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Abstract
By the weak linking theorem and the linking theorem, we study the existence of
periodic solutions for the following system of delay differential equations:

u′(t) = –f (u(t – r)), ()

where f ∈ C(Rn,Rn), and r > 0 is a given constant. Two existence theorems of
4r-periodic solutions of (1) are obtained.
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1 Introduction and preliminaries
Consider the following system of delay differential equations:

u′(t) = –f
(
u(t – r)

)
, (.)

where f ∈ C(Rn,Rn), and r >  is a given constant.
As n≡ , the existence of the periodic solutions for (.) has been extensively studied in

the past years (for example, see [–]). However, their methods are not variational. Few
results of the existence of periodic solutions for delay differential equations have been
obtained by the variational method. In , Guo and Yu [] took the lead in using the
variational approaches to study the existence of multiple periodic solutions for (.), and
a multiplicity result was given. Recently, using the variational approaches, the multiplicity
of the periodic solutions for the following system:

{
u′(t) = –�u(t + r) – f (t,u(t – r)),
u() = –u(r), u() = u(r)

was studied by Wu and Wu in []. In the present paper, our main purpose is to study the
existence of the periodic orbits for system (.) via the linking and weak linking theory.
Throughout this paper, we always assume that

(f) f is odd, i.e., for any x ∈ Rn, f (–x) = –f (x);
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(f) there exists a continuously differentiable function F such that ∇F(x) = f (x) for all x ∈
Rn, and F() = ;

(f) f (x) = Ax + o(|x|) as |x| → ∞, where A = (aij)n×n is an n× nmatrix with

‖A‖ := max
≤i,j≤n

|aij| < λ–

and λ–(–)j+(j–) /∈ σ (A) (the set of all eigenvalues ofA) for any j ∈ Z+, where λ = r
π

and Z+ is the set of all positive integers.

In the following, we give some preliminaries.

Definition . ([]) Let E be a Hilbert space and I ∈ C(E,R). The function I ′ is called
weak-to-weak continuous if

uk ⇀ u in E ⇒ I ′(uk) ⇀ I ′(u). (.)

Definition . ([]) A subset A of a Banach space E links a subset B of E weakly if for
every I ∈ C(E,R) satisfying (.) and

a := sup
A

I ≤ b := inf
B
I, (.)

there are a sequence {uk} ⊂ E and a constant c such that

b ≤ c < ∞ (.)

and

I(uk) → c, I ′(uk) → . (.)

The following lemma is Example  in [].

Lemma . Let E be a separable Hilbert space, and let M,N be a closed subspace such that
E =M ⊕N . Let

BR =
{
u ∈ E : ‖u‖ < R

}
(.)

and take A = ∂BR ∩N , B =M. Then A links B weakly.

One can easily find that (.) can be changed to the equation

u′(t) = –λf
(
u
(
t –

π



))
(.)

by making the change of variable t �→ π
r t = λ–t. Thus, a r-periodic solution of (.) cor-

responds to a π-periodic solution of (.).
Similar to the treatment in Guo and Yu [], we introduce the following spaces. Let

L(S,Rn) denote the set of n-tuples of π periodic functions which are square integrable.

http://www.boundaryvalueproblems.com/content/2013/1/254
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Let C∞(S,Rn) be the space of π-periodic C∞ vector-valued functions with dimension n.
For any u ∈ C∞(S,Rn), it has the following Fourier expansion in the sense that it is con-
vergent in the space L(S,Rn):

u(t) =
au√
π

+
√
π

+∞∑
j=

(
auj cos jt + buj sin jt

)
,

where au,auj ,buj ∈ Rn. SetH 
 (S,Rn) is the closure ofC∞(S,Rn) with respect to theHilbert

norm

‖u‖
H



=

[∣∣au∣∣ + +∞∑
j=

( + j)
(∣∣auj ∣∣ + ∣∣buj ∣∣)

] 


.

More specifically, H 
 (S,Rn) = {u ∈ L(S,Rn) : ‖u‖

H


< +∞} with the inner product

〈u, v〉 = (
au,a

v

)
+

+∞∑
j=

( + j)
[(
auj ,a

v
j
)
+

(
buj ,b

v
j
)]

for any u, v ∈ H 
 (S,Rn), where (·, ·) denotes the usual inner product in Rn. In the sequel,

we denote by H the Hilbert space H 
 (S,Rn). The norm on H is defined by

‖u‖H =

[∣∣au∣∣ + +∞∑
j=

( + j)
(∣∣auj ∣∣ + ∣∣buj ∣∣)

] 


.

Now consider a functional I defined on H

I(u) =
∫ π



[



(
u̇
(
t +

π



)
,u(t)

)
+ λF

(
u(t)

)]
dt, ∀u ∈H ,

where u̇(t) denotes the weak derivative of u.
We define an operator L :H →H∗ as follows: for any u ∈H , Lu is defined by

Lu(v) =
∫ π



(
u̇
(
t +

π



)
, v(t)

)
dt, ∀v ∈ H , (.)

where H∗ denotes the dual space of H . By the Riesz representation theorem, we can iden-
tify H∗ with H . Thus, Lu can also be viewed as a function belonging to H such that
〈Lu, v〉 = Lu(v) for any u, v ∈H . Define

�(u) = λ

∫ π


F
(
u(t)

)
dt, ∀u ∈H . (.)

Then I(u) can be rewritten as

I(u) =


〈Lu,u〉 +�(u), ∀u ∈ H . (.)

http://www.boundaryvalueproblems.com/content/2013/1/254
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Define the bounded linear operator ζ :H → H as follows: for any u ∈ H , ζu(·) = u(· + π
 ).

Next, we set E = {u ∈ H : ζ u = –u}. Then E is a closed subspace of H and is invariant
with respect to L. It is easy to check that L is a bounded linear operator on H , L|E is self-
adjoint, and E is also invariant with respect to �′ under condition (f) (see Guo and Yu
[]). By Proposition B. in [] and Lemma . in [], we have the following two lem-
mas.

Lemma . Assume that f satisfies (f) and the following condition:

(f) there are constants a,a >  and α ≥  such that

∣∣f (x)∣∣ ≤ a + a|x|α

for all x ∈ Rn.

Then the functional I is continuously differentiable on H and I ′(u) is defined by

〈
I ′(u), v

〉
=

∫ π



[



(
u̇
(
t +

π



)
– u̇

(
t –

π



)
, v(t)

)
+ λ

(
f
(
u(t)

)
, v(t)

)]
dt, ∀v ∈H .

Moreover, �′ :H →H∗ is a compact mapping defined as follows:

〈
�′(u), v

〉
= λ

∫ π



(
f
(
u(t)

)
, v(t)

)
dt, ∀v ∈H .

By the Riesz theorem, we can view �′(u) as an element of H for any u ∈H . As usual, we
identify u ∈H and its continuous representative.
We have the following fact.

Lemma . Assume that f satisfies (f), (f), (f). Then critical points of functional I re-
stricted to E are π -periodic solutions of system (.).

Remark . It is pointed in [] that a critical point u of I in H will be a weak solution of
(.). However, a simple regularity argument shows that u ∈ C(S,Rn).

Remark . As usual, we should deal with (.) in the space H . But, according to Lem-
ma ., we only need to treat the functional I in the subspace E of H .

Lemma . ([]) For each s ∈ [,∞), H 
 (S,Rn) is compactly embedded in Ls(S,Rn). In

particular there is αs >  such that

‖u‖Ls ≤ αs‖u‖

for all u ∈H 
 (S,Rn).

2 Main results
Theorem . Assume that f satisfies (f), (f) and (f). Then (.) possesses at least one
r-periodic solution.

http://www.boundaryvalueproblems.com/content/2013/1/254
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Proof Let e, e, . . . , en denote the usual normal orthogonal bases in Rn and set

M = span
{
ek cos(j – )t, ek sin(j – )t : j ∈ Z+,k = , , . . . ,n

}
,

N = span
{
ek cos(j – )t, ek sin(j – )t : j ∈ Z+,k = , , . . . ,n

}
,

where Z+ is the set of all positive integers. Then E =M⊕N . For any u ∈ E, it has a Fourier
expansion as follows:

u(t) =
√
π

+∞∑
j=

[
auj– cos(j – )t + buj– sin(j – )t

]
= x(t) + y(t), (.)

where all auj–,auj–,auj–,buj–,buj–,buj– ∈ Rn,

x(t) =
√
π

+∞∑
j=

[
auj– cos(j – )t + buj– sin(j – )t

]
,

y(t) =
√
π

+∞∑
j=

[
auj– cos(j – )t + buj– sin(j – )t

]
.

Consequently, we have



‖u‖H ≤ 〈Lx,x〉 – 〈Ly, y〉 ≤ ‖u‖H . (.)

Let

‖u‖ = 〈Lx,x〉 – 〈Ly, y〉. (.)

Then (.) and (.) show that ‖ · ‖ and ‖ · ‖H are two equivalent norms on E. Henceforth
we use the norm ‖ · ‖ as the norm for E. And the spaces M, N are mutually orthogonal
with respect to the associated inner product.
First, we prove that I(u) satisfies (.) in E.
Let {uk} be any sequence which converges to some u weakly in E. By the compactness

of the embedding E ↪→ L(S,Rn), we assume that

uk → u in L
(
S,Rn),

uk → u a.e. in S.

Thus, (f (uk), v) → (f (u), v) a.e. for all v ∈ E. Since f (x) ∈ C(Rn,Rn) satisfies (f), there exist
positive constantsM andM such that

∣∣(f (uk), v)∣∣ ≤M|v| +M|uk||v|, ∀v ∈ E. (.)

Note that the right-hand side of (.) converges to M|v| +M|u||v| in L(S,Rn). Hence
{(f (uk), v)} ⊂ L(S,R) is uniformly absolutely continuous. Hence, by Vitali’s theorem,

∫ π



(
f
(
uk(t)

)
, v(t)

)
dt →

∫ π



(
f
(
u(t)

)
, v(t)

)
dt, ∀v ∈ E. (.)

http://www.boundaryvalueproblems.com/content/2013/1/254
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Moreover, since L is a bounded self-adjoint linear operator on E,

Luk ⇀ Lu in E. (.)

According to (.) and (.), we get that I ′ is weak-to-weak continuous.
Next, we prove

I(u) → +∞ as u ∈M,‖u‖ → ∞ (.)

and

I(v)→ –∞ as v ∈N ,‖v‖ → ∞. (.)

Indeed, by (f), we know that there exists a positive constant c such that

∣∣f (x)∣∣ ≤ c +
(

‖A‖ +  – λ‖A‖
λ

)
|x|, ∀x ∈ Rn. (.)

Thus, for u ∈M, by (.), we have

I(u) =


〈Lu,u〉 + λ

∫ π


F
(
u(t)

)
dt

=


‖u‖ + λ

∫ π



(∫ 



(
f
(
su(t)

)
,u(t)

)
ds

)
dt

≥ 

‖u‖ – λ

∫ π



[(


‖A‖ +  – λ‖A‖

λ

)∣∣u(t)∣∣ + c
∣∣u(t)∣∣]dt

=


‖u‖ –  + λ‖A‖


‖u‖L – λc‖u‖L

≥ 

‖u‖ –  + λ‖A‖


‖u‖ – c‖u‖

=
 – λ‖A‖


‖u‖ – c‖u‖, (.)

where c >  is a given constant. Since –λ‖A‖
 > , (.) implies (.). The proof of (.)

is similar. In fact, when v ∈N , by (.), we get that

I(v) =


〈Lv, v〉 + λ

∫ π


F
(
v(t)

)
dt

= –


‖v‖ + λ

∫ π


F
(
v(t)

)
dt

≤ –


‖v‖ +  + λ‖A‖


‖v‖L + λc‖v‖L

≤ –
(
 – λ‖A‖



)
‖v‖ + c‖v‖.

This implies (.).

http://www.boundaryvalueproblems.com/content/2013/1/254
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Note that (.) implies

b = inf
M

I > –∞. (.)

The combination of (.) and (.) implies that there is R >  such that (.) holds with
A = ∂BR ∩ N , B = M. By Lemma . we know that there are a sequence {uk} ⊂ E and a
constant c such that

I(uk) → c, b ≤ c < ∞, I ′(uk) → . (.)

Finally, we show that the sequence {uk} is bounded in E. To do this, assume that ρk =
‖uk‖ → ∞, and write ũk = 

ρk
uk . Then ‖ũk‖ = . From Lemma ., there is a renamed

subsequence such that

ũk ⇀ ũ in E,

ũk → ũ in L
(
S,Rn).

By (f), for any ε > , there exists a constant r̄ >  such that

∣∣f (x) –Ax
∣∣ < ε|x| for all |x| > r̄. (.)

Moreover, by the continuity of f , there is a constant c >  such that

∣∣f (x)∣∣ ≤ c if |x| ≤ r̄. (.)

By (.) and (.), for any v ∈ E, we have

∣∣∣∣ ρ k

∫ π



(
f
(
uk(t)

)
, v(t)

)
dt –

∫ π



(
Aũ(t), v(t)

)
dt

∣∣∣∣
=

∣∣∣∣ ρ k

∫ π



(
f
(
uk(t)

)
–Auk(t), v(t)

)
dt +

∫ π



(
Aũk(t) –Aũ(t), v(t)

)
dt

∣∣∣∣
≤ 

ρ k

[∫
|uk |>r̄

ε
∣∣uk(t)∣∣∣∣v(t)∣∣dt + ∫

|uk |≤r̄

(
c + ‖A‖r̄)∣∣v(t)∣∣dt]

+
∫ π


‖A‖∣∣ũk(t) – ũ(t)

∣∣∣∣v(t)∣∣dt
≤ ε

∫ π



∣∣ũk(t)∣∣∣∣v(t)∣∣dt + 
ρ k

∫ π



(
c + ‖A‖r̄)∣∣v(t)∣∣dt

+
∫ π


‖A‖∣∣ũk(t) – ũ(t)

∣∣∣∣v(t)∣∣dt
→  (.)

as ε →  and k → ∞. This shows


ρ k

∫ π



(
f
(
uk(t)

)
, v(t)

)
dt →

∫ π



(
Aũ(t), v(t)

)
dt. (.)

http://www.boundaryvalueproblems.com/content/2013/1/254
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Hence

〈I ′(uk), v〉
ρk

= 〈Lũk , v〉 + λ

ρ k

∫ π



(
f
(
uk(t)

)
, v(t)

)
dt

→ 〈Lũ, v〉 + λ

∫ π



(
Aũ(t), v(t)

)
dt. (.)

By (.) and (.), we see that

〈Lũ, v〉 + λ

∫ π



(
Aũ(t), v(t)

)
dt = 

for all v ∈ E, i.e.,∫ π



(
˙̃u
(
t +

π



)
+ λAũ(t), v(t)

)
dt =  (.)

for all v ∈ E.
Set

ũ(t) =
√
π

+∞∑
j=

[
aũj– cos(j – )t + bũj– sin(j – )t

]
,

v(t) =
√
π

+∞∑
j=

[
avj– cos(j – )t + bvj– sin(j – )t

]
.

Then, by (.), one can obtain

+∞∑
j=

[((
λA + (–)j(j – )I

)
aũj–,a

v
j–

)
+

((
λA + (–)j(j – )I

)
bũj–,b

v
j–

)]
= ,

where I is the n × n unit matrix. For any j, take v(t) = √
π
ei cos(j – )t and v(t) =

√
π
ei sin(j – )t, where i = , , . . . ,n. An easy computation shows that

(
λA + (–)j(j – )I

)
aũj– =  (.)

and

(
λA + (–)j(j – )I

)
bũj– = . (.)

Hence, by λ–(–)j+(j – ) /∈ σ (A), we get that ũ≡ .
Let ũk = x̃k + ỹk , where x̃k ∈M, ỹk ∈N . A proof similar to (.) shows that


ρ k

∫ π



(
f
(
uk(t)

)
, x̃k(t)

)
dt →

∫ π



(
Aũ(t), x̃(t)

)
dt =  (.)

and


ρ k

∫ π



(
f
(
uk(t)

)
, ỹk(t)

)
dt →

∫ π



(
Aũ(t), ỹ(t)

)
dt = , (.)

http://www.boundaryvalueproblems.com/content/2013/1/254
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where ũ = x̃ + ỹ, x̃ ∈M, ỹ ∈N . Thus

〈I ′(uk), x̃k〉
ρk

–
〈I ′(uk), ỹk〉

ρk

= ‖x̃k‖ + ‖ỹk‖ + λ

ρ k

∫ π



(
f
(
uk(t)

)
, x̃k(t)

)
dt –

λ

ρ k

∫ π



(
f
(
uk(t)

)
, ỹk(t)

)
dt

=  +
λ

ρ k

∫ π



(
f
(
uk(t)

)
, x̃k(t)

)
dt –

λ

ρ k

∫ π



(
f
(
uk(t)

)
, ỹk(t)

)
dt

→ . (.)

On the other hand, (.) implies

〈I ′(uk), x̃k〉
ρk

–
〈I ′(uk), ỹk〉

ρk
→ ,

which contradicts (.). Thus ρk must be bounded. Consequently, there is a renamed
subsequence of {uk} such that uk ⇀ u in E. Hence, by the weak-to-weak continuity of I ′,
we have

〈
I ′(uk), v

〉 → 〈
I ′(u), v

〉
, ∀v ∈ E. (.)

Now, the combination of (.) and (.) implies that I ′(u) = . This completes the
proof. �

Remark . Let n = , r = π
 and f (x) = x. Then f (x) satisfies all the conditions of Theo-

rem ..

In order to give our another result, we still need the following preliminaries.
Let PM , PN be the projectors of E ontoM, N associated with the given splitting of E. Set

H =
{
� ∈ C

(
[, ]× E,E

)
: �(,u) = u and

PN�(t,u) = PNu –K (t,u),where K : [, ]× E →N is compact
}
.

Recall that K is continuous and maps bounded sets to relatively compact sets since K
is compact. Let S,Q ⊂ E with Q ⊂ Ẽ, a given subspace of E. Then ∂Q will refer to the
boundary of Q in Ẽ.

Definition . We say S and ∂Q link if whenever � ∈ H and �(t, ∂Q) ∩ S = ∅ for all
t ∈ [, ], then �(t,Q)∩ S �= ∅ for all t ∈ [, ].

Lemma . ([]) Let ρ > , S ≡ ∂Bρ ∩M, e ∈ M∩ ∂B, r > ρ , r > ,Q ≡ {re : r ∈ (, r)}⊕
(Br ∩N), and Ẽ ≡ span{e} ⊕N . Then S and ∂Q link.

Lemma . ([]) Suppose I ∈ C(E,R) satisfies the (PS) condition and

(I) I(u) = 
 〈Lu,u〉 + �(u), where Lu = LPMu + LPNu and L :M → M, L : N → N are

bounded self-adjoint,

http://www.boundaryvalueproblems.com/content/2013/1/254
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(I) �′ is compact,
(I) there exist a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants α > β such that

(i) S ⊂M and I|S ≥ α,
(ii) Q is bounded and I|∂Q ≤ β ,
(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α.

The following is our another main result.

Theorem . Assume that f satisfies (f), (f) and the following conditions:

(f) F(x)≤  for all x ∈ Rn,
(f) f (x) = o(|x|) as |x| → ,
(f) there exist constants c > , p >  and r̃ >  such that

∣∣f (x)∣∣ ≤ c
(
 + |x|p–), ∀x ∈ Rn

and

(
f (x),x

) ≤ pF(x) < , ∀|x| ≥ r̃.

Then (.) possesses at least one nonconstant r-periodic solution.

Proof We will show that I satisfies the hypotheses of Lemma .. This will lead to a non-
constant r-periodic solution of (.). We divide the proof of Theorem . into the follow-
ing three parts.
First, we prove that I satisfies (I) and (I) of Lemma ..
Note that L(M) ⊂M, L(N)⊂N and L is bounded self-adjoint on E.We see that I satisfies

(I) of Lemma . with L = L|M , L = L|N and

�(u) = λ

∫ π


F
(
u(t)

)
dt.

By Proposition B. in [], (f) implies that �′ is compact. Hence (I) holds.
Next, we show that I satisfies (I) of Lemma ..
By (f), for any ε > , there is δ >  such that

∣∣F(x)∣∣ ≤ ε|x|

whenever |x| ≤ δ. By (f), there is a constant c = c(ε) such that

∣∣F(x)∣∣ ≤ c|x|p for |x| ≥ δ.

Hence

∣∣F(x)∣∣ ≤ ε|x| + c|x|p, ∀x ∈ Rn. (.)

http://www.boundaryvalueproblems.com/content/2013/1/254
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By (.) and Lemma ., for any u ∈M, we have

I(u) =


〈Lu,u〉 +�(u)

=


〈Lu,u〉 + λ

∫ π


F
(
u(t)

)
dt

=


‖u‖ + λ

∫ π


F
(
u(t)

)
dt

≥ 

‖u‖ – λ

∫ π


ε
∣∣u(t)∣∣ + c

∣∣u(t)∣∣p dt
≥ 


‖u‖ – λεα

‖u‖ – λcαp
p‖u‖p. (.)

Choose ε = (λα
)–. Since p > , there is small ρ >  such that 

ρ
 ≥ λcαp

pρ
p. Then, for

u ∈ ∂Bρ ∩ M, (.) implies that I(u) ≥ 
ρ

 := α > . Consequently, I satisfies (I)(i) with
S = ∂Bρ ∩M.
Set e ∈ ∂B ∩M and

Q = {re :  < r < r} ⊕ (Br ∩N), (.)

where r > ρ and r >  are free constants for the moment. Define Ẽ = span{e} ⊕N . Then
Q ⊂ Ẽ and S and ∂Q link by Lemma ..
By (f), there are constants c, c >  such that

F(x)≤ –c|x|p + c (.)

for all x ∈ Rn. Thus, for v ∈ Br ∩N , by the Hölder inequality (note that p > ) and orthog-
onality, we get that

I(re + v) =


r –



‖v‖ + λ

∫ π


F
(
re(t) + v(t)

)
dt

≤ r –


‖v‖ – λ

∫ π


c

∣∣re(t) + v(t)
∣∣p dt + λπc

≤ r –


‖v‖ – c

(∫ π



∣∣re(t) + v(t)
∣∣ dt) p


+ λπc

= r –


‖v‖ – c

(∫ π



[
r

∣∣e(t)∣∣ + ∣∣v(t)∣∣]dt) p

+ λπc

≤ r –


‖v‖ – crp + λπc, (.)

where c, c >  are constants. Now, choose large r > ρ and r > r such that

r – crp + λπc ≤ , ∀r ≥ r (.)

and

r –


r + λπc ≤ . (.)
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By (.), (.), (.), (.) and (f), one can easily check that I|∂Q ≤  := β . Hence I
satisfies (I)(ii).
To sum up, I satisfies (I) of Lemma ..
Finally, we check that I satisfies the (PS) condition. Let {uk} ⊂ E be a sequence such that

|I(uk)| ≤ c and I ′(uk) →  as k → ∞. Then, for large k, by (f) and (.), we have

c + ‖uk‖ ≥ I(uk) –
〈
I ′(uk),uk

〉
= λ

∫ π



[
F

(
uk(t)

)
–

(
f
(
uk(t)

)
,uk(t)

)]
dt

= λ

∫ π


( – p)F

(
uk(t)

)
dt + λ

∫ π



[
pF

(
uk(t)

)
–

(
f
(
uk(t)

)
,uk(t)

)]
dt

≥ λ

∫ π


( – p)F

(
uk(t)

)
dt – c

≥ λ(p – )
∫ π



(
c

∣∣uk(t)∣∣p – c
)
dt – c

≥ c‖uk‖pLp – c, (.)

where c, c, c >  are constants.
Let uk = xk + yk , where xk ∈ M, yk ∈ N . Then, for large k, by (f), Lemma . and the

Hölder inequality, we get that

‖xk‖ ≥ ∣∣〈I ′(uk),xk 〉∣∣
=

∣∣∣∣‖xk‖ + λ

∫ π



(
f
(
uk(t)

)
,xk(t)

)
dt

∣∣∣∣
≥ ‖xk‖ – λ

∫ π



∣∣f (uk(t))∣∣∣∣xk(t)∣∣dt
≥ ‖xk‖ – λ

∫ π


c
(
 +

∣∣uk(t)∣∣p–)∣∣xk(t)∣∣dt
≥ ‖xk‖ – λc‖xk‖L – λc‖uk‖p–Lp ‖xk‖Lp
≥ ‖xk‖ – λcα‖xk‖ – λcαp‖uk‖p–Lp ‖xk‖. (.)

This implies that

‖xk‖ ≤  + λcα + λcαp‖uk‖p–Lp . (.)

Similarly, one can easily see that

‖yk‖ ≤  + λcα + λcαp‖uk‖p–Lp . (.)

By (.), (.) and (.), there is a constant c >  such that

‖uk‖ ≤ ‖xk‖ + ‖yk‖
≤ 

(
 + λcα + λcαp‖uk‖p–Lp

)
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≤ 
[
 + λcα + λcαpc

–p
p


(
c + c + ‖uk‖

) p–
p

]
≤ c

(
 + ‖uk‖

p–
p

)
,

which implies that {uk} is bounded in E.
By the compactness of �′, going if necessary to a subsequence, we can assume that

uk ⇀ u in E

and

�′(uk) → �′(u) in E.

Let u = x + y, where x ∈M and y ∈N . Then

‖xk – x‖ = 〈
I ′(uk) – I ′(u),xk – x

〉
–

〈
�′(uk) –�′(u),xk – x

〉 → 

as k → ∞. Similarly, we have ‖yk–y‖ →  as k → ∞. Hence uk → u in E. Hence I satisfies
the (PS) condition.
Therefore, Theorem . follows from Lemma .. �

Remark . Let n =  and f (x) = –x 
 . Then f (x) satisfies all the conditions of Theorem .

with p = 
 and r̃ > .
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