assume that a QFT is defined in terms of a field *-algebra of bounded oper-
ators acting in a Hilbert space H. The algebra includes, beside observables, also
operators interpolating between inequivalent representations of observables, such
as creators/annihilators of electric charge. Spacetime translations are performed by
a unitary, continuous representation U (a) of the translation group acting in H,
and the spectrum of its generators is contained in V+ (relativistic energy positiv-
ity). However, we do not assume the existence of the vacuum vector state, nor the
action of a Lorentz group representation in H. For each bounded operator B act-
ing in H one defines the field B(x)= U (x)BU (−x). We shall write B ∈ Cn (resp.
B ∈ Cn

t ) if all derivatives DαB(x) with |α| � n (resp. ∂l
0 B(x0) with l � n, in the

Minkowski basis in which t is the timelike basis vector) exist and are continuous
in the norm sense.

Our analysis will be based on the following decay property.

DEFINITION 3 [11]. We shall say that the commutator [B1, B2] of bounded oper-
ators B1, B2 is of κ-type, κ >0, if the following bound is satisfied:

‖[B1, B2(a)]‖ � cDκ(a),

Dκ(a)≡
⎧⎨
⎩

1 a2 � 0
λκ

(λ+|�a|− |a0|)κ a2<0.

with some constant c depending on Bi . The assumption is covariant: if the bound
holds in any particular reference system, it is valid in all other, with some other
constants c.

We shall say that [B1, B2] is of κ∞-type (resp. κ∞
t -type), if Bi∈C∞ (resp. Bi ∈C∞

t )
and all [Dα1 B1, Dα2 B2] (resp. all [∂n1

0 B1,∂
n2
0 B2]) are of κ-type.

For any real k>0 and B ∈C∞
t operators Bk± introduced by

Bk±

̂
(p)= e∓ikπ/2θ(±p0) |p0|k B

̂
(p) (6)

are well defined, bounded and in C∞
t [11] (Fourier transform conventions as

defined in Introduction). We shall denote by G±(E) any real functions
〈0,+∞) → 〈0,+∞〉 which satisfy the following conditions:
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(i) G±(E) are nonincreasing,

(ii) G± ∈ L2(〈0,+∞)),

(iii) G+(E) � const

(note that G−(0) may take the value +∞). Then the following holds.

THEOREM 2 [11].

(i) If [B, B∗] is of κ∞
t -type, then for k>(κ+1)/2 one has the bound

‖Bk±(ν)G±(P0)‖2 � const
∫

Dκ(x − y)d|ν|(x)d|ν|(y),

with the bounding constant depending on B, κ, k and G±, and where |ν| is the
variation measure of the complex Borel measure ν.

(ii) If [B1, B2] is of κ∞
t -type, then for k�κ also [B1, Bk

2±] and [Bk
1±, Bk

2±]
(uncorrelated signs) are of κ∞

t -type.

We note that the classes of operators G±(P0) include (1 +λP0)−1, which will be
of particular interest below, starting from Equation (30).

Using this tool we shall now obtain the asymptotic behavior of B smeared
according to (4) in Definition 2. Moreover, it is a well-known fact that one can
usually regularize asymptotic behavior of fields by additionally smearing them in
limiting parameter. Thus we assume that g is smooth, such that

supp g ⊆〈τ1, τ2〉⊂ (0,∞),

∫
g(r)dr =1, (7)

and for η∈ (0,1〉, w=w(R)=λ(R/λ)η, we define

gηR(r)=w−1g(w−1(r − R)+1), gR(r)= g1
R(r)= R−1g(R−1r). (8)

These functions serve to smear B as in Equation (5).

THEOREM 3. Let [B, B∗] and [B1, B2] be of κ∞
t -type, and let f, f1, f2 ∈Sε with

ε >2. Then

(i) for κ <2, k>(κ+1)/2:
‖Bk±[r, f ]G±(P0)‖2 � const(λ+ r)2−κ ;

(ii) for κ >2, k>3/2:
lim sup

R→∞
‖Bk±[gηR, f ]G±(P0)‖2

� const lim sup
r→∞

‖Bk±[r, f ]G±(P0)‖2

� const
∫

| f (s1, l) f (s2, l)|[(s1 − s2)
2 +λ2]ds1 ds2 d�t (l).
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(iii) For k�κ >2 let the supports of the functions

Ct+ � l →‖ fi (., l)‖∞ = sup
s∈R

| fi (s, l)|, i =1,2

be disjoint. Then for β=min{κ, ε} and any c�1 the bound

∥∥[Bk
1±[r1, f1], Bk

2±[r2, f2]
]∥∥ � const

(r1r2)
(β−2)/2

(uncorrelated signs) holds uniformly for 1/c � r1/r2 � c. Moreover, for any
functions gηi

i , i =1,2:
∥∥[Bk

1±[gη1
1R, f1], Bk

2±[gη2
2R, f2]

]∥∥= O(R−(β−2)) (R →∞).

Proof. We denote r2 = r1r2, 
r = r2 − r1, 
s = s2 − s1, ξ2 = l1 · l2/2; as l1, l2 ∈Ct+,
there is ξ ∈〈0,1〉. Then |r2�l2 −r1�l1|2 = (
r)2 +4r2ξ2. In case (ii) there is 2k −1>2,
so without restricting generality we can restrict attention to κ such that 2k − 1>
κ >2. Now we can use Theorem 2: for cases (i) and (ii) point (i) of the Theorem,
and for case (iii) point (ii). Thus in each of these cases we have to find bounds on
I =∫ I (s1, l1)| f1(s1, l1)|ds1 d�t (l1), with

I (s1, l1)= r2
∫

Dκ(
s +
r, r2�l2 − r1�l1)| f2(s2, l2(ξ, ϕ))|dξ2 dϕ ds2, (9)

where ϕ is the azimuthal angle of �l2 in the plane orthogonal to �l1, and where f1 =
f2 = f , r1 = r2 = r in case (i) and (ii), and |
r | � dr with d = c −1/c in case (iii).

Case (i) and (ii). We change the integration variable in (9) by ρ = 2rξ and split
integration region into two regions: (a) ρ � |
s|, and (b) the rest. In region (a),
we use Dκ�1 and find

I (s1, l1)(a)�const
∫
(a)

| f (s2, l2(ρ/2r, ϕ))|dρ2 dϕ ds2.

The rhs is bounded and for r →∞ tends to const
∫
(
s)2| f (s2, l1)|ds2. In region

(b) there is 2r�ρ�|
s| and we find

I (s1, l1)(b)�const
∫
(b)

| f (s2, l2(ρ/2r, ϕ))|
(λ+ρ−|
s|)κ dρ2 dϕ ds2.

In case (i) the rhs is bounded by const(λ + r)2−κ , which closes the proof
of this case. In case (ii) the limit of the rhs for r → ∞ is bounded by
const

∫
(λ+|
s|)| f (s2, l1)|ds2, which closes the proof of (ii) for Bk±[r, f ].

Statement on Bk±[gηR, f ] is obvious.

Case (iii). The separation of supports is reflected in the restriction ξ�ξ0 for some
ξ0>0. Here we split integration into regions (a) |
s +
r |�[2r2ξ2 + (
r)2]1/2 and
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(b) the rest. In region (a), we have

[4r2ξ2 + (
r)2]1/2 −|
s +
r | � [4r2ξ2 + (
r)2]1/2 −[2r2ξ2 + (
r)2]1/2

� r2ξ2√
4r2ξ2 + (
r)2

� rξ√
4+ (d/ξ)2 � brξ,

where b = [4 + (d/ξ0)
2]−1/2 and in the second to last step we used the bound

|
r |�dr . Thus in this region the function Dκ in the integrand of I is bounded by
const(λ+brξ)−κ . In region (b) we have

|
s| � [2r2ξ2 + (
r)2]1/2 −|
r | � r2ξ2√
2r2ξ2 + (
r)2

� brξ.

Therefore, in this region integration over ds1ds2 gives a term bounded by const
(λ+brξ)−ε (put Dκ�1 and use Lemma 14 in Appendix A). Thus we obtain

I�const
∫ 1

ξ0

r2dξ2

(λ+brξ)β
� const

b2(λ+bξ0r)β−2
,

with β given in the thesis.

4. Spectral Properties

In this section we shall obtain a general relation between the asymptotic behav-
ior of the operators Bk±[r, f ]G±(P0) and the spectral properties of the Fourier
transform Bk±

̂
(p)G±(P0) in the neighborhood of the lightcone. We recall that all

conventions on Fourier transforms are summarized in Introduction; in particular,
f̃ (ω, l) below is the one-dimensional transform of f (s, l) in s, as defined there.

Our main tool in this section will be a partial result of Proposition 9 in [11]. We
rewrite the necessary result with the use of the norms ‖.‖p,1 defined in Appendix C
and ask the reader to find out their properties there.

PROPOSITION 4 [11].1 Let [B, B∗] be of κ∞
t -type, κ∈(0,3), and let k>(κ+1)/2.

Then the following bound holds

‖Bk±(ϕ)G±(P0)‖�const‖ϕ‖p,1,

with p =6/(6−κ) and the bounding constant depending on B, κ, k, and G±.

Thus Bk±(ϕ)G±(P0), originally defined for integrable ϕ, extends also to the
space L p,1, as defined in Appendix C.

1Proposition 9 in [11] assumes [B, B∗] of κ∞ type, but in fact κ∞
t is sufficient for the proof

in the case of Bk±.
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Let f (s, l)∈Sε . Then it is easy to show that

Bk±[r, f ]= Bk±(νr ),

where dνr (x)= (2πr)−1δ(|�x | − r) f (x0 − r, t + x̂)dx (recall notation introduced in
Introduction). Three-dimensional Fourier transform of this measure is a smooth
function

(F3νr )(x
0, �p)= r

(2π)2

∫
e−ir �p·�l f (x0 − r, l)d�t (l).

Using the expansion (53) given in Appendix B one finds

(F3νr )(x
0, �p)= i

2π | �p|
[
e−ir | �p| f (x0 − r, t + p̂)− e+ir | �p| f (x0 − r, t − p̂)

]

+ r

(2π)2
(F3 R)(x0 − r, r �p). (10)

The inverse Fourier 3-transform of the rest in the second line above is

jr (x)= 1
(2πr)2

R(x0 − r, �x/r), so ‖ jr‖p,1 = r (3/p)−2

2π

∫
‖R(x0, .)‖p dx0.

Suppose that f ∈ Sε , ε > 2. Then using the bound (56) in Appendix B one finds
that the integral on the rhs above is finite for p> 3/2. Therefore, for such p we
have

‖ jr‖p,1 = const r−(2−3/p)→0 for r →∞.

Let [B, B∗] be of κ∞
t -type with κ > 2 and k > 3/2. Then one can always find

κ ′ ∈ (2,3) such that κ ′�κ and k>(κ ′ +1)/2. Then by Proposition 4

‖Bk±( jr )G±(P0)‖�const ‖ jr‖6/(6−κ ′),1 = const r−(κ ′−2)/2.

As Bk±(ϕ)G(P0±) extends both to ϕ= νr as well as ϕ= jr in the assumed case,
the operator

Bk±(νr− jr )G(P
0±)= Bk±

̂
(ν̂r− jr )G(P

0±)

is well defined, the extension on the rhs defined in terms of the lhs. Taking time-
transform of Equation (10) we find

̂(νr− jr )(p)= i

2π | �p|
[
eir p−

f̃ (p0, t + p̂)− eir p+
f̃ (p0, t − p̂)

]
.

Introducing notation

p± = p0 ±| �p|, p̂± = t ± p̂ (∈Ct+), (11)

which we shall use from now on, we summarize and extend the result of our pre-
ceding discussion as follows.
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PROPOSITION 5. Let κ >2, k>3/2, and let f ∈Sε, ε >2.
(i) If [B, B∗] is of κ∞

t -type, then

Bk±[r, f ]G±(P0)

= i

2π

∫ [
eir p−

f̃ (p0, p̂+)− eir p+
f̃ (p0, p̂−)

]
Bk±

̂
(p)G±(P0)| �p|−1 d p

+O‖.‖(r−β). (12)

(ii) If in addition [∂a B,∂b B∗] is of κ∞
t -type, then

(∂a B)k±[r, la f ]G±(P0)

= −1
2π

∫ [
eir p−

p− f̃ (p0, p̂+)− eir p+
p+ f̃ (p0, p̂−)

]
Bk±

̂
(p)G±(P0)| �p|−1 d p

+O‖.‖(r−β), (13)

Bk±[r, ḟ ]G±(P0)+ (∂a B)k±[r, la f ]G±(P0)

= 1
2π

∫ [
eir p−

f̃ (p0, p̂+)+ eir p+
f̃ (p0, p̂−)

]
Bk±

̂
(p)G±(P0)d p + O‖.‖(r−β),

(14)

where β > 0 and O‖.‖ indicates a bound in norm. Both sides of these equalities are
bounded in norm uniformly with respect to r .

Proof. By Theorem 3 the lhs of (12) is bounded in norm uniformly with respect
to r , and the formula itself summarizes the result of the preceding discussion.
Relation (13) follows directly from (i): one substitutes on the rhs of Equation (12)

f̃ (p0, p̂±)→ ( p̂±)a f̃ (p0, p̂±), B

̂
(p)→ i pa B

̂
(p), (15)

and notes that p̂± · p = p∓. Relation (14) follows from the former two
formulas.

We note the following identity for further use:

∂r Bk±[r, f ]= (∂a B)k±[r, la f ]+ r−1 Bk±[r, f ], (16)

which follows from the Definition 2 for B ∈C1.
The results of Proposition 5 are strengthened by smearing in r . We recall that

w is a function of R as given before Equation (8), and also note that

g̃ηR(u)= ei(R−w)u g̃(wu).

PROPOSITION 6. Let κ >2, k>3/2, and let f ∈Sε, ε >2.
(i) If [B, B∗] is of κ∞

t -type, then

Bk±[gR, f ]G±(P0)=±i
∫

g̃(Rp∓) f̃ (p0, p̂±)Bk±

̂
(p)G±(P0)| �p|−1 d p

+O‖.‖(R−γ1), (17)
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(ii) If in addition [∂a B,∂b B∗] is of κ∞
t -type, then

(∂a B)k±[gηR, la f ]G±(P0)= O‖.‖(w−1), (18)

Bk±[gηR, ḟ ]G±(P0)=
∫ [

g̃ηR(p−) f̃ (p0, p̂+)+ g̃ηR(p+) f̃ (p0, p̂−)
]

Bk±

̂
(p)G±(P0)d p

+O‖.‖(R−γ2 ), (19)

Bk±[gR, ḟ ]G±(P0)=
∫

g̃(Rp∓) f̃ (p0, p̂±)Bk±

̂
(p)G±(P0)d p + O‖.‖(R−γ3), (20)

where γi are some positive numbers. Both sides of these equalities are bounded in
norm uniformly with respect to R.

Proof. (i) Smearing relation (12) with gR one obtains formula which differs from
(17) by the ‘wrong’ term

∓i
∫

g̃(Rp±) f̃ (p0, p̂∓)Bk±

̂
(p)G±(P0)| �p|−1 d p (21)

on the rhs. We choose numbers κ ′ ∈ (2,3), κ ′<κ, and δ>0 such that

(κ ′ +1)/2+ δ< k.

We write the term (21) as ∓ie∓iδπ/2 Bk−δ± (χ±
R ), where χ±

R is the inverse transform
of

χ̂±
R (p)= θ(±p0)|p0|δ| �p|−1g̃(Rp±) f̃ (p0, p̂∓).

We note that k −δ>(κ ′ +1)/2, so the use of Proposition 4 gives then the first esti-
mate in the following sequence:

‖Bk−δ± (χ±
R )‖�const ‖χ±

R ‖q,1�const R−(κ ′−2)/2−δ, (22)

with q = 6/(6 − κ ′), and the proof of the second inequality is a more technical
point, which we shift to Appendix D.
(ii) We smear identity (16) with gηR(r). The term on the lhs may be integrated by
parts, which yields −w−1 B[g′η

R, f ]. As the second term on the rhs is O‖.‖(R−1)

upon smearing, the relation (18) follows. Next, we smear identity (14) with gηR(r),
which yields (19). For η= 1 the smeared ‘wrong’ term on the rhs is estimated by
R−γ3 with the use of the method applied in (i) and one obtains (20).

We end this section with a remark on further smearing of operators of the form
[Bk±(νr− jr )G(P0±)](�x) with an integrable function h(�x), which will be needed in
the next section. As a result, one obtains Bk±(νr− jr )(h)G(P0±). However, we note

that νr
(3)∗ h is integrable (with

(3)∗ denoting the 3-space convolution), while jr
(3)∗ h is

in L p,1 [due to the relation (60)]. Therefore, the smeared operator may be further
written as

Bk±(νr− jr )(h)G(P
0±)= Bk±((νr− jr )

(3)∗ h)G(P0±)=2πBk±

̂
( ̂(νr− jr )F3h)G(P0±). (23)
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5. Asymptotic Fields

In this section we shall find that if the asymptotic limit for r →∞ of the operators
Bk±[r, f ]G±(P0) exists, it defines a massless field. Our investigation is thus based
on the following supposition.

ASSUMPTION 1. Let k>3/2 and [B, B∗] be of κ∞-type with κ >2. We assume
that for all f ∈Sε with ε >2 there exist weak limits

Bk out± [ f ]G±(P0)=w− lim
r→∞ Bk±[r, f ]G±(P0). (24)

DEFINITION 4. Let f (s, l) = b(n)(s, l) ≡ ∂nb(s, l)/∂sn , with n�2, b ∈ Sε , ε > 2.
Then we denote

Bout± [ f ]G±(P0)= Bn out± [b]G±(P0).

We note that for positive integer m there is Bk+m± [r,b]= Bk±[r,b(m)], so the defini-
tion is consistent.

THEOREM 7. Let the terms of Assumption 1 and Definition 4 be satisfied. Then

(∂a B)out± [la f ]G±(P0)=0, (25)

Bout± [ ḟ ]G±(P0)=w − lim
r→∞

1
2π

∫
eir p∓

f̃ (p0, p̂±)B
̂
(p)G±(P0)θ(±p0)d p, (26)

� Bout± [ ḟ ]G±(P0)=0. (27)

Proof. The operator on the lhs of (25) exists as a weak limit of (∂a B)n±[r, lab].
But according to (18) after smearing this tends to zero, so (25) follows.

Relation (14) gives now for k =n and with b replacing f

Bn out± [r, ḃ]G±(P0)

=w − lim
r→∞

1
2π

∫ [
eir p−

b̃(p0, p̂+)+ eir p+
b̃(p0, p̂−)

]
Bn±
̂
(p)G±(P0)d p. (28)

We need to show that the two terms on the rhs of Equation (28) have separate
limits. To this end, we denote

(F3 �h)( �p)= (2π)−1e∓iδπ/2 p̂ | �p|δ(1+λ2| �p|2)−2,

with δ∈ (0,1), δ < n − (3/2). This function satisfies the assumptions of Lemma 14
in [11] with γ = δ, so �h(�x) is integrable. Consider relation (14) with the replace-
ments

B →C = (1−λ2
)2 B, k →n − δ, f (s, l)→�l b(s, l).
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As n − δ > 3/2, the lhs still has a finite week limit for r →∞ (by Assumption 1).
Take the translation of the resulting formula by �x , take the scalar product with
�h(�x) and integrate over d3x . As �h is integrable, the lhs again has a finite weak limit
for r →∞. Also, by integrability of �h the contribution of the rest vanishes in the
limit. We turn to the integral on the rhs of (14). Taking into account the remark
closing Section 4 the effect of the described operations obeys the scheme (23) and
amounts to the replacements:

f (p0, p̂±)→2π(F3 �h)( �p) · (± p̂)b(p0, p̂±), Bk±

̂
(p)→ (1+λ2| �p|2)Bk−δ±

̂

(p).

Substituting here the transform (F3 �h)( �p), using p̂ · p̂ =−1 (Lorentz product) and
recalling the definition (6) we obtain expression similar to the rhs of (28), but with
minus sign in front of the first term in brackets. Thus separate limits of the two
terms exist. But from the proof of Proposition 6(ii) we know, that after smearing
with gR(r) the ‘wrong’ term vanishes in the limit, so the limit before smearing is
also zero. Transferring the derivatives from B to b we arrive at the relation (26).

To prove (27) we note that acting with � on (26) one produces on the rhs addi-
tional factor −p2 under the integral. On the other hand, using (26) we also find:

(∂a B)out± [la ḟ ]G±(P0)

=w − lim
r→∞

i

2π

∫
eir p∓

p∓ f̃ (p0, p̂±)B
̂
(p)G±(P0)θ(±p0)d p;

this is shown as in the proof of Proposition 5, by replacements (15) applied to the
rhs of (26). Therefore, noting that −p2 = (p0 ∓| �p|)2 −2p0(p0 ∓| �p|), we can write

� Bout± [ ḟ ]G±(P0)=−(∂a∂b B)out± [lalb ḟ ]G±(P0)−2(∂a B)out± [la f (2)]G±(P0).

But this vanishes according to (25).

We now turn to the question of the (in)dependence of the asymptotic fields
on the choice of time axis. To address this question, we shall assume that our
Assumption 1 is valid in all frames—we recall that up to now the time axis vector
t was kept fixed.

We first rewrite definition (4) in a way free from the assumption on particular
gauge of vectors l. We note that if F(s, l) is a function homogeneous of degree
−m, then the integral

∫
F(s, l)ds is a function of l homogeneous of degree −m +1.

Let ḟ (s, l) be homogeneous function of degree −2. Then Definition 4 (where we
use ḟ in place of f ) may be written as

B[r, ḟ ]= 1
2π

∫
r

t · l
B
( st + rl

t · l

)
ḟ (s, l)ds d2l;

clearly in t-gauge this reduces to the former form, but has the advantage that the
dependence on vector t is now explicit. We differentiate the t-dependent expression
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under the integral with respect to ta and find:

∂

∂ta

[
r

t · l
B
( st + rl

t · l

)]

= rs

(t · l)3
(
t · l δb

a − latb)(∂b B)
( st + rl

t · l

)
− r∂r

[
rla
(t · l)2

B
( st + rl

t · l

)]
.

Thus restoring on the rhs the t-gauge we can write

(∂/∂ta)B[r, ḟ ]= (∂b B)[r, (δb
a − latb)s ḟ ]− r∂r B[r, la f ].

Smearing this with gR(r) and integrating the far right element by parts we obtain

(∂/∂ta)B[gR, ḟ ]= (∂b B)[gR, (δ
b
a − latb)s ḟ ]+ B[h R, la ḟ ], (29)

where h R(r)= R−1h(R−1r), h(u)=d[ug(u)]/du.

THEOREM 8. Let the terms of Assumption 1 be satisfied with respect to all
vectors t, and let f (s, l)= b(3)(s, l), with b ∈ S2

ε , ε > 2. Then operators Bout± [ ḟ ] do
not depend on the choice of time axis used for their definition.

Proof. We have s ḟ (s, l)= b(3)1 (s, l), with b1(s, l)= sḃ(s, l)− 3b(s, l)∈ S2
ε . Calcu-

lating in t-gauge one finds that B3±[r, ḃ]= B[r, ḃ(3)± ], where b̃±(ω, l)= θ(±ω)̃b(ω, l),
and similarly for other terms in Equation (29). Therefore,

(∂/∂ta)B3±[gR, ḃ]= (∂b B)2±[gR, (δ
b
a − latb)ḃ1]+ B3±[h R, la ḃ].

The limits of the operators on the rhs, superposed with G±(P0), exist before
smearing (for r → ∞). But the second operator is smeared with the derivative of
a function vanishing at the end points, so its limit for R → ∞ is zero. Next, we
note that using (25) we can write the limit of the first term as:

w − lim
r→∞(∂b B)2±[r, (δb

a − latb)ḃ1]G±(P0)

=w − lim
r→∞(∂b B)2±

[
r,
(
δb

a − tatb + (la − ta)(l
b − tb)

)
ḃ1
]
G±(P0).

The limit on the rhs is obtained with the use of (26), where one has to substitute

B

̂
(p)→ i pb B

̂
(p) and f̃ (p0, p̂±)→ (δb

a − tatb + p̂a p̂b)b̃1(p
0, p̂±).

But the contraction of these terms vanishes, so the limit of B3±[gR, ḃ] does not
depend on t . As this limit exists before smearing with gR , the thesis follows.

We shall now want to be able to compose asymptotic fields. With that in mind
we make a stronger supposition.
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ASSUMPTION 2. Let the terms of Assumption 1 and Definition 4 be satisfied.
We assume that in this context the limits exist as strong limits after smearing with
gR(r); i.e., the limit in (24) is equal to

s− lim
R→∞ Bk±[gR, f ]G±(P0).

From now on we choose G±(P0)= (1+λP0)−1 and note that if B ∈C∞
t , then

(1+λP0)m B(1+λP0)−m−1 =
m∑

l=0

(m
l

)
(−iλ∂0)

l B (1+λP0)−l−1; (30)

this is easily obtained by writing

exp [iτ(1+λP0)] B = B(τλ) exp [iτ(1+λP0)]
and comparing τm-terms. Therefore, under the conditions of Assumption 2 the
operators (1+λP0)m Bk±[gR, f ](1+λP0)−m−1 are bounded and have strong limits.

PROPOSITION 9. Let B, Bi (i = 1, . . . ,n) satisfy the conditions of Assumption 2.
Then

Bkout± [ f ](1+λP0)−m−1H⊆ (1+λP0)−mH, (31)

s− lim
R→∞(1+λP0)m Bk±[gR, f ](1+λP0)−m−1

= (1+λP0)m Bkout± [ f ](1+λP0)−m−1, (32)

s− lim
R→∞ Bk

1±[gR, f1] · · · Bk
n±[gR, fn](1+λP0)−n−1

= Bkout
1± [ f1] · · · Bkout

n± [ fn](1+λP0)−n−1 (33)

(uncorrelated signs).

Proof. For any ψ ∈H there is

s− lim
R→∞ Bk±[gR, f ](1+λP0)−m−1ψ= Bkout± [gR, f ](1+λP0)−m−1ψ,

s− lim
R→∞(1+λP0)m Bk±[gR, f ](1+λP0)−m−1ψ=ϕ

for some ϕ ∈H, the second relation by remarks preceding the proposition. But as
(1 +λP0)m is self-adjoint, its graph is closed and Equations (31) and (32) follow.
Equation (33) is an immediate consequence.

THEOREM 10. Let fi (s, l)= b(3)i (s, l), bi ∈ Sε (i = 1,2,3), ε > 2 and let the sup-
ports of the functions

Ct+ � l →‖ fi (., l)‖∞ = sup
s∈R

| fi (s, l)|, i =1,2
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be disjoint. If Bout± [ fi ](1+λP0)−1 exist as strong limits according to Assumption 2,
then

[
Bout± [ f1], Bout± [ f2]

]
(1+λP0)−2 =0, (34)[

Bout± [ f1],
[
Bout± [ f2], Bout± [ f3]

]]
(1+λP0)−3 =0 (35)

(uncorrelated signs).

Proof. Equation (34) is an immediate consequence of relation (33) and Theo-
rem 3(iii). For Equation (35) one needs in addition to decompose f3 = f31 + f32,
with supp fi ∩ supp f3i = ∅ (i = 1,2). For contribution of f32 the equality follows
directly, and for contribution of f31—by Jacobi’s identity.

6. Haag–Ruelle Case

In this section we supplement our basic assumptions on the decay of commutators,
Definition 3, and on relativistic positivity of energy, by the existence of vacuum
and one-particle massless states. In this framework we present the construction of
scattering states which closely parallels the one used in the Haag–Ruelle scatter-
ing theory in case of massive particles (cf. the exposition in [10]). Neither of the
Assumptions 1, 2 introduced in the preceding section is needed in this construc-
tion. To prove the existence of the asymptotic states we suppose instead that an
energy–momentum condition of the type similar to the one used in [10] is fulfilled.
Similarly as in the massive case, the full Fock structure of states needs a clustering
property introduced in this reference.

For completeness, we also give a short account of the case of local fields. Local
fields satisfy clustering property mentioned above. Moreover, the Cook method
used for the construction of asymptotic states (which needs the spectrum condi-
tion) may be replaced by an independent proof of the existence of asymptotic
fields. The idea of this proof is due to Buchholz [2], but our construction is sig-
nificantly simpler, compared to exposition in [2], due to the bound on the norm
of the operators Bk±[gR, f ]G±(P0) given in Theorem 3(ii). The possibility of sim-
ilar simplification was already noticed by Buchholz in [3].

6.1 From now on, we consider only operators B belonging to some ∗-subalgebra
of B(H) which we denote by F and interpret as an algebra of quantum fields.
By assumption, operators from F are infinitely differentiable and their commuta-
tors are (pairwise) of κ∞ type with κ > 2. Moreover, we assume throughout that
f =b(3) for some b∈S1

ε , ε>2. We recall that function g satisfies (7), which implies
g̃(0)= 1

2π . Also, we put G±(E)= G(E)= (1 +λE)−1. Since b ∈S1
ε , the function f

is homogeneous of degree −2:

f (μs,μl)=μ−2 f (s, l), f̃ (μ−1ω,μl)=μ−1 f̃ (ω, l) (36)
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for all μ> 0. We recall notation introduced in Equation (11), which will also be
used for energy–momentum operators:

P± = P0 ±| �P|, P̂± = t ± P̂ .

Let us define the following operators:

B±
R [ f ](1+λP0)−1 = B3±[gR,b](1+λP0)−1,

B ′±
R [ f ](1+λP0)−1 =±i

∫
g̃(Rp∓) f̃ (±1, |p0| p̂±)B

̂
(p)(1+λP0)−1θ(±p0)d p.

Taking into account that f̃ (p0, p̂±)/p0 =sgn p0 f̃ (sgn p0, |p0| p̂±) [by Equation (36)]
and using the result of Theorem 6(ii) [Equation (20)], we obtain

‖(B±
R [ f ]− B ′±

R [ f ])(1+λE)−1‖= O(R−γ ) (37)

for some γ > 0. This estimate will allow us to use operators B±
R [ f ] and B ′±

R [ f ]
interchangeably. In particular, all bounds listed in this and the following paragraph
apply to both of these operators.

As a result of Theorem 3(ii) the norm

‖B±
R [ f ](1+λP0)−1‖=‖B3±[gR,b](1+λP0)−1‖

is bounded by a constant independent of R. Using Equation (30), we show that

‖(1+λP0)m B±
R [ f ](1+λP0)−1−m‖�constm

from which it follows that

‖(1+λP0)m B±
1,R[ f1] · · · B±

n,R[ fn](1+λP0)−n−m‖�constm,n (38)

for m,n ∈N.

6.2 Let the supports of ‖ fi (·, l)‖∞ = sups∈R | fi (s, l)| (i =1,2) be disjoint. Then:
∥∥(1+λP0)m

[
B±

1,R[ f1], B±
2,R[ f2]

]
(1+λP0)−2−m

∥∥= O(R−γ ), (39)∥∥(1+λP0)m
[ d

dR B±
1,R[ f1], B±

2,R[ f2]
]
(1+λP0)−2−m

∥∥= O(R−(1+γ )), (40)∥∥(1+λP0)m
[
B±

1,R[ f1],
[
B±

2,R[ f2], B±
3,R[ f3]

]]
(1+λP0)−3−m

∥∥= O(R−γ ) (41)

(uncorrelated signs) for some γ >0. For m =0, the first bound follows directly from
Theorem 3, the second bound is the consequence of the first one since

d
dR

B±
R [ f ]= 1

R
B3±[h R,b],

where h R(r)= 1
R h(r/R), h(r)= −g(r)− rg′(r). The third bound may be obtained

by the method used in the proof of Theorem 10. To generalize the above result
for any m ∈N we use the identity (30).
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6.3 Now one assumes the existence of the vacuum—the unique up to a phase, unit
vector �∈H which is invariant under the action of translation operators U (x). Let
E(A), A ⊆ M̂ , be the spectral family of the four-momentum operators. Then for
μ � 0 we denote

Eμ= E
({p |0 � p2 � μ2, p0 � 0}).

In particular, E0H⊂H is the subspace of massless one-particle states.
We say that the operator B ∈F fulfills the (energy–momentum) spectral condi-

tion if for some ε >0∫ ε

0
‖(Eμ− E0)B�‖dμ

μ
<∞. (42)

For such operators the following integrability condition holds
∫ ∞

0

∥∥∥(1+λP0)n
dB ′+

R [ f ]�
dR

∥∥∥dR<∞,

which will be used to show the existence of asymptotic states. To prove this, let us
note that, since U (x)�=�,

B ′+
R [ f ]�= i(2π)2 g̃(R P−) f̃ (1, P0 P̂+)B�. (43)

Thus, because f̃ (1,ωl)= f̃ (ω, l)/ω= (−i)3ω2b̃(ω, l) for ω>0,

dB ′+
R [ f ]�
dR

=−(2π)2 P− g̃′(R P−)(P0)2b̃(P0, P̂+)B�≡ T R−1φ(R P2)B�,

where g̃′(ω)=dg̃(ω)/dω, φ(u)=u/(1+λu)2 and

T =−(2π)2 P0(P+)−1g̃′(R P−)P0b̃(P0, P̂+)(1+λR P2)2,

and we have used relation P2 = P− P+. We observe that ‖(1+λP0)nT ‖ is bounded
by a constant independent of R: this follows from the estimates

‖P0(P+)−1‖�1, ‖P+(P0)−1‖�2, ‖(1+λP0)n+2 P0b̃(P0, P̂+)‖�const,

‖g̃′(R P−)(1+λP0)−2(1+λR P2)2‖
�‖g̃′(R P−)(1+ R P−)2‖‖(1+λP0)−2(1+λP+)2‖�const.

Therefore,∥∥∥∥∥(1+λP0)n
dB ′+

R [ f ]�
dR

∥∥∥∥∥�const
1
R

‖(1− E0)φ(R P2)B�‖

�const
1
R

‖(ER−1/4 − E0)B�‖+ const
1

R3/2
‖(1− ER−1/4)B�‖,

where we used the following facts: E0φ(R P2) = 0, function φ is bounded and
supu>R1/2 |φ(u)|< const R−1/2. Both terms on the rhs are integrable, the first one
by the spectral condition.
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The spectral condition (42) is fulfilled, in particular, in the vacuum representa-
tion of free massless theory by the Weyl operators—we show this in Appendix E.2

6.4 Let the spectral condition (42) be satisfied for all B j ( j =1, . . . ,n). Then for f j

such that ‖ f j (·, l)‖∞ have disjoint supports there exist limits

lim
R→∞ B+

1,R[ f1] · · · B+
n,R[ fn]�= lim

R→∞ B ′+
1,R[ f1] · · · B ′+

n,R[ fn]�. (44)

These limits depend only on the one-operator asymptotic vectors

lim
R→∞ B+

R [ f ]�= lim
R→∞ B ′+

R [ f ]�
= (2π)2i lim

R→∞ g̃(R P−) f̃ (1, P0 P̂+)B� =2π i E0 f̃ (1, P)B�,

which are independent of the choice of timelike vector t . The second equality fol-
lows from (43) and the third—from the following fact: if limn→∞ fn(x) = f (x)
pointwise and the sequence ‖ fn‖∞ is bounded, then fn(A)→ f (A) strongly for
each self-adjoint operator A (c.f. Theorem VIII.5 (d) in [13]). The structure is non-
trivial if, and only if, E0 �=0 and there exist operators B which interpolate between
� and E0H.

To prove the existence of the limits (44) we use Cook method, i.e., we show
that

∥∥ d
dR

(
B ′+

1,R[ f1] · · · B ′+
n,R[ fn]�)∥∥ is integrable. After commuting all operators with

derivative d
dR B ′+

j,R[ f j ] to the right we obtain the terms of the form

∥∥∥B ′+
1,R[ f1] · · · k̆ · · · B ′+

n,R[ fn] d
dR

B ′+
k,R[ fk]�

∥∥∥
�
∥∥B ′+

1,R[ f1] · · · k̆ · · · B ′+
n,R[ fn](1+λP0)−n+1∥∥∥∥∥(1+λP0)n−1 d

dR
B ′+

k,R[ fk]�
∥∥∥,

which are integrable by the result of last paragraph and Equation (38). The terms
containing commutators are bounded by const R−1−δ due to the estimates (38) and
(40). The statement on the limits with operators without primes is shown induc-
tively with the use of the estimate (37).

6.5 In this paragraph, following the idea due to Buchholz [1–3], we show the
existence of the limits of operators B±

R [ f ](1 + λP0)−1 and B ′±
R [ f ](1 + λP0)−1 as

R →∞ in the framework of local quantum physics [6]. We assume that the algebra
of field operators F is the global algebra of the net O →F(O) of local algebras
of fields F(O) localized in bounded regions of spacetime O. The net O → F(O)
acts irreducibly on the Hilbert space and fulfills the following axioms: (1) B(x)∈
F(O + x) for B ∈F(O) (covariance), (2) [B1, B2]=0 for B j ∈F(O j ) if the regions
O1, O2 are spatially separated (local commutativity), (3) F(O1)⊂F(O2) if O1 ⊂O2

2Note that in the vacuum representation of the massive free theory, the spectral condition for-
mulated in that context [5,10] is trivially fulfilled by the Weyl operators. In massless case this fact
is not so evident.
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(isotony). The spectral assumption formulated in paragraph 6.3 is not needed in
this paragraph.

Chose any operator B localized in some relatively compact set OB and func-
tion d ∈ Sε such that s → ‖d(s, ·)‖∞ = supl∈Ct+ |d(s, l)| has compact support.
Let a ∈ M be any point in Minkowski spacetime such that the set OB,d = OB

+{st | ‖d(s, ·)‖∞ �=0} is contained in the past-directed lightcone with the vertex at
a. Then, as noted by Buchholz [1,2], for any A ∈F(a + V+) and sufficiently large
r the localization regions of operators A and B[r,d] become spatially separated.
Thus, for large R, we have [A, B[gR,d]]=0.

Using the idea described above and the bound on the norm of the oper-
ators Bk±[gR,d](1 + λP0)−1 given in Theorem 3(ii) we obtain asymptotic cre-
ation/annihilation operators.

THEOREM 11. Let B ∈ F(OB) be an operator localized in a bounded region OB

and f =d(4) for some function d ∈S2
ε , such that s →‖d(s, ·)‖∞ = supl∈Ct+ |d(s, l)| has

compact support. Then the limit s−limR→∞ B±
R [ f ](1+λP0)−1 exists.

Proof. It follows from Theorem 6(ii) [Equation (20)] that

B3[gR,d](1+λP0)−1 =
∫

g̃(Rp∓)d̃(p0, p̂±)B2±

̂
(p)(1+λP0)−1 d p + O‖.‖(R−γ3).

Using the fact that U (x)�=� and then Theorem VIII.5 (d) in [13] we find that

lim
R→∞ B3[gR,d]�= (2π)2 lim

R→∞ g̃(R P−)d̃(P0, P̂+)B2� =2πE0d̃(P0, P̂+)B2�.

Hence for any A ∈F(a + V+)

lim
R→∞ B3[gR,d]A�=2π AE0d̃(P0, P̂+)B2�. (45)

Under our assumptions the set

span{A�∈H, A ∈F(a + V+)}
is a dense subspace of the Hilbert space [1]. It follows from Theorem 3(ii) that
‖(1 +λP0)−1 B3[gR,d]‖=‖(B∗)3[gR,d](1 +λP0)−1‖<∞. This, together with (45),
implies the existence of the limit s− lim

R→∞(1+λP0)−1 B3[gR,d]. The existence of the

limit s− lim
R→∞ B3[gR,d](1+λP0)−1 follows from the identity

B3[gR,d](1+λP0)−1

= (1+λP0)−1 B3[gR,d]+ iλ(1+λP0)−1 B4[gR,d](1+λP0)−1.

Since under present assumptions f =d(4), we have

B+
R [ f ](1+λP0)−1 = B4+[gR,d](1+λP0)−1

=
∫
φ(s)C3(ts)[gR,d](1+λP0)−1 ds, (46)
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where C = B + B3 and

φ̃(ω)= θ(ω)(−iω)

1+ (−iω)3
.

By Lemma 14 in Appendix A of [11] we have |φ(s)|�const (λ+|s|)−2. Thus φ is
absolutely integrable. For any s operator C(ts) is local; so, as shown above, the
limit s−limR→∞ C3(ts)[gR,d](1 +λP0)−1 exists and the integrand in the last line
of (46) converges pointwise. As φ is integrable and

‖C3(ts)[gR,d](1+λP0)−1‖=‖C3[gR,d](1+λP0)−1‖�const,

the limit s−limR→∞ B+
R [ f ](1 + λP0)−1 exists by Lebesgue’s theorem. Similar rea-

soning may be used to show the existence of s−limR→∞ B−
R [ f ](1+λP0)−1.

The above result together with Proposition 9 implies the existence of scattering
states (44) without using the spectral condition under the following assumptions:
(1) operators B j are local, (2) f j =d(4)j and (3) ‖d j (s, ·)‖∞ have compact supports.

6.6 To obtain the Fock structure of asymptotic states we introduce operators
B±

R,η[ f ] = B3±[gηR,b], with gηR as defined by Equation (8). Note that gR = gηR and
BR[ f ]= BR,η[ f ] for η=1. For η∈ (0,1〉 there is

lim
R→∞ B+

1,R,η[ f1] · · · B+
n,R,η[ fn]�= lim

R→∞ B+
1,R[ f1] · · · B+

n,R[ fn]�. (47)

First, we show this for n =1. Using Theorem 6(ii) [Equation (19)] and the invari-
ance of the vacuum under the action of U (x) we get

B+
R,η[ f ]�= B3+[gηR,b]�
= (2π)2i

(
g̃ηR(P

−) f̃ (1, P0 P̂+)+ g̃ηR(P
+) f̃ (1, P0 P̂−)

)
B�+ O‖.‖(R−β)

for some β > 0. The function g̃ηR(u) = exp(i(R − w)u)g̃(wu), w=λ(R/λ)η, is
bounded and converges pointwise as R →∞ to 1

2π for ω=0 and 0 for ω �=0. Thus,
using Theorem VIII.5 (d) in [13] we get

lim
R→∞ B+

R,η[ f ]�=2π i E0 f̃ (1, P)B�= lim
R→∞ B+

R [ f ]�. (48)

Next, we note that the bounds (38), (39) and (41) remain valid if we replace any
of the operators B±

j,R with B±
j,R,η. Using these bounds one may easily adapt the

proof of Lemma 2.4 of [5] to show (47).

6.7 For the derivation of the Fock structure we need an additional assumption on
clustering property of commutators. We denote by E⊥

� the projection onto the sub-
space orthogonal to the vector � and introduce the function K:
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K (x1 − x2, x3 − x4,
1
2 (x1 + x2 − x3 − x4))

= (�, B12(x1 − x2)E
⊥
�U
(− 1

2 (x1 + x2 − x3 − x4)
)
B34(x3 − x4)�)

= (�, [B1(x1), B2(x2)]E⊥
� [B3(x3), B4(x4)]�),

where Bi j (z)=[Bi (z/2), B j (−z/2)].

ASSUMPTION 3. Let Bi ∈F , i =1, . . . ,4, and N be any positive integer. Then for
large enough, positive d, and

|y1|�d, |y2|�d, |�y|�|y0|+ c1d,

the following estimate holds

|K (y1, y2, y)| � c2
d M

(|�y|− |y0|)ν + c3d−N , (49)

and the positive constants ci , M and ν do not depend on d.
The assumption is covariant: if it holds in any particular reference system, it is

valid in all other, with some other constants ci .

PROPOSITION 12 [10]. Assumption 3 is closed with respect to smearing of fields B
with Schwartz functions; more precisely, it remains valid, with some other constants
ci , under replacement Bi → Bi (χi ).

Assumption 3 is fulfilled, in particular, for local and almost local fields, as
shown in Proposition 12 in Appendix B of [10].

6.8 For sufficiently small η, there is

lim
R→∞ B+

1,R,η[ f1]∗B+
2,R,η[ f2]�= (2π)2( f̃1(1, P)B1�, E0 f̃2(1, P)B2�

)
�. (50)

The projection of this equality onto � follows from Equation (48). Since the
energy transfer of the operator B+

1,R[ f1]∗ is contained in (−∞,0〉, it holds
B+

1,R[ f1]∗�∈ E({0})H, where E(·) is the spectral projection of the four-momentum

operators. As f1 =b(3)1 , we have

B+
1,R[ f1]∗�= E({0})B+

1,R[ f1]∗�=−i E({0})[P0, B+
1,R[b(2)1 ]∗]�=0

and the operator B+
1,R[ f1]∗ annihilates the vacuum. Therefore, the relation (50) will

be true, if

lim
R→∞

∥∥E⊥
�

[
B+

1,R,η[ f1]∗, B+
2,R,η[ f2]

]
�
∥∥=0. (51)

Note that B+
j,R,η[ f ]= B j [gηR, f+] where

f+(s, l)=
∫
θ(ω) f̃ (ω, l)e−iωs dω.
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In general, if f =b(n) for some b ∈S−2+n
ε , ε >0, then f+ ∈S−2

n (use Lemma 14 in
Appendix A of [11]). Thus, under our assumptions f+ ∈S−2

3 .
Since supp g ⊆〈τ1, τ2〉⊂ (0,∞), we have

supp gηR ⊆〈R1, R2〉=〈R + (τ1 −1)w(R), R + (τ2 −1)w(R)〉.
Therefore, the identity (51) is the consequence of the following lemma which is
proved in Appendix F.

LEMMA 13. For sufficiently small η

lim
R→∞

r1,r2∈〈R1,R2〉

∥∥E⊥
�

[
B1[r1, f1+]∗, B2[r2, f2+]]�∥∥=0.

6.9 The Fock structure of the scalar product of asymptotic states

lim
R→∞(B

+
1,R,η[ f1] · · · B+

k,R,η[ fn]�, B+
k+1,R,η[ fk+1] · · · B+

n,R,η[ fn]�)

can be obtained by transferring the operators B+
j,R,η[ f j ] from the left to the

adjoints on the right, commuting them to the far right and using (51) (this tech-
nique is described thoroughly in [5]). Note that to prove this we used neither
the spectral assumption nor the locality of the fields. Thus the method might be
applied to asymptotic states defined in both paragraphs 6.4 and 6.5.

7. Conclusions and Outlook

In the setting of (in general) nonlocal fields satisfying some mild decay condi-
tions we have established a link between their null asymptotic behavior on the
one hand, and their energy–momentum spectral properties in a neighborhood of
the lightcone, on the other. These properties include, in particular, the condition
of infrared-regularity, i.e., appropriate vanishing in momentum space for p = 0. If
the standard asymptote exists as a limit, it defines a quantum field satisfying the
wave equation—again an infrared-regular field. The IR-regularity of the problem is
reflected in the unique decomposition of the limit fields into positive and negative
energy-transfer parts, which therefore have physical interpretation of creators and
annihilators of some particle-like, zero-mass excitations.

In the more specific context of vacuum representation the scheme was applied
for the derivation of a nonlocal massless version of the Haag–Ruelle theory with
the resulting Fock space of asymptotic states. Strictly local setting is a special case,
which simplifies Buchholz’s analysis.

We mention that the general scheme also works in a nonlocal algebraic model
proposed earlier by one of us as a candidate for the description of long-range
structure of quantum electrodynamics [8] (see also [9] for more information and
references): IR-regular fields (in the sense defined here) present in this model may
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be reconstructed from their null asymptotes. However, the model contains more
general fields satisfying wave equation, whose IR behavior, although remaining
under control in this model, prevents the application of the methods described in
the present paper. Thus physical interpretation of the model in terms of asymp-
totic particles is not complete. In our view, this is also to be expected in prospec-
tive full quantum electrodynamics which would not arbitrarily cut infrared regime.
Null asymptotic analysis of more IR-singular-nonlocal fields, both in the model, as
on more general grounds, is thus an interesting problem for future investigations.
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Appendix

A. An Estimate

LEMMA 14. Let f j ∈ C∞(R) be such that | f j (s)|�const/(λ+ |s|)1+ε , j = 1,2. If
ε >0 then

∣∣∣∣
∫

|s1−s2|�S

f1(s1) f2(s2)ds1ds2

∣∣∣∣� const
(λ+|S|)ε . (52)

Proof. In the region |s1 − s2|�S either |s1|�S/2 or |s2|�S/2, thus, the lhs of (52)
is bounded by

∫
|s1|�S/2

const ds1 ds2

(λ+|s1|)1+ε(λ+|s2|)1+ε�
const

(λ+|S|)ε .

B. On Fourier Transform on a Sphere

In this section the setting is the three-dimensional Euclidean space (positive met-
ric). We denote �M f (�l) = �l × �∂ f (�l), where �∂ is the contravariant derivative vec-
tor with respect to �l. Note that in positive oriented, orthonormal basis there is

Mi = 1
2

∑3

j,k=1
εi jk L jk and �M · �M = 1

2

∑3

j,k=1
(L jk)

2 =
S—the Laplace operator

on the unit sphere.
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PROPOSITION 15. Let f (n̂) be a smooth function on the sphere S2. Then∫
e−i �q·n̂ f (n̂)d�(n̂)= 2π i

|�q |
(

e−i |�q| f (q̂)− ei |�q| f (−q̂)
)

+ (F3 R)(�q), (53)

(F3 R)(�q)= i
∫

e−i �q·n̂ �q × n̂

|�q × n̂|2 · �M f (n̂)d�(n̂), (54)

R(�z)= −1
|�z|2 −1

∫
θ(�z · n̂ −1)
S f (n̂)d�(n̂), (55)

It follows that

|R(�z)|�2π‖
S f ‖∞
θ(|�z|−1)
|�z|(|�z|+1)

. (56)

Proof. Let (ϑ,ϕ) be the standard spherical angles for n̂ with respect to an ortho-
normal basis with the third vector along �q. In the integral on the lhs of Equa-
tion (53) we write sinϑe−i �q·n̂ = (−i/|�q|)∂ϑe−i �q·n̂ and integrate by parts with respect
to ϑ . The boundary terms give the first two terms on the rhs of Equation (53) and
the remaining integral has the form (i/|�q|) ∫ e−i �q·n̂∂ϑ f (n̂)dϑdϕ. Now noting sim-

ple identity ∂ϑ = q̂ × n̂

|q̂ × n̂| · �M and using |q̂ × n̂|= sinϑ we arrive at (54).

To calculate the inverse Fourier transform of this function we note that�q × n̂

|�q × n̂|2 = �q⊥
|�q⊥|2 × n̂, where �q⊥ is the component of �q orthogonal to n̂. Using stan-

dard methods one finds that
1

(2π)2

∫
ei �q·�ze−i �q·n̂ �q⊥

|�q⊥|2 d3q = iδ(�z · n̂ −1)
�z⊥

|�z⊥|2 = iδ(�z · n̂ −1)
�z⊥

|�z|2 −1

in the distributional sense. Therefore,

R(�z)= −1
|�z|2 −1

∫
δ(�z · n̂ −1)(�z × n̂) · �M f (n̂)d�(n̂)

= 1
|�z|2 −1

∫
�Mθ(�z · n̂ −1) · �M f (n̂)d�(n̂).

Transferring �M to f we arrive at (55).

C. Spaces L p,1

For p�1, we define seminorms on the space of measurable functions on Minkowski
space M

‖ρ‖p,1 =
∫

‖ρ(x0, .)‖p dx0, (57)

where the sign ‖.‖p under the integral denotes the L p(R3,d3x)-norm. If h3 is a
function on the 3-space and h0 a function of x0, then the use of Hölder’s inequal-
ity on 3-space or in x0, respectively, shows that

‖h3ρ‖1�‖h3‖q‖ρ‖p,1, ‖h0ρ‖p,1�‖h0‖q‖ρ‖p, (58)
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where q−1 + p−1 = 1. In particular, if ρ = 0 almost everywhere, then by the sec-
ond inequality above ‖h0ρ‖p,1 = 0 for all characteristic functions of bounded sets
h0, which implies ‖ρ‖p,1 = 0. Conversely, if ‖ρ‖p,1 = 0, then by the first inequal-
ity ‖h3ρ‖1 = 0 for all characteristic functions of bounded sets h3, which implies
ρ= 0 almost everywhere. Thus classes of functions coinciding almost everywhere,
with finite seminorms (57), form normed spaces, which we denote L p,1.

Spaces L p,1 are complete. Namely, let ϕn be a Cauchy sequence. By the first of
inequalities (58) h3ϕn is a Cauchy sequence in L1 for any characteristic function
of a bounded set h3. Therefore, by completeness of L1, there exists limit ϕ(x)=
limn ϕn(x) almost everywhere. Choose ε > 0 and N such that ‖ϕk − ϕn‖p,1�ε for
all k,n�N . Then for n�N , by the use of Fatou’s lemma, we have

‖ϕ−ϕn‖p,1 =
∫ (∫

lim
k→∞|(ϕk −ϕn)(x)|pd3x

)1/p
dx0

�
∫ (

lim
k→∞

∫
|(ϕk −ϕn)(x)|pd3x

)1/p
dx0� lim

k→∞
‖ϕk −ϕn‖p,1�ε,

which closes the proof.
For convolution of functions from spaces L p,1 an analog of Young’s inequality

is true. Let 1+ p−1 =q−1 + r−1. Then

‖ϕ ∗ψ‖p,1�‖ϕ‖q,1‖ψ‖r,1. (59)

This is shown with the use of Young’s inequality in 3-space (
(3)∗ denotes the 3-space

convolution):

lhs=
∫ ∥∥∥

∫
ϕ(x0 − y0, .)

(3)∗ ψ(y0, .)dy0
∥∥∥

p
dx0

�
∫ ∫

‖ϕ(x0, .)
(3)∗ ψ(y0, .)‖p dy0 dx0

�
∫

‖ϕ(x0, .)‖q dx0
∫

‖ψ(y0, .)‖r dy0

= rhs.

In particular, for r =1 we find

‖ϕ ∗ψ‖p,1�‖ϕ‖p,1‖ψ‖1.

In similar way it is also easy to show that for the 3-space convolution with a func-
tion h3 on the 3-space there is

‖ϕ(3)∗ h3‖p,1�‖ϕ‖p,1‖h3‖1. (60)
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D. Proof of the Estimate (22) of ‖χ±
R ‖q,1

We represent χ̂±
R (p)= ϕ̂±

R (p)ρ̂
±
R (p), with

ϕ̂±
R (p)= θ(±p0)|p0|δ| �p|−1g̃(Rp±)

(
1+ R2| �p|2)2,

ρ̂±
R (p)= f̃ (p0, p̂∓)

(
1+ R2| �p|2)−2

.

For χ±
R = (2π)−2ϕ±

R ∗ρ±
R one obtains with the use of inequality (59):

‖χ±
R ‖q,1�(2π)−2‖ϕ±

R ‖u,1‖ρ±
R ‖v,1, (61)

where q =6/(6−κ ′), u =15/(12−κ ′) and v=10/(12−κ ′); as κ ′>2, we have u>3/2
and v>1. The inverse transforms of ϕ̂±

R and ρ̂±
R may be written as

ϕ±
R (x)= R−3−δ 1

(2π)2

∫
θ(±q0)|q0|δ|�q|−1g̃(±(|q0|+ |�q|))(1+|�q|2)2e−iq·(x/R) dq,

ρ±
R (x)= R−3 1

(2π)2

∫
f (x0, t ∓ q̂)(1+|�q|2)−2ei �q·(�x/R) d3q.

We now apply to these transforms Lemma 14 in Appendix A in [11]: for ϕ±
R (x)

separately3 in q0 and �q, and for ρ±
R (x) in �q. Moreover, we use the decay rate of

f (s, l) (and its intrinsic derivatives on the cone) in s. In this way we obtain the
estimates

|ϕ±
R (x)|�

const R−3−δ

(1+ (|x0|/R))1+δ(1+ (|�x |/R))2
,

|ρ±
R (x)|�

const R−3

(1+|x0|)1+ε(1+ (|�x |/R))3
.

Using this in (61), one obtains ‖χ±
R ‖q,1�const R−(κ ′−2)/2−δ .

E. Spectral Condition in Free Theory

PROPOSITION 16. Let H be the bosonic Fock space of positive energy vacuum rep-
resentation of free massless field, with the single-particle Hilbert space H1 equipped
with the standard scalar product

(J1, J2)= 1
(2π)3

∫
θ(p0)δ(p2) Ĵ1(p) Ĵ2(p)d4 p.

and creation/anihilation operators denoted by a∗(J ) and a(J ). Then for any Schwartz
function J

‖(Eμ− E0)W (J )�‖= O(μ),

3To show that this is possible one needs some work. The crucial property which enables such
use of the lemma, is that singularities of derivatives of ϕR(q) factorize in q0 and |�q| and indepen-
dently satisfy the assumptions of this lemma.
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where � is the vacuum state, W (J )=e−i(a(J )+a∗(J )) is the Weyl operator and projec-
tions Eμ were defined in paragraph 6.3 of Section 6.

Proof. Let us note that

W (J )�= exp(− 1
2 (J, J )) exp(−ia∗(J ))�.

It holds

‖(Eμ− E0) exp(−ia∗(J ))�‖
=‖(Eμ− E0)(exp(−ia∗(J ))+ ia∗(J )−1)�‖
�‖Eμφ(a

∗(J ))a∗(J )2�‖�‖φ(a∗(J ))PH2‖‖Eμa∗(J )2�‖
where φ(x)= (exp(−i x)−1+ i x)/x2. The operator φ(a∗(J )) is defined in terms of
power series expansion of φ on the two-particle subspace H2 of the Fock space
H and PH2 is projection onto H2. The operator φ(a∗(J ))PH2 is bounded because
‖a∗(J )n PH2‖2 = (n+2)!

2 (J, J )n . Let us also observe that Eμφ(a∗(J ))PH2(1− Eμ)=0
since φ(a∗(J ))PH2 has energy–momentum transfer in V+.

The thesis now follows from the estimate

‖Eμa∗(J )2�‖2 = 1
(2π)6

∫

2p1·p2�μ2

| Ĵ (| �p1|, �p1)|2| Ĵ (| �p2|, �p2)|2 d3 p1

2| �p1|
d3 p2

2| �p2|

� const
∫

0�η�μ2/(4ω1ω2)

ω1dω1ω2dω2 dη
(1+ω1)

2(1+ω2)
2
�constμ2,

where p j = (| �p j |, �p j ), j = 1,2 and in the second line we have introduced new
integration variables ω j = | �p j |, η= p1 · p2/(2ω1ω2) and used the estimate | Ĵ (p)|
�const(λ+| �p|)−2.

Since Weyl operators are not smooth (in fact they are not even differentiable),
we could not use them in the construction in Section 6. However, the above result
is also true for the smooth operator B =W (J )(χ) obtained by smearing Weyl oper-
ator with arbitrary Schwartz function χ . It immediately follows that operator B
fulfills the spectral condition formulated in paragraph 6.3 of Section 6.

F. Proof of Lemma 13

We denote r2 = r1r2, 
r = r2 − r1, 
s jk = s j − sk , ξ2
jk = l j · lk/2 and observe that

|
r |�τw(R), where τ = τ2 − τ1. It is easy to see that for sufficiently large R there
is w(R)�2w(r)≡2w, and then |
r |�2τw, what we assume from now on. We have

I =‖E⊥
� [B1[r1, f1+]∗, B2[r2, f2+]]�‖

= r2

4π

∥∥∥∥
∫

E⊥
� [B∗

1 (s1t + r1l1), B2(s2t + r2l2)]�
2∏

i=1

fi+(si , li )dsi d�t (li )

∥∥∥∥.
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As f j+ ∈S−2
3 , there is | f j+(s, l)|�const (λ+|s|)−4 for t · l =1, j =1,2. To prove the

thesis of Lemma, we split the above integral into the integrals over the following
regions:
(i) rξ12�τw. In this region, I(i)�constw−(κ−2)—this is easily shown by adapting
the proof of case (iii) of Theorem 3, letting ξ0 = τw/r , d =2τw/r .
(ii) rξ12<τw, |
s12|�τw. This contribution is bounded by

I(ii)�const r2

(τw/r)2∫
0

dξ2
12

∫
|
s12|�τw

ds1ds2

(λ+|s1|)4(λ+|s2|)4 �constw−1,

where we used Lemma 14 to estimate the ds1ds2 integral.
(iii) rξ12 < τw, |
s12|< τw. Here we consider the squared contribution I 2

(iii) and
note that

I 2
(iii)�const r4

∫
K (y1, y2, y)

4∏
i=1

dsi d�t (li )

(λ+|si |)4 ,

where

y1 =
s12t + r1l1 − r2l2, y2 =
s34t + r1l3 − r2l4,

y = 1
2
((
s13 +
s24)t + r1(l1 − l3)+ r2(l2 − l4))

and the above integral is over the region

rξ12<τw, rξ34<τw, |
s12|<τw, |
s34|<τw. (62)

Therefore, we can estimate further

I 2
(iii)�constw4

∫
sup
l2,l3

|K (y1, y2, y)|
4∏

i=1

dsi

(λ+|si |)4 d�t (l1)d�t (l4),

where supremum is over the set restricted by the first two relations in (62). We split
the set determined by (62) further into regions:
(a) |y0|�2τw. We have |
s13 + 
s24| > 4τw and |
s13 − 
s24| < 2τw. Thus,
|
s13|, |
s24|�τw, and estimating K (y1, y2, y) by a constant we find

I 2
(a)�constw4

∫
|
s13|�τw|
s24|�τw

4∏
i=1

dsi

(λ+|si |)4 �constw−2.

The last inequality follows from Lemma 14 applied to the ds1ds3 and ds2ds4 inte-
grals.
(b) |y0|<2τw, |�y|�(C +2)τw, where C is some constant to be fixed later. Since

|�y|2 = r2
1 ξ

2
13 + r2

2 ξ
2
24 + r1r2(ξ

2
14 + ξ2

32 − ξ2
12 − ξ2

34), (63)
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in this region r2ξ2
14�|�y|2 + r1r2(ξ

2
12 + ξ2

34)�(C +3)2τ 2w2 ≡α2w2 and

I 2
(b)�constw4

(αw/r)2∫
0

dξ2
14�const

w6

r2
.

This vanishes in the limit r →∞ if η<1/3.
(c) |y0|< 2τw, |�y|> (C + 2)τw. In this region |�y| − |y0|�Cτw. Using the identi-
ties |�y1|2 = (
r)2 +4r2ξ2

12, |�y2|2 = (
r)2 +4r2ξ2
34 we obtain estimates |�y j |�3τw and

|y j |�|y0
j |+|�y j |�4τw, j =1,2. Therefore, for C�4c1 the terms of Assumption 3 are

satisfied with d ≡d(r)=4τw(r) and we can use the estimate (49). Moreover, using
(63) we find for C�4:

4|�y|2�2
(
|�y|2 − r2(ξ2

12 + ξ2
34)+ r2ξ2

14

)
>2(52τ 2w2 + r2ξ2

14)�(5τw+ rξ14)
2,

which implies |�y|−|y0|� 1
2 (τw+rξ14). Thus, for C�max{4,4c1} we obtain the esti-

mate

I 2
(c)�constw4

∫ 1

0
dξ2

14

⎛
⎜⎝c2

d M(
1
2 (τw+ rξ14)

)ν + c3d−N

⎞
⎟⎠

�w4
(

constwMr−ν′ + constw−N
)
,

where ν′ =min{ν,2}. I 2
(c) vanishes in the limit if η< ν′

M+4 and N >4.
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