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Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient 
survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic ma-
nipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which 
include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, 
membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small 
molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo ex-
pansion of the primitive and functional human HSCs is still under development. An improved understanding of the mecha-
nisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to over-
come difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block 
differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and pro-
cessing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further 
development of novel strategies for cell and gene therapies including genome editing. 

ex vivo expansion, hematopoietic stem cells, niche, signal transduction, cord blood, transplantation, SCID-repopulating 
cell, genome editing, CRISPR/Cas9 
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1  Why ex vivo expansion of HSCs  

Hematopoietic stem cells (HSCs) are defined by their abili-
ties to self-renew and to differentiate into all blood cell 
types [1–6]. HSCs are the source for all the different line-
ages of hematopoietic cells and immune cells throughout 
the human lifetime. Historically, the study of HSCs has 
been closely related to the potential uses of these cells in 
clinical applications. HSCs form the basis of bone marrow 
transplantation and are also a promising cell target for gene 
therapies [7]. HSC transplantation is used to treat patients 
with hematopoietic malignancies, genetic defects such as 
sickle cell anemia and thalassemia, autoimmune diseases, 

and certain solid cancers [8].  
In addition to self-renewal and differentiation, as evi-

denced by the ability of a single stem cell to repopulate the 
whole hematopoietic system of a mouse [3,9], HSCs are 
subject to regulation by apoptosis and migrate in regulated 
fashion. The balance among various cell fates—quiescence, 
self-renewal, differentiation, apoptosis, and migration— 
determines HSC numbers in vitro and in vivo [10]. Extrinsic 
modulators (including many cytokines, growth factors, and 
metabolites) and intrinsic regulators (such as certain tran-
scription factors, cell cycle regulators, and chromatin mod-
ulators) control HSC fates through numerous signaling 
pathways [11–17]. The continued study of the regulation of 
the HSC fates will further our understanding of stem cell 
biology and provide important insights into HSC-based 
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clinical applications. 
A major problem in study and applications of HSCs is 

the extremely low frequency of HSCs in hematopoietic or-
gans. While the attempt to directly derive differentiated 
hematopoietic cells from other somatic cells is under de-
velopment, the techniques to produce clonal, multipotent, 
and transplantable HSCs from somatic cells, pluripotent 
embryonic stem cells, or induced pluripotent stem cells 
prove to be challenging [18,19]. In both autologous trans-
plant and allogeneic transplant, high doses of HSCs are 
needed to achieve the rapid and sustained engraftment that 
is critical to patient survival and recovery [20]. Methods to 
efficiently culture HSCs would further clinical applications 
in several ways. For example, patients transplanted with 
larger numbers of stem cells have a better chance of surviv-
al, partially due to their successful escape from the 
host-versus-graft effect [20,21]. In autologous transplanta-
tion, some patients do not have sufficient HSCs or need 
tumor purging, and thus patient HSCs must be expanded ex 
vivo. In addition, umbilical cord blood, a promising cell 
type for transplantation, does not contain enough cells for 
adult applications [22,23]. The ability to expand HSCs ex 
vivo would make this enormously important resource useful 
for adult transplantation. Furthermore, the ability to expand 
HSCs in culture would greatly boost the development of 
gene therapy by allowing selection of transducted cells in 
which the desired gene has been introduced into the appro-
priate DNA location; this holds the promise for curing a 
wide variety of human diseases [10]. In particular, the re-
cently developed targeted genome editing techniques in-
cluding CRISPR/Cas9 technology [24,25] will be greatly 
benefited by the ability to expand desired manipulated 
HSCs ex vivo.  

2  Bone marrow niche of HSCs 

The understanding of the extrinsic regulation of HSC fates 
in vivo may provide insights into culture of HSCs. In 1978, 
the concept of HSC niche was introduced by Schofield [26]. 
Since then, mounting evidence indicates that the niche plays 
a crucial role in quiescence, self-renewal, differentiation, 
apoptosis, migration, and immune privilege of HSCs [27–29]. 
Several types of cells that potentially form bone marrow 
HSC niches have been reported [27–30]. The supportive 
cells in the niches produce growth factors and extracellular 
matrix components and provide other intercellular signals 
that promote self-renewal rather than differentiation of 
HSCs. In the endosteal HSC niche osteoblasts are the main 
supportive cell type for maintenance of hematopoiesis [31–35]. 
The vascular HSC niche is mainly composed of perivascular 
stromal cells and endothelial cells including reticular cells 
that express stromal cell derived factor 1 (SDF-1) [36], 
CD146-expressing subendothelial stromal cells [37], Nestin+ 
mesenchymal stem cells (MSCs) [38], NG2+ periarteriolar 

cells [39], and perisinusoidal LEPR+ cells [40,41]. In addi-
tion, macrophages [42,43], megakaryocytes [44,45], the 
sympathetic nervous system [46], and adipocytes [47] have 
also been shown to play roles in the HSC niches. Further-
more, regulatory T cells co-localize with HSCs in the en-
dosteal area of the bone marrow and protect HSCs from 
immune attack [48]. The clarification of the nature of HSC 
niche will facilitate to design better strategies for ex vivo 
expansion of HSCs.  

3  Expansion of mouse HSCs 

Extensive efforts have been made to culture mouse HSCs in 
two main categories: cytokine cocktail based liquid culture, 
and stroma/HSC co-culture. The abilities of many cytokines 
to support hematopoietic progenitors to form colonies in 
vitro provided important insights into expansion of func-
tional primitive long-term (LT-) HSCs that are measured by 
in vivo repopulating activity [49]. In the last two decades, a 
number of secreted/extracellular proteins/chemicals have 
been demonstrated to support ex vivo expansion of mouse 
HSCs, including stem cell factor (SCF) [50], thrombopoietin 
(TPO) [51–53], Notch ligands [54,55], Wnt ligands [56–59], 
fibroblast growth factor 1 (FGF-1) [60,61], bone morpho-
genetic proteins (BMPs) [62], Hedgehogs [62–64], 
prostaglandin E2 (PGE2) [65], interleukin 10 (IL-10) [66], 
insulin-like growth factor 2 (IGF-2) [67,68], IGF binding 
protein 2 (IGFBP2) [69,70], several angiopoietin-like 
proteins (Angptls) [71–74], and pleiotrophin [75]. Condi-
tional derivatives of certain growth factor receptors have 
also been used to support HSC expansion in culture [76,77]. 
The introduction of exogenous transcription factors such as 
homeotic protein HoxB4 can induce dramatic expansion of 
HSCs [54,56,78–80].  

In parallel, the knowledge gained from the co-culture of 
HSCs with various stromal cell types, including aor-
ta-gonado-mesonephros (AGM), fetal liver, and bone mar-
row stromal cells, and with endothelial cells and cancer 
cells has provided important guidance for development of 
ex vivo expansion strategies in medium with defined fact- 
ors [67,68,71,81–85]. The Williams lab [83] established 
stromal cell lines from yolk sac that support the activities of 
HSCs and hematopoietic progenitors. Moore et al. [81,82] 
isolated a number of stromal cell lines from mouse fetal 
liver and AGM, and used them to identify HSC-supportive 
secreted factors. The Rafii group [85] demonstrated that 
Notch ligands and IGFBP2 produced by endothelial cells 
support ex vivo expansion of mouse HSCs. We identified 
primary mouse fetal liver stromal cells as a novel HSC 
supportive population [67,68] and also demonstrated that 
cancer cells are a rich source of HSC-stimulating proteins [69].  

Ex vivo expanded HSCs have gained surprising proper-
ties in terms of their interaction with the immune system 
when transplanted back into mouse recipients. We showed 
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that ex vivo-expanded mouse HSCs dramatically upregulat-
ed the cell surface immune inhibitor programmed 
death-ligand 1 (PD-L1, also known as B7-H1 or CD274) 
and efficiently repopulated allogeneic recipient mice by 
overcoming the major histocompatibility complex barrier [73]. 
In this study, a 40-fold increase of the allograft ability of ex 
vivo expanded HSCs was achieved relative to the uncultured 
control after 8 d of culture. In addition to the proliferation 
signal-induced elevation of PD-L1 expression, the increased 
numbers of functional HSCs also contributed to this en-
hancement. Our study suggested that extrinsic cues can 
modulate the immune privilege of HSCs. It also proposed 
that ex vivo-expanded HSCs may lower the matching re-
quirement for allogeneic transplantation and significantly 
improve the successful rate of this difficult transplanta- 
tion [73,86–88]. Consistently, ex vivo expansion of human 
HSCs increases regulatory T cell content and decreases the 
incidence of graft-versus-host disease (GVHD) [89]. 

4  Expansion of human HSCs  

Ex vivo expansion of human HSCs that is important for 
clinical applications is more challenging than the culture 
expansion of the mouse counterparts. In early 1990s, the 
identification of SCF [90–95] and other hematopoietic cy-
tokines [96] led to extensive efforts to culture of human 
hematopoietic progenitors and HSCs in semi-solid culture 
and in liquid culture [97–102]. HSCs from human bone 
marrow, mobilized peripheral blood (mPB), and umbilical 
cord blood (UCB) have been cultured to expand in a large 
number of studies. Partially due to their sufficient availabil-
ity for transplantation and limited transduction ability, there 
are fewer attempts now to ex vivo expand mPB or bone 
marrow HSCs, which were frequently tried in liquid culture 
in 1990s to early 2000s [97–99,101–103]. Indeed, the func-
tional mPB HSCs as measured by repopulating activity, 
were able to be expanded 6-fold after three weeks of culture [104]. 
Umbilical cord blood, on the other hand, has more prolifer-
ative potential and reduced matching requirement and con-
tains more stem cells and results in lower risk of chronic 
GVHD than mPB does; therefore, cord blood is an attractive 
source of HSCs [100,105,106]. As a cord blood unit only 
contains limited numbers of HSCs, it is often not be suffi-
cient for adult transplantation [22,23]. Ex vivo expansion 
would become a straightforward means to enable cord blood 
cells to be useful in adult applications [22,106–108].  

CD34 and CD133 are popular markers to isolate the 
primitive cord blood cells as the starting populations for 
HSC expansion [108]. Immune-deficient mice including the 
severe combined immunodeficiency (SCID), non-obese 
diabetic (NOD)/SCID, and NOD/SCID IL2R(null) (NSG) 
mice are popular recipients for transplantation analysis that 
serves as the “gold standard” to evaluate HSC activity (as 
SCID-repopulating cells, or SRCs) [109–111]. Although 

numerous conditions have been used for expansion of HSCs 
in culture [11,12], a mixture of growth factors/cytokines/ 
chemicals that allows expansion sufficient for clinically 
applicability has not yet been determined. Below we sum-
marize results from recent attempts to expand human HSCs 
ex vivo. The culture systems range from stroma/HSC co- 
culture, continuous perfusion and fed-batch systems, and 
those supplemented with extrinsic ligands, transcription 
factors, complement components, protein modification en-
zymes, metabolites, or small molecule chemicals (See be-
low for details, and also see Table 1 at the end of Section 7 
with summary of general features and mechanisms of cul-
ture system for human cord blood HSCs).  

5  HSC-mesenchymal stromal cell co-culture 

In vivo, various types of niche cells form a three-dimersion 
microenvironment for HSCs to control their multiple fates 
including quiescence, self-renewal, differentiation, apoptosis, 
and migration. However, under most culture conditions, HSCs 
undergo apoptosis or differentiation but not self-renewal. In 
co-culture with primitive hematopoietic cells, various stromal 
cell types including AGMs, fetal liver, and bone marrow stro-
mal cells, endothelial cells, and mesenchymal stem cells  
(MSCs) promote HSC expansion [67,68,71,81–85,112,113]. 
MSCs promote expansion through cell-to-cell contact [114] 
and cytokine production [115]. Exogenous supplementation 
or forced expression of HSC-supportive factors in MSCs 
promotes ex vivo expansion of HSCs [116,117]. In a phase I 
clinical trial [118], a co-culture of HSCs with mesenchymal 
stromal cells proved to be safe in engraftment and led to an 
expansion of total nucleated cells and more rapid recovery 
of neutrophils and platelets than HSCs transplanted without 
co-culture.  

6  Continuous perfusion and fed-batch systems 

Although long-term culture of HSCs with cytokines usually 
leads to differentiation, the removal or dilution of differen-
tiated hematopoietic progenies and their secreted inhibitory 
signals that negatively regulate HSC self-renewal can pro-
mote expansion. A continuous perfusion system [119] and, 
more recently, a fed-batch system [120] designed to reduce 
the accumulating negative cues during the culture of HSCs 
significantly enhanced the expansion of functional primitive 
HSCs. Both of decreasing the concentration of accumulat-
ing negative secreted factors and increasing culture volume 
to maintain a lower cell density benefits HSC expansion. 
Using this system, a 12-d culture yielded an 11-fold in-
crease of functional repopulating human cord blood HSCs 
relative to uncultured controls [120]. The perfusion and 
fed-batch systems thus represent unique and complementary 
approaches for expansion of HSCs through regulating the 
feedback signaling on HSC output. 
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6.1  Notch ligands 

The Notch pathway play major roles in lymphopoiesis, and 
is also involved in the generation, maintenance, and expan-
sion of HSCs [55]. Notch has a positive effect on self-  
renewal of HSCs during stressed hematopoiesis but not at 
steady state [12]. Notch ligands Delta and Jagged support ex 
vivo expansion of HSCs. It is known that activated Notch is 
capable of immortalizing mouse hematopoietic progenitors 
with multi-lineage reconstitution ability, and Notch ligands 
support ex vivo expansion of mouse HSCs [12,55]. The ef-
fect of Notch ligands on HSCs is dose-dependent: a lower 
dose of Delta 1 stimulates expansion of human cord blood 
HSCs, whereas higher amounts of the same factor induce 
programmed cell death [55]. This scenario seems to be not 
uncommon when we read the literature about cytokine reg-
ulation of cell fates of HSCs. It was suggested that the 
Notch signaling only supports the ex vivo expansion of cord 
blood HSCs but not adult human HSCs [12]. In a phase I 
clinical trial, transplantation of immobilized Del-
ta-1-expanded CD34+ human cord blood cells resulted in 
neutrophil recovery and myeloid engraftment with no signs 
of GVHD [121].  

6.2  Wnts and glycogen synthase kinase 3 (GSK-3) 
inhibitor 

Wnts are secreted lipidated signaling proteins that bind to 
Frizzled receptors [122]. Wnt signaling is involved in HSC 
regulation (reviewed in [59,123]), and Wnt signaling was 
reported to maintain HSC in a quiescent status in vivo [124]. 
The effects of Wnt signaling are dosage and context de-
pendent: low Wnt doses result in expansion of HSCs, 
whereas high doses cause exhaustion [125]. Soluble Wnt 
proteins, including Wnt3a and Wnt5a, support mouse and 
human HSC activity as determined by repopulation ass- 
ays [57,58]. It was also reported that ex vivo Wnt5a-treated 
young LT-HSCs decreased HSC repopulation ability [126]. 
Pretreatment with a GSK-3 inhibitor, which activates the 
canonical Wnt downstream effector -catenin, promotes 
engraftment of ex vivo-expanded human HSCs in xeno-
grafted mice [127,128].  

6.3  Shh/BMP/TGF-  

The inclusion of sonic hedgehog proteins (Shh) in the cul-
ture medium of human CD34+CD38Lin cells was shown 
to be able to enhance cell proliferation and increase the re-
population in NOD/SCID recipient mice [71]. As we men-
tioned earlier, Trowbridge et al. [128] showed that a GSK-3 
inhibitor that can modulate multiple pathways including the 
Hedgehog signaling enhances HSC repopulation. 

Shh-induced hematopoietic stem/progenitor cell (HSPC) 
expansion appears to be dependent on downstream BMP-4 
signaling, because inhibition of BMP-4 abrogated Shh-  

induced expansion [71]. BMPs are members of the trans-
forming growth factor  (TGF-) superfamily and known to 
play a critical role in HSC specification during development. 
BMP signaling negatively regulates the activity of mouse 
HSCs via control of the endosteal niche [15]. Human HSCs 
express BMP receptors [72]; the presence of BMP-4 in cul-
ture improved the proliferation and maintenance of human 
HSPCs [62].  

A low concentration of TGF-2 stimulates proliferation 
of C57BL/6 mouse LinSca-1+Kit+ cells [129,130]. The 
Karlsson laboratory’s work [131] suggested that several 
TGF- family ligands induced signaling pathways are intact 
in mouse HSCs. Pimanda et al. [132] showed the integration 
of BMP4/Smad signaling in HSC development. The 
Nakauchi’s laboratory [133,134] demonstrated that nonmy-
elinating Schwann cells produced TGF- is critical for 
maintenance of HSC hibernation.  

6.4  FGFs  

Bone marrow reconstitution analysis demonstrated that an 
FGF receptor is expressed on all long-term (LT-) mouse 
bone marrow HSCs [60]. The supplementation of FGF-1 
and FGF-2 in serum-free medium of unfractionated mouse 
bone marrow cells supports the expansion of repopulating 
HSCs [60,61,135]. Crcareva et al. [135] further demon-
strated that the FGF-1 induced expanded HSCs are an ex-
cellent source for retroviral gene delivery. Conditional de-
rivatives of FGF receptor-1 have also been used to support 
short-term HSC expansion and long-term HSC survival in 
culture [76]. The roles of the FGF pathway in regulating 
adult HSCs and embryonic hematopoietic development 
need further investigation. The results from different start-
ing cell populations and under different culture conditions 
were not all consistent. Schiedlmeier et al. [136] showed 
that when purified adult mouse HSCs and ES cell-derived 
HSCs that ectopically express HoxB4 were treated with the 
fibroblast growth factor receptor (FGFR) inhibitor SU5402 
repopulating activity was enhanced. These results indicate 
the complex nature of the cross-talk between FGF signaling 
and other pathways, and suggest that FGF regulates HSC 
activity indirectly [61]. 

6.5  IGF binding protein 2  

IGFBP2 is a member of the IGFBP family that contains at 
least six circulating proteins binding to IGF-1 and IGF-2 
with affinities equal to or greater than those of IGF recep-
tors (IGF-IR, IGF-IIR, and insulin receptor). While IGFBP2 
exhibits IGF-dependent inhibitory effects on growth of 
many types of cells [137], it also displays IGF-independent 
activities [69,70,138–146]. We identified IGFBP2 from a 
cancerous cell line as a supportive secreted factor for mouse 
and human HSCs [69,147]. Concordantly, the Rafii group [85] 
demonstrated that IGFBP2 is a critical factor secreted by 
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endothelial cells that supports ex vivo expansion of mouse 
HSCs. IGFBP2 may also support the activity of fetal liver 
HSCs [148]. These results are accordant with the reported 
role of nephroblastoma overexpressed (CCN3/NOV), an 
IGFBP domain-containing protein, which supports expan-
sion of human HSCs [149]. Multiple membrane proteins, 
including cell surface integrins [139,142–144], Frizzle 8, 
and low-density lipoprotein (LDL) receptor-related protein 
6 [150], were shown to mediate the IGF-independent effects 
of IGFBP2. Interestingly, extrinsic IGFBP2 can also be taken 
up into the cytosols of oxidative stressed cells [143,145]. 
IGF-2 is also a mouse HSC growth factor [67,68]; its effect 
on human HSCs is unknown. In addition, IGF-2 binds to 
and stimulates self-renewal of human embryonic stem cells [151]. 
Despite these data, the mechanisms through which IGFBP2 
and IGF-2 support HSC expansion are unclear. 

6.6  Angiopoietin-like proteins 

Angptls are a family of highly glycosylated secreted pro-
teins that play important roles in metabolism, inflammation, 
hematopoiesis, and cancer [152,153]. We showed that sev-
eral Angptls potently stimulate ex vivo expansion of bone 
marrow HSCs [67,68,71]. This result was confirmed by an 
independent study showing that Angptl3 supports ex vivo 
expansion of mouse HSCs [154], and GST-Angptl5 stimu-
lates ex vivo expansion of human cord blood SRCs [147]. In 
the animal models, Angptls are likely components of the 
niche of mouse fetal liver and adult HSCs [68,72] and that 
Angptl1 and 2 are essential to HSC development in 
zebrafish [155]. We recently showed that leukocyte immu-
noglobulin-like receptor 2 (LILRB2) is a receptor for multi-
ple Angptls, including GST-Angptl5 [74], and demonstrated 
that a novel motif in the extracellular domain of LILRB2 
mediates Angptl effects [156]. Lin et al. [155] demonstrated 
that, in human CD34+ cells, Angptl2 induces NOTCH acti-
vation via the interaction between LILRB2 and NOTCH, 
resulting in activation of myc targets.  

Because Angptls are large glycosylated proteins that are 
readily degraded and that form aggregates, these proteins 
are difficult to express and purify. We developed a se-
rum-free culture system containing defined cytokines and 
immobilized anti-LILRB2, which supports a 4.9-fold net 
expansion of repopulating human cord blood HSCs after 10 
d of culture, as determined by NSG transplantation [156]. As 
immobilized antibodies likely prevent internalization of the 
ligand LILRB2 (that contains the internalization signal 
YXXphi [157]), receptor activation is prolonged, and thus 
the ex vivo expansion of HSCs can be enhanced by the im-
mobilized antibodies. The anti-LILRB2 polyclonal antibod-
ies are more readily expressed and purified and are more 
stable than Angptls and, importantly, bind and activate 
LILRB2 with higher efficiency than Angptl2; use of an-
ti-LILRB2 polyclonal antibodies will have advantages in ex 
vivo HSC expansion systems [156,158].  

6.7  Pleiotrophin 

Pleiotrophin is a neurite outgrowth factor that is secreted by 
bone marrow sinusoidal endothelial cells [159]. Pleiotro-
phin improves the survival of mice following myeloablative 
treatment [160]. Pleiotrophin supports the ex vivo expansion 
of mouse bone marrow HSCs as determined by competitive 
repopulating assays and supports ex vivo expansion of hu-
man cord blood CD34+CD38Lin cells as determined by in 
a SCID-repopulation assay [75]. Pleiotrophin activates 
phosphoinositide 3-kinase (PI3K) signaling in HSCs, and 
blocking PI3K or Notch signaling inhibits pleiotro-
phin-mediated HSC expansion of HSCs [75].  

6.8  TAT-HoxB4 and TAT-NF-Ya 

The introduction of exogenous transcription factors such as 
HoxB4 can dramatically expand HSCs [54,56,78–80]. Ret-
roviral overexpression of the human HOXB4 gene enables dra-
matic expansion of mouse bone marrow HSCs in culture [79]. 
A cell-permeable fusion protein TAT-HOXB4 that includes 
the protein transduction domain of the HIV transactivating 
protein TAT and HoxB4 expressed by stromal cells in 
co-culture with human cord blood CD34+ cells for 2 weeks 
results in 2.5-fold increase in expansion compared to the 
uncultured controls [161].  

NF-Ya, the regulatory subunit of the transcription factor 
NF-Y, activates HOXB4 and other genes implicated in the 
self-renewal and differentiation of HSCs. The inclusion of 
recombinant TAT-NF-Ya fusion protein in the culture me-
dium of human primary bone marrow cells for 3–9 d results 
in a 5–10-fold increase of repopulated huCD45+ cells in 
transplanted NSG mice [162].  

6.9  Fucosylating enzymes  

An approach to improve the homing and engraftment of 
human HSCs is to enhance the fucosylation of selectin lig-
ands expressed by these cells. Selectin ligands must be al-
pha1-3 fucosylated to form glycan determinants such as 
sialyl Lewis X. Xia et al. [163] showed that insufficient 
alpha1-3 fucosylation of human cord blood HSPCs led to 
decreased binding of these cells to E-selectin and P-selectin. 
The administration of guanosine diphosphate fucose and 
exogenous alpha1-3 fucosyltransferase VI or VII [163,164] 
improved the binding of CD34+ cells to selectins. Fucosyl-
transferase treatment improved homing and the early and 
long-term engraftment of cord blood CD34+ cells in the 
bone marrow of immune deficient mice. These results sug-
gest that alpha1-3 fucosylation of HSCs might be critical to 
homing and engraftment. In a Phase 1/2a clinical trial, a 30 
min fucosyltransferase-VI (ASC-101) treatment of human 
cord blood CD34+ cells in culture improved neutrophil and 
platelet recovery in engrafted patients [165].  
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7  Complement component 

It was shown that the complement component C3a binds to 
HSPCs and increases chemokine receptor type 4 (CXCR4) 
incorporation into membrane lipid rafts to enhance HSPC 
homing and engraftment [166]. A simple priming of one 
UCB unit with C3a for 15 min followed by double UCB 
transplantation was performed in a phase I study [167]. No 
adverse effects on survival and no infusional toxicities or 
activation of inflammatory pathways were observed. En-
graftment of the C3a-treated UCB, however, was not im-
paired or favored relative to non-C3a-treated UCB [167]. 

7.1  CD26/DPPIV inhibitors 

Preclinical studies have demonstrated that the expression of 
peptidase CD26 (also known as dipeptidylpeptidase IV) on 
donor cells decreases homing and engraftment. By contrast, 
the inhibition of CD26 increased homing, engraftment, and 
competitive repopulation of HSCs [168–170]. Based on 
these findings, a clinical trial was conducted to test whether 
a CD26/DPPIV inhibitor, Sitagliptin, enhanced engraftment 
after UCB transplant in adult patients with hematological 
malignancies. Systemic administration of CD26 inhibitor in 
vivo was safe and may enhance engraftment [171,172]. 

7.2  Retinoic acid antagonist 

Retinoic acid (RA) is part of an effective treatment for acute 
promyelocytic leukemia; however, the role of retinoid sig-
naling in stem cell biology is not clear. In the mouse system, 
the activation of the RA pathway by all-trans retinoic acid 
supports ex vivo expansion of HSCs [173]. However, when 
the RA pathway is inhibited by a dominant negative RARα 
mouse HSC repopulation is also supported [174]. Diethyla-
minobenzaldehyde, an inhibitor of aldehyde dehydrogenase, 
the enzyme that is responsible for RA synthesis, induced a 
3.4-fold of increase of repopulating cord blood HSCs after 7 d 
of culture, as determined by SCID repopulation assays [175,176]. 
Together, these results suggest that RA is an important 
modulator of HSC homeostasis.  

7.3  Copper chelator, TEPA 

It was reported that elevated copper concentrations in HSC 
culture stimulates differentiation. By contrast, the inclusion 
of tetra-ethylenepentamine (TEPA), a Cu chelator, inhibits 
maturation and supports expansion of human HSCs as de-
termined by NOD/SCID transplantation [177,178]. In a 
phase I/II clinical trial, the transplantation ability of TEPA- 
cultured cord blood cells were tested by co-transplanting 
with uncultured cord blood cells into patients. The result 
showed that 90% of patients engrafted with no severe 
GVHD and a 90% 100-d survival. However, neither neu-

trophil nor platelet engraftment times were significantly 
improved [179]. 

7.4  Epigenetic modifiers  

Small molecule inhibitors of histone deacetylase (HDAC) 
and DNA methyltransferase have been shown to support ex 
vivo expansion of HSCs in multiple studies. The supple-
mentation of human cord blood CD34+ cells in culture with 
the HDAC inhibitor valproic acid for 7 d upregulated ex-
pression of stemness genes, elevated aldehyde dehydrogen-
ase activity, and stimulated a 36-fold increase of SCID- 
repopulating cells [180]. Another HDAC inhibitor chla-
mydocin also induced expansion of HSCs in culture [181]. 
G9a and G9a-like protein (GLP) are methyltransferases that 
dimethylate histone H3 Lys 9 (H3K9me1/2). Both support 
hematopoietic lineage specification and differentiation. 
UNC0638, a G9a/GLP small molecular inhibitor, maintains, 
but does not induce, expansion of HSC activity in cul- 
ture [182]. DNA methyltransferase inhibitors and HDAC 
inhibitors have additive effects in expansion of HSCs in 
culture. For instance, the DNA methyltransferase inhibitor 
decitabine [5-aza-2′-deoxycytidine (5azaD)] and the HDAC 
inhibitor trichostatin A together induced greater ability to 
maintain HSC activity in vitro than individual single  
agents [183,184]. It was suggested that valproic acid and 
5azaD/trichostatin A prevent the loss and support net ex-
pansion of HSCs, respectively [185]. 

7.5  p38 inhibitor 

The activation of p38 mitogen-activated protein kinase 
plays a role in HSC senescence [186,187]. A p38 specific 
inhibitor, SB203580, supports 3-fold of increase of SRCs 
after human cord blood CD133+ cells were cultured for 7 d, 
as determined by the NOD/SCID reconstitution analysis. 
This effect was primarily attributed to the inhibition of HSC 
senescence as no significant effect on HSC differentiation 
and proliferation was observed [188].  

7.6  Sirtuin 1 (SIRT1) inhibitor 

Nicotinamide (NAM), a form of vitamin B-3, inhibits dif-
ferentiation and improves homing by inhibiting SIRT1 
deacetylase. Treatment of human cord blood HSCs with 
NAM enhances repopulation in culture [189]. In a phase I 
study, CD133+ cord blood cells expanded for 21 d in the 
presence of NAM and the non-cultured CD133 cells from 
one UCB unit of cord blood (NiCord) were co-transplanted 
with an unmanipulated UCB unit into patients with hema-
tologic malignancies. No adverse effects were observed 
with the infusion of NiCord. NiCord engraftment remained 
stable in patients, and the patients who received the 
NAM-treated culture achieved earlier median neutrophil 
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Table 1  Summary of preclinical and clinical studies of ex vivo expansion of human cord blood HSCs 

Category of 
methods 

Individual methods Culture 
time 

Assay Effects Mechanism Reference 

Co-culture HSC-MSC co-culture 14 d phase I trial expansion of 
total nucleated 
cells and more 
rapid recovery 
of neutrophils 
and platelets 

promoting expansion 
through cell-to-cell 
contact and cytokine 
production 

[118] 

Continuous perfu-
sion 

Fed-batch system 12 d repopulation 11-fold reducing negative 
feedback 

[119,120] 

Cytokine supple-
memt 

Notch ligands 14–21 d phase I trial neutrophil 
recovery and 
myeloid en-
graftment with 
no signs of 
GVHD 

inhibiting differentia-
tion 

[121] 

 IGFBP2 11 d repopulation   [147] 
 Angptls or anti-LILRB2 antibody 10 d repopulation 4.9-fold inhibiting differentia-

tion 
[74,147,156] 

 Pleiotrophin 7 d repopulation  activation of the PI3K 
and Notch pathways 

[75] 

 TAT-HoxB4 2 week repopulation 2.5-fold increasing prolifera-
tion and self-renewal 
of HSCs 

[161] 

 TAT-NF-Ya 3–9 d repopulation 4-fold activating HOXB4 
and other genes im-
plicated in the 
self-renewal and 
differentiation of 
HSCs 

[162] 

Homing enhance-
ment 

Fucosylating enzymes 30 min phase I/IIa trial improved neu-
trophil and 
platelet recov-
ery 

increases homing and 
engraftment of CD34+ 
cells 

[165] 

 Complement (C3a) 15 min phase I trial no adverse 
effect 

Increasing homing 
and engraftment of 
HSPCs 

[167] 

Chemical supple-
ment 

Retinoic acid antagonsist (diethylami-
nobenzaldehyde) 

7 d repopulation 3.4-fold inhibiting differentia-
tion 

[175,176] 

 Cu chelator (TEPA) 21 d phase I/II trial safe inhibiting differentia-
tion 

[179] 

 Histone deactylase inhibitor (valproic 
acid) 

7 d repopulation 36-fold improving homing 
and maintaining 
quiescence 

[180] 

 DNA Methyltransferase inhibitor 
(UNC0638) 

2 week repopulation maintaining 
HSC activity 

blocking formation of 
higher-order chroma-
tin structure 

[182] 

 p38 inhibitor 7 d repopulation 3-fold inhibiting HSC se-
nescence 

[188] 

 SIRT1 inhibitor (Nicotinamide) 21 d phase I trial earlier median 
neutrophil 
recovery 

inhibiting differentia-
tion and improving 
homing 

[190] 

 AhR antagonist (SR1)  phase I/II trial enhances neu-
trophil recovery

antagonizing an acryl 
hydrocarbon receptor 

[191–193] 

 PGE2 2 h phase I trial enhances neu-
trophil recovery

enhancing homing, 
survival, and prolifer-
ation of HSCs 

[65,194,195] 

 TPO receptor agonist (NR-101) 7 d repopulation 2.9-fold activating STAT5 and 
Hif-1alpha 

[197] 

 UM171 12 d repopulation 13-fold inhibiting erythroid 
and megakaryocytic 
differentiation 

[192] 

 
recovery than those given untreated cord blood [190]. 
EX-527, another SIRT1 inhibitor, also inhibits differentia-
tion of human CD34+ cells [189]. The mechanism by which 
NAM supports engraftment of HSCs should be further in-
vestigated.  

7.7  StemRegenin 1 (SR1) 

A purine derivative, StemRegenin 1 (SR1), was identified 
through a high-throughput screening for the ability to sup-
port the ex vivo expansion of CD34+ cells in the presence of 
cytokines [191]. SR1 increases SRC expansion 17 fold. SRI 
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antagonizes an acryl hydrocarbon receptor (AhR), but how 
this results in support of HSC expansion is unknown. SR1 
does not support ex vivo expansion of mouse HSCs or adult 
human HSCs [182]. Recently, it was suggested that SR1 
acts on cells with limited self-renewal potential but that   
it does not support proliferation of the most primitive  
HSCs [192]. A phase I/II clinical trial is ongoing and early 
results indicate that the SR1-containing culture system  
significantly enhances neutrophil recovery after transplanta-
tion [193].  

7.8  Prostaglandin E2 (PGE2) 

A screening of chemicals that induce HSC proliferation in 
zebrafish led to the identification of prostaglandin E2 
(PGE2) as a stem cell-supportive chemical. Short treatment 
with PGE2 enhanced ex vivo expansion of long-term repop-
ulating mouse HSCs [65] and also supported ex vivo expan-
sion of unfractionated and CD34+ cord blood cells as deter-
mined by xenograft experiments [194]. PGE2-treated pri-
mate CD34+ mPB stem cells exhibit stable multilineage 
repopulation [194]. A phase I clinical trial with 16,16-  
dimethyl prostaglandin E2-treated cord blood demonstrated 
safety and accelerated neutrophil recovery in patients re-
ceiving this treatment compared to controls [195].  

7.9  Thrombopoietin (TPO) receptor agonist 

TPO signaling maintains quiescence and enhances expan-
sion of HSCs during crisis [196]. As a small molecule ago-
nist of the thrombopoietin (TPO) receptor MPL, NR-101 
stimulates ex vivo expansion of human HSCs [197]. A 
2.9-fold increase in SRC numbers was observed in 
NR-101-treated human CD34+ cells in a 7-d culture com-
pared to uncultured cells, and a 2.3-fold increase was ob-
served compared to human CD34+ cells treated with TPO. 
NR-101 activates signal transducer and activator of tran-
scription 5 (STAT5) but not STAT3, and also induces activ-
ities of HIF-1 and its downstream targets [197].  

7.10  UM171 

The Sauvageau group [192] screened a chemical library for 
compounds that support ex vivo expansion of mPB 
CD34+CD45R cells and identified pyrimidoindole deriva-
tives that do not suppress the AhR pathway. An effective 
compound, UM171, was identified through further modifi-
cation. In the Fed-Batch culture system [120], UM171 sup-
ports expansion of hematopoietic progenitors and results in 
a 13-fold expansion of SRCs. UM171 cooperates with SR1, 
an inhibitor of the AhR pathway, to induce an increase of 
hematopoietic progenitors in vitro; UM171, but not SR1, 
supports expansion of LT-HSCs. Like SR1, UM171 does 
not have mitogenic activity by itself and thus works togeth-
er with cytokines. UM171 causes a lymphoid-deficient dif-

ferentiation pattern in reconstituted mice. Unlike SR1, 
UM171 inhibits erythroid and megakaryocytic differentia-
tion. The mechanism through which UM171 supports ex-
pansion of cord blood LT-HSC expansion and proliferation 
of adult HSCs or progenitors differs from that of SR1. 
UM171 is most recently identified compound with HSC 
stimulatory effects in ex vivo expansion culture. 

8  Summary and perspectives 

The goals of work on ex vivo expansion of HSCs are (i) to 
make one umbilical cord blood unit sufficient for adult 
transplantation; (ii) to achieve long-term multi-lineage en-
graftment, reduce the time of neutrophil and platelet en-
graftment, and facilitate immune reconstitution; (iii) to im-
prove graft efficiency without causing GVHD; and (iiii) to 
be cost effective.  No ex vivo expansion protocol has yet 
achieved these goals. A major problem of the current pro-
tocols for ex vivo expansion of human HSCs is that there is 
no convincing evidence that one unit of UCB can be ex-
panded to replace the double units currently required for 
effective adult transplantation. In some cases, the uncul-
tured UCB unit appears to be responsible for the long-term 
engraftment. In addition, improved immune reconstitution 
from expanded UCB units has not been achieved. This may 
be due to the lack of expansion of primitive human HSCs 
when existing protocols are used or may result from varia-
tion of individual units of cord blood. Moreover, the prob-
lem may come from the graft-graft immune reactions of the 
two transplanted UCB units. To avoid this, the expanded 
UCB unit may be tried as a sole source for some trials. 

Although the optimal condition for ex vivo expansion of 
HSCs is still under development, a better understanding of 
the mechanisms involved in HSC cell fate determination 
and the HSC culture characteristics will guide development 
of new strategies to overcome difficulties. A unique feature 
of ex vivo expansion of HSCs is that no single factor sup-
ports HSC expansion. This is possibly due to the fact that 
HSCs can have different fates—self-renewal, differentiation, 
apoptosis, and migration. During culture, the cell fates of 
HSCs are often dominated by differentiation or apoptosis. 
Therefore, although many factors increase the total cell 
numbers in HSC culture, in most cases, the cultures are 
overpopulated by mature differentiated cells rather than the 
desired most primitive stem cells. Therefore our goal should 
be to identify factors that support self-renewal and to sup-
press the other possible cell fates. The most important fac-
tors in ex vivo expansion of HSCs will thus include factors 
that inhibit differentiation and apoptosis. 

Another interesting observation is that recently identified 
protein factors and chemicals effective in ex vivo expansion 
of HSCs are not necessarily typical hematopoietic growth 
factors or those that activate classical HSC pathways. Some 
newly identified factors induce developmentally conserved 
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pathways or act on nonessential pathways for HSC function, 
usually through gain-of-function effects. For example, 
binding of the receptor LILRB2 by the ligand Angptls sup-
ports HSC expansion; however, LILRB knockout in mice 
does not have an overt phenotype in hematopoiesis [74]. 
The AhR pathway is non-essential during HSC develop-
ment but appears to be important for ex vivo expansion of 
HSCs as demonstrated by the effectiveness of the AhR an-
tagonist SR1 [191]. 

An unresolved question that limits the future develop-
ment of improved systems for ex vivo expansion of HSCs  
is why the surface phenotype of cultured HSCs differs    
so dramatically from that of freshly isolated HSCs. There-
fore there is no reliable in vitro measure of the activity    
of cultured HSCs. It is well aware that the surface pheno-
types of mouse and human HSCs are changed upon ex vivo 
culture [84,198,199]. Due to a lack of better markers, 
CD34+CD38CD90+CD45RCD49f+, the surface phenotype 
of freshly isolated human HSCs [200] has been used to 
screen for HSC supportive chemicals in vitro [192]. Better 
in vitro measures of HSC activity would make screening 
more effective. 

The cost of ex vivo culture of HSCs is relatively high. It 
is an open question whether we should use enriched or un-
enriched HSCs as a starting population for ex vivo expan-
sion. Most currently used ex vivo expansion approaches use 
partially enriched HSCs such as CD34+ cells or CD133+ 
cells. These cells appear to expand more readily than unen-
riched cells—at least in terms of number increases. Never-
theless, a portion of HSCs present in the original unfrozen 
cord blood unit may be lost during this fractionation process. 
Methods to minimize processing or optimize enrichment 
should be identified.  

In the future, work should proceed in several directions 
to improve the existing systems for ex vivo expansion of 
HSCs. First, new approaches to enable expansion of the 
primitive multi-lineage HSCs—not only the progeni-
tors—are essential. Second, a combination of approaches 
are necessary to optimally expand HSCs. These might in-
clude development of a combination treatment regimen with 
agents that enhance self-renewal, that block differentiation, 
and that improve homing. For instance, given the interaction 
between Notch and Angptl2 receptor in human HSPCs [155], 
it is reasonable to propose to combine the Notch ligands- 
and Angptl-based HSC culture systems for further im-
provement of the ex vivo expansion of primitive cord blood 
HSCs. In addition, 3D culture and fed-batch culture meth-
ods may be pursued, and methods to enhance yields and 
lower cost during collection and processing should be de-
veloped. Furthermore, a cord blood bank would be useful if 
pre-expanded units were in stock. In this way, sufficient 
numbers of functional stem cells from the expanded cord 
blood HSCs can be directly transplanted into matched adult 
patients. Finally, the application of the targeted genome 
editing techniques to HSCs can be limited without the ca-

pacity of selective expansion of the HSCs in which the de-
sired genomic loci are modified [201]. A combination of 
techniques in ex vivo expansion and genome editing such as 
CRISPR/Cas9 technology would enable the further devel-
opment of HSC-based gene therapy. 
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