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available at the end of the article point light source. The method in this article is an improved version of an earlier

method by the same authors, and provides more design freedom than the original
method. We derive a mathematical model for color mixing in a collimator and present
a numerical algorithm to solve it. We verify the results using Monte-Carlo ray tracing.

1 Introduction

LED is a rising technology in the field of lighting. In the past, LEDs were only suitable
as indicator lights, but the enormous improvements in energy efficiency, cost and light
output now allow the use of LEDs for lighting applications [1]. Additionally, LED lighting
benefits from low maintenance cost and long lifetime.

Because LED is a rising technology, companies and researchers are constantly search-
ing for methods to reduce the production cost and increase the efficiency, light output and
light quality of LED-based lamps. An important issue for white LED lamps is color varia-
tion of the emitted light. This is caused by color variation in the light output of the most
common type of white LED, the phosphor-converted LED. This type of LED consists of
a blue LED with on top a so-called phosphor layer which converts part of the blue light
into yellow and red. The resulting output is white light. The distance that a light ray trav-
els through the phosphor depends on the angle of emission. As a result, the light emitted
normal to the LED surface is more bluish, while the light emitted nearly parallel to the
surface is more yellowish [2, pp.353-357]. This phenomenon is called Color over Angle
(CoA) variation.

A lot of research has been done to reduce this color variation. Introduction of bubbles
in the phosphor layer causes scattering of light, reducing the color variation [3]. Another
common method is the application of a dichroic coating on the LED [4]. However, these
methods reduce the efficiency of the LED and increase the production costs. Wang et al.
[5] proposed a modification of the optics on the LED to improve the color uniformity. In
the case of a spot light, the LED is combined with a collimator. A collimator is an optical
component that reduces the angular width of the light emitted by the LED. A common
technique is to add a microstructure on top of the collimator. However, this microstructure
introduces extra costs in the production process of the collimator, makes the collimator
look unattractive and broadens the light beam.
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None of the methods mentioned above rigorously solve the problem of color variation,
and all methods reduce the efficiency of the optical system. In earlier work [6], we intro-
duced an inverse method to design a specific type of collimator, the so-called TIR (total
internal reflection) collimator. The TIR collimator designed with this method mixes light
from a point source such that the color variation is completely eliminated. The collima-
tor requires no microstructures nor scattering techniques. However, the inverse method
left very little design freedom for optical designers. An optical designer wants to influ-
ence the height and width of the collimator, for example, to fit it into the available space
in a lamp design. Also, optical designers want a color mixing collimator which resembles
a standard collimator as closely as possible. The inverse method introduced in this paper
is an improvement of the method introduced in [6]. The collimator has three free sur-
faces instead of two. As a result, the improved method offers more design freedom, and
it is nearly impossible to distinguish the resulting collimator with the naked eye from a
collimator without color correction.

The contents of this paper is the following. First we give a thorough introduction to in-
verse methods for optical systems and the theory of color mixing in Section 2. In Section 3
we explain the improved inverse method. Section 4 describes three examples where the
new method is used. Finally, we end with concluding remarks in Section 5.

2 Design of a TIR collimator using inverse methods

A TIR collimator is a rotationally symmetric lens, usually made of a transparent plastic
like polycarbonate (PC) or polymethyl methacrylate (PMMA), that is used to collimate
the light of an LED into a compact beam. A profile of a TIR collimator can be seen in Fig-
ure 1. The design procedure using inverse methods consists of two steps: first we choose
a relation between the angles ¢ of rays leaving the LED and the angles 6 of rays leaving
the collimator, the so-called transfer functions. Subsequently we use these transfer func-
tions to calculate the free surfaces of the TIR collimator such that the light is redirected
according to the relation defined by the transfer functions. In Figure 1 these free surfaces
are denoted by A, B and C.

2.1 Source and target intensities
The first requirement that determines the choice of the transfer functions is the intensity
pattern of the light emitted from the TIR collimator. Let I(¢, ) [Im/sr] be the intensity

=0

z-axis

Figure 1 Profile of a TIR collimator. A full TIR collimator can be obtained by rotating the profile around the
z-axis. Surface B and C are separated by the ray with angle 8 = 0.
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distribution of the light source. The unit Im stands for lumen, and is the unit to denote
energy flux corrected for the sensitivity of the eye at different wavelengths, and sr stands
for steradian, the unit of solid angle. The angle ¢ € [0,77/2] is the angle with respect to the
z-axis (inclination), and u € [0, 27) is the angle that rotates around the z-axis (azimuth).
Because of the symmetry of the system, the intensity I(¢, «) is independent of # and de-
noted by (). We introduce an effective intensity Z(¢), which is the flux per rad through the
circular strip [¢,¢ + d¢] on the unit sphere divided by 2. We calculate Z(¢) by integrating
I(t) over the angle u:

1 2
() = - /0 1(¢) sin(¢) du = I(¢) sin(z). @

The effective intensity has unit [Im/rad]. For an LED, the effective intensity is typically
positive for t € (0,7/2).

The light emitted from the TIR collimator has a desired pattern in the far field, meaning
that the TIR collimator itself can be considered a point source. The desired intensity pro-
file is denoted by G(8, ¢) [Im/sr], where 6 € [0, Oax] is the inclination for some maximum
inclination angle 0 < 0,,x < /2, and ¢ € [0,27) is the azimuth. We only consider inten-
sity profiles that are rotationally symmetric and thus independent of ¢. Integration over
the angle ¢ results in an effective intensity G(0) = sin(9)G(0) [Ilm/rad]. A more in-depth
discussion of effective intensity distributions can be found in Maes [7]. The target inten-
sity is multiplied by a constant ¢ > 0 such that we have conservation of luminous flux for
the optical system:

/2 Omax
/ : Z(t)dt=c G(0)do. (2)
0 0

The angular space [0,7/2] of the light emitted by the LED is partitioned into N € N
segments [7,1,7;], i = 1,2,...,N. For each segment we define a transfer function »; :
[0,0max] = [7i-1, 7] C [0,7r/2]. For a certain 6, 1;(0) gives the emission angle ¢ of the LED
in [1;.1, 7;]. We choose each transfer function to be strictly monotonic and thus invert-
ible. The luminous flux emitted from the collimator in the interval [0,6 + df] must be
equal to the sum over i of the luminous fluxes emitted from the source in each interval
[7:(0), n:(0 + dO)]. This leads to the following relation:

N

> o Z(m:(0))nj(6) = cG(O), (3)

i=1

where o; = —1 for monotonically decreasing transfer functions and o; = 1 for monotoni-

cally increasing transfer functions.

2.2 Color mixing
The second requirement on transfer functions is related to the color of the resulting beam
from the collimator. First we give a short introduction to the theory of color perception,
then we derive an ordinary differential equation describing the color of the beam.

Color perception is described extensively in [8, 9]. The human perception of a beam of
light can be fully described by its luminous flux (in Im) and the two so-called chromaticity
coordinates 0 < x,y < 1. There is a simple rule to calculate the chromaticity coordinates
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Figure 2 Scatter plot of the measured x and y chromaticity coordinates of the LED used in the
numerical experiments in this article. The size of the circles corresponds to the effective intensity. The
measured data in the lower left corner correspond small angles of t. The measured data for values of t close to
7r/2 around (0.423,0.4) are unreliable because of the low light intensities, causing the irregularity.

(x,7) of the beam resulting from mixing two beams of light with luminous fluxes L; and
L, and chromaticity coordinates (x1,y1) and (x3,72), respectively:

_xiLi/yr + x%2La/y,
- Li/yy + La/ys
B Li+L,

r= Li/y1 + Lylys

(4a)
(4b)

The resulting chromaticity coordinates are weighted averages of the chromaticity coordi-
nates of the original beam with weights L;/y; and L,/y,. Note that a point (x,y) is on the
straight line segment between (x1, ;) and (x5, 7).

The chromaticity coordinates of the light emitted from an LED are not constant, but
depend on the angle of emission ¢ and are described by functions x(¢) and y(¢). From mea-
sured data we have observed an approximate linear relationship between x(¢) and y(t), see
Figure 2. From the color mixing rule, we conclude that if we mix light from different angles
of the LED into a single beam with color coordinates (x7, yr), these coordinates must be
on the straight line segment relating x(¢) and y(¢). Therefore, given yr, the chromaticity co-
ordinate xr is fully determined and we only need that the y-coordinate of the mixed light
equals a certain constant target value y7. The light in the interval [0, 6 + df] emitted from
the TIR collimator is the sum of beams with intensity o;Z(n;(0)) dn;(0). The y-coordinate
of this light is therefore

Jr = S o Zi@) dni6) 5
1 o L0y (n:(6)) dni(6)

Using (3) we find the following differential equation:

Y T(140))
i———1/(0) = 0 ) 6
;Gy(m(e)) ni(0) = cG©O)/yr o
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Figure 3 Geometry of the free surfaces B and C. -
The grey arrow shows the ‘TIR route’ of the light. -

parallel to
symmetry axis

LED z-axis

2.3 Free surface calculations

The light paths in the TIR collimator shown in Figure 1 correspond to three transfer func-
tions, one transfer function for each of the free surfaces A, B or C. These free surfaces
can be calculated from the transfer functions using the ‘generalized functional method’
developed by Bortz and Shatz [10, 11]. They derived a differential equation that describes
the location of a free surface, given a surface S from which the rays depart with a given

angle #:

% = %tan(ﬂ)f + (tan(B) cos(8) + sin(é)). (7)
Here f is the distance a light ray travels from the surface S to the free surface, s is the arc-
length along S, £ is the angle of the ray leaving S with respect to the z-axis, and § is the
ray-emission angle measured counterclockwise with respect to the normal of S. The angle
B is the angle of incidence on the free surface with respect to the surface normal. For the
reflective surfaces B and C, the variables are illustrated in Figure 3. We like to formulate

this differential equation in terms of ¢ instead of s. Multiplication by ds/d¢ gives

& _di

T 4@ tan(B)f + — (tan(,B) cos(8) — sm(8)) (8)

The parameters 8 and § depend on ¢ and are derived below.

Light propagates through the collimator by two type of routes. In the ‘TIR route; light
is refracted by surface S, reflected by surface B or C by total internal reflection and finally
refracted by surface 7. In the ‘lens route, light is refracted by surface A and subsequently
refracted by surface T.

First consider the surfaces B and C. These surfaces are on the ‘TIR route; which is shown
in Figure 3. Surface B is bounded at one side by the rays that leave the source at angle £ = 1;.
The boundary between surface B and C is marked by the rays that leave the collimator at
angle 6 = 0, and we define the angle of this ray when leaving the light source to be ¢ = ;.
The angles 7; and 7, are illustrated in Figure 1. First the light is refracted at surface S. Let
d be the distance from the left of surface S to the LED and « the clockwise angle of this
surface with respect to the symmetry-axis. A ray that leaves the LED at angle ¢, will hit
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surface S at (xs(¢), ys(¢)) and leave surface S with angle £(¢) given by

d

xs(t) = mr (9a)
B dtan(t)

ys(t) = tan(d) + tan(@)’ (9b)

£He) = arccos(@) —a. (9¢)

Relation (9¢) was derived using Snell’s law of refraction. The refractive index of the mate-
rial of the collimator is denoted by n. From (9a) and (9b) we find s, which is defined to be
0 at t = /2. Also we calculate §:

- i (102)
~ cos(o) tan(t) + sin(a)’ 2
5(6) = H(¢) + o % (10b)

Subsequently, the rays are reflected at surface B or C. For a reflective surface we have [10]
1. ~
B(t) = 2 (20 - 0(t) — ). (11)

Here 6 is the angle of the rays with respect to the z-axis after reflection. Before the rays
leave the TIR collimator, they are once more refracted by surface 7. Rays that leave the
collimator at angle # = n7(¢) must enter surface T at angle

6(t) =+ arcsin(sin(n ™' (¢))/n), 12)

where the sign is negative if the rays cross the z-axis, and positive otherwise. Equation (12)
is derived using Snell’s law. Now we can calculate f(¢) by numerically integrating the ODE
(8) backwards, starting at ¢ = /2. The parameters in (8) are given by (9¢), (10a), (10b), (11)
and (12). For surface C, a plus sign is chosen in (12) and for surface B a minus sign. The
integration for surface C starts with f(7/2) = b > 0, which is usually chosen larger than 0
to prevent a sharp edge of the collimator for manufacturing purposes. At ¢ = 1,, the final
value f(7,) of the calculation of surface C is chosen as starting value for the calculation of
surface B. The coordinates of the surfaces B and C can be calculated as

xpc(t) = xs(t) + f(£) cos(£(2)), (13a)
yeic(t) = ys(t) + £ (¢) sin(£(2)). (13b)

Now consider surface A, the ‘lens route’ of the collimator. The light incident on surface
A comes from a single point, therefore the arc-length along the source surface is 0, so we
take s(t) = 0. Furthermore, we have £(¢) = ¢. For a refractive surface we need the following
expression for g [11]:

tan(B) = sin(@ — £)

Un-cos(@ -9’ a4
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Using (12), the differential equation (8) is now
d in(f — ¢t
l ~ ( sin( ) 15)

dr 1/n —cos( — £) ’

which we solve by numerically integrating backwards subject to the end condition

f(m) = Vxs(m)? + ys(m)?. (16)

Surface A can be calculated according to

x4(t) = f(¢£) cos(2), (17a)
ya(t) = f () sin(z). (17b)

3 ATIR collimator with three transfer functions

Our goal is to design a TIR collimator that has a beam with a specified intensity output
G(0) and uniform chromaticity coordinates (x7, yr). To achieve this, the transfer functions
must satisfy (3) and (6). The layout of the TIR collimator as shown in Figure 1 corresponds
to three transfer functions, so N = 3. For the lens part and surface C, ¢ increases with 0, so
o1 = 03 = 1. For surface B, t decreases for increasing values of 6, and thus o, = —1. We use
the following convention: Z;(8) = Z(n;(9)) and y;(6) = y(n;(6)). We now have the following

system of differential equations:

7,(0) ~-T,(0) 3(6) n%g; =cG(6) ! (18)
LOWEO) -LORO LO6) |7 Uyr)
3

The initial and end conditions for the transfer functions follow from the signs o; and the

boundaries 7; and 1, between the segments:

m(0) =0, 172(0) = 13, n3(0) = 13, (19a)

M Omax) = 1, 12(0max) = 71, 1N3(Omax) = /2. (19b)

The system (18) is underdetermined, therefore we add an extra equation. We choose an
equation which is as simple as possible, has an obvious physical interpretation and yields
a regular coefficient matrix for the ODE system. The equation we choose corresponds to
the requirement that the intensity resulting from one of the transfer functions contributes
a factor r € (0,1) to the total target intensity. Let j be the index of this transfer function,

then we impose
o/ Zi(0)n}(0) = reG(6). (20)

For j = 1, the coefficient matrix of the system is singular for 6 = 0, and for j = 3, the coeffi-

cient matrix is singular for 6 = 6,,x. Such a singular coefficient matrix does not occur for
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j =2, so this will be our choice. The ODE system is now

VA C) —1>(0) 15(0) m(0) 1
LiO)y(0) -L20)/2(0) Zs®)/ys©) | | m20) | =cGO) | 1y |- (21)
0 -T,(9) 0 n5(0) r

The system can be inverted, yielding the following explicit system

Gl e (_ 3500) yg(e))
= T @ -n@\ " o The)) (222)
G
n5(0) = _rzz(e)’ (22b)
L wGe) ) < 7(0) yl(m)

0) = - .
1O = @) 5 -n@O\ " 3 @) (22)

The system (22a)-(22c) with boundary conditions (19a) and (19b) has three unknown func-
tions 171(0), n2(0) and n3(0). The functions Z(£) and y(t) are known from measurements on
the LED. The function G(f) can be chosen by the optical designer as a finite function on
[0,6max]. The constants ¢, yr and r cannot be chosen freely, we will show that their values
follow from conservation of luminous flux, the law of color mixing and the choice of 7;
and 1y, respectively. Also the values of 7; and 1, cannot be chosen freely, we will derive an
inequality that guarantees monotonicity of the transfer functions.

Equation (22a) has a removable singularity at 6 = 0, because G(0) = 0 and the initial
values of the transfer functions imply #;(0) = 0 and thus Z;(0) = Z(0) = 0. We calculate
11(0) using 'Hépital’s rule:

sy [€9500)  91(0) ( _9’3(0))
nl(O)_\/Ii(O) 71(0) - y3(0) ! yr ) @3)

We choose the positive sign in front of the square root since 7 (0) should be positive. Here
G’ (0) and 7 (0) are the right derivatives of G(0) at 6 = 0 and of Z(¢) at ¢ = 0, respectively.
These right derivatives are positive because Z(¢) and G(0) are positive at £ >0 and 6 > 0.

We have y(t) > 0 by definition of chromaticity coordinates, and we assume based on mea-
surements that y(7;) < ¥(1,) and thus y;(0) < y3(0). From this we see that we need to choose
7, such that y(t3) > y7, so the right hand side of (23) is positive and real.

3.1 Thevaluesof ¢, yrandr
The system (21) with boundary conditions (19a) and (19b) appears to be overdetermined.
However, the system contains three unknown parameters which still need to be chosen.
We derive values for three constants ¢, y7 and r given the boundary conditions and assum-
ing monotonicity of the transfer functions. Later we show that our choice of the constants
¢, yr and r imply that three of the boundary conditions are superfluous.

The first unknown value is the constant c. Integration of the first row of (21), using the
given boundary conditions and Z;(0) = Z(n;(0)), yields

Omax

Omax 3 /2
A G(0)do = /0 ;mL(e)m(e)de= /0 Z(¢)de. (24)
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The function Z(¢) is known from measurements on the LED, the function G(0) is chosen
by the optical designer, so from this relation we derive the value of the constant c. This
relation corresponds to conservation of luminous flux (equation (2)).

The second unknown is the target chromaticity value yr. Integration of the second row
of (21) using the given boundary conditions and substitution of (24) yields

/2 /2
Uyr / Z()de = f Z(0)/y(t) dt. (25)
0 0

This relation shows that yr is the weighted harmonic average of the y-chromaticity coor-
dinate of the light source. Like Z(t), the function y(¢) is known from measurements on the
LED, thus we can derive the value of yr.

The third unknown is r. Integration of the third row of (21) with the given boundary
conditions and substitution of (24) yields

/2 T
r/o I(t)dt:/r1 Z(t)dt. (26)

This relations corresponds to conservation of luminous flux for the second transfer func-
tion.

3.2 Monotonicity of the transfer functions

The transfer functions calculated from (22a)-(22c) should be monotonic, otherwise they
have no physical meaning. From (22b) we can easily see that ,() < 0 because r > 0,
G(0) > 0 and Z(¢) > 0, thus, 12(0) is monotonically decreasing. The monotonicity of n;
and 73 is more complicated to show and we need some additional assumptions to derive
a sufficient condition for monotonicity.

Theorem 1 Assume that the chromaticity coordinate function y(t) satisfies the inequalities

0 <y(t1) < y(11) < y(t2) < y(72) < ¥(t3)

th,tz,t;; S.t.0<t1<1'1<t2<1'2<t3<7T/2, (27)

and the transfer functions satisfy the bounds

0=<m(®) <1, 71 < 102(0) < 7o, T <n3(0) < 7/2. (28)
If

o Tode min(y(n) y@)lyr =1 1-y(m)lyr > (29)

I de yr y(@)y(m) -1 1-y(m)/y(w) )’

then m(0) and n3(0) are monotonically increasing.

Proof We need to prove that the derivatives of 7; and 73 are positive. From (22a), using
assumptions (27) and (28), we find that 7; is monotonically increasing if

30 | 30) _

1-r- ,
yr ¥2(0) —
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and likewise 73 is monotonically increasing if

n) + rm >0

1-r-
yr y20) —

Subtracting the second inequality from the first we obtain

t= 2 (33(0) = 31(0)) + —

yr 72(0) (73(0) - 3(0)) <.

Using (27) and (28) we find from the assumption r < y(z;)/yr that

r 1
<—.
¥20) ~ yr
Define
1—
M(0) r

- yr —rly,(0)°

Using yzr(e) < }%, the inequality for the monotonicity of the first transfer function can be
rewritten as M(0) < y3(f) and the inequality for the third transfer function as y;,(6) < M(9).

We combine these two results to obtain

71(0) < M(6) < y3(0).

The function M(#) it is monotonically increasing because 7,(6) is monotonically decreas-
ing. Therefore, if y(t1) < M(0), we find using (27) and (28) that y;(0) < M(6) for all 6.
Similarly, if M(Omax) < y(72), then M(6) < y3(0) for all . The inequalities y(zr1) < M(0) and
M(Omax) < y(12) are equivalent to the second and third inequality in (29). O

Figure 4 shows a scatter plot of values of t; and t, for which (29) is satisfied for an LED
which was also used in the numerical experiments. The acceptable values of 7; and t; are
bounded by the lines 7; = t,, and 7, = £,y, where £,, is the such that y(¢,,) = yr. In this case,
the value of ¢,, is unique. From (29) we see that 1; > £, results in y(t;) > y7, and thus r < 0.
Therefore we cannot guarantee the monotonicity of the transfer functions. Using (22c) we
can verify that indeed the third transfer function is not monotonic at 8 = 6y,x. Similarly,
Ty < Ly results in r < 0, and we can verify using (23) that the first transfer function is not
monotonic at 8 = 0.

3.3 Theinitial value problem

The ODE-system (21) with the boundary conditions (19a) and (19b) can be solved as an
initial value problem. We remark that solving the system as an end value problem has no
advantages or disadvantages. We discard the end conditions and solve the initial value
problem using a Runge-Kutta method. The end conditions are satisfied as a result of our
choices of ¢, yr and r.

Theorem 2 Assume monotonicity of the transfer functions. The solution of the initial value
problem defined by the ODE system (21) and the initial conditions 11(0) = 0, n2(0) = n3(0) =
Ty satisfies the end conditions 11 (6max) = 12(Omax) = 71, 73(Omax) = 7/2.
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Figure 4 Scatter plot of the values of T, and 7, for LED16 that guarantee monotonic transfer
functions. t,, is such that y(tay) = y7.

Proof First we show that 7, (0max) = 71 is satisfied. Integration of the last row of (21) from
0 =0 to 0 = Oax using (26) gives

Omax 12 (@max) Omax 2
—/ T,(0)n5(0)do = —/ I(t)de = rc/ G(0)do = / Z(r)de.
0 T 0 1

2

So we find
12 (6max) 2
/ T@)dt + f @) dt = 0.
9] 1

Because Z(¢) > 0 for all ¢ except for two points at the boundary, we can conclude 7,(0) = 7;.
Note that this implies 1j < 1,(0) < 1,.

Using the monotonicity of the transfer functions, we can integrate the left hand side of
the first row of (21):

emux
/0 (Zi(O)m (6) = L>(0)n5(9) + Z3(6)n5(6)) do

171 (Omax) 1 13 (Omax)
=/ I(t)dt—/ I(t)dt+/ Z(t)de.
0 T T

2 2

For the right hand side we have due to (24)

Omax /2
¢ G)do = / Z(t)de.
0

0

By subtracting the last two relations we find

171 (Omax) 13 (Omax)
/ Z(t)de + / Z(t)det = 0. *)

1 /2
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Similarly, we can derive from the second row of (21) using equation (25)

171 (Omax) T 13 (6max)
[T g [T 4
T y(t) /2 J’(t)

The functions Z(¢) and 1/y(£) are continuous, and Z(£) does not change sign in the interval
(0,7/2). Using the expanded first mean-value theorem for integrals [12, p.487], we find
that for some #; € (171(Omax), T1) and some £3 € (172(6max), 7/2) we have

1 11 (Omax) 1 13 (6max)
— Z(t)dt + — Z(t)de=0. (**)
y(t1) /;1 ¥(&3) Jar

The equations (*) and (**) form a linear system for the integrals of Z(t) over [t1, 171 (6max)]
and [7/2,13(0max)]- If &1 < 12, we find from the assumption y(#) < y(¢3) that

1 1
det Z0,
<l/y(t1) 1/y(t3)>

and thus

171 (6max)
/ I(t)de =0,

2}

13 (Omax)
/ Z(t)dt = 0.
/2

Because Z(¢) > 0 for all ¢ except at the boundary points, we conclude

M Omax) = T1,
nS(emax) =m/2. O

4 Numerical procedure and results

We solved the mathematical model described in the previous section to design three dif-
ferent TIR collimators. The collimators were designed for two different LEDs, which we
refer to as LED16 and LEDO2. Both of them are Luxeon Rebel IES white LEDs with-
out a dichroic coating, and have a larger than usual CoA variation. The intensity and
chromaticity-coordinates of the LEDs were measured, and the measured data were in-
terpolated. The interpolation polynomials have been used to approximate Z(¢) and y(t)
in (22a)-(22c). The first two collimators were designed for LED16 and have a Gaussian-
shaped target intensity profile. The two collimators differ in their values for r; and ;. The
third collimator was designed for LEDO2 and has a block-shaped target intensity profile.
The collimators were evaluated using the LightTools software package [13].

4.1 Modelling of the LEDs

The LEDs were measured using a goniophotometer [14]. A goniophotometer is a device
that measures intensity, chromaticity coordinates and many other characteristics of light
at different solid angles. Our LEDs were measured at 46 different angles ¢ and 4 different
angles u. For each LED, the chromaticity values were averaged and the intensities were
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Table 1 Coefficients from the linear least squares fits

LED i 0 2 3 4 5 6 7

16 G 0 -181.8279 76.0797 221.9411 -624.0461 499.8253 -127.0787
Df 04013 0.0578 -0.0367 0.0271 -0.0564 0.0444 -0.0116
D,y 0.3546 0.0988 -0.0557 0.0255 -0.0371 0.0196 -0.0034

02 G 0 -148.8533 -60.3797 520.5934 -913.6760 636.8623 -153.5863
Df 04591 0.0452 -0.0590 0.0916 -0.1399 0.1030 -0.0271
D/y 0.3792 0.0892 -0.1790 0.3596 -0.4585 0.2823 -0.0658

summed over the angle . These data have been interpolated with a least squares fit using
the following polynomials:

7
1) =) Gi(t' - (x/2)),

i=2

7
x(t) =Dy + Y D}t
i=2

7
y(t)=Dy+ Y Dit.

i=2

The polynomial for the intensity was chosen because it equals 0 at ¢ = 7/2 and has zero
derivative at ¢ = 0, both properties are characteristic for the intensity distribution of an
LED. The effective intensity equals Z(£) = sin(¢)I(¢). The polynomials for the chromaticity
coordinates were chosen because their derivative equals 0 at ¢ = 0. The coefficients for the
two LEDs can be found in Table 1.

In the LightTools software package, two three-dimensional models were built to simu-
late the LEDs. The range (0, 7) of the angle ¢ was discretized into 46 different subinter-
vals, labeled k = 1,2,...,46. For k = 1 we have the interval (0, ;g5), for k = 2,...,45 we have
((2%8)” , Q’igé)” ) and finally for k = 46 we have (3%, Z). The intensity and chromaticity co-
ordinates of the LED models in these subintervals correspond to the measured data of the
real LEDs at the angles ¢ = %. The size of the LED model was reduced to 0.01 mm by
0.01 mm to simulate a point light source. A comparison of the measured data, the least

squares fit and the raytracing results of the LightTools model of LED16 without collima-
tor can be seen in Figures 5 and 6. A scatter plot of the measured x and y chromaticity
coordinates for this LED was shown earlier in Figure 2. The plot shows the near-linear
relationship between x and y, indeed.

4.2 Computation of the transfer functions

Three example collimators have been calculated. The first collimator was designed for a
Gaussian target intensity [15] with full width at half maximum (FWHM) [16] at 7r/9. This
yields the following effective target intensity:

0 2
9FWHM> >’ (33)

with 0 <0 < 1.2560pwhM = Omax, Opwim = /9. The collimator was designed for LED16.
The choice of 77 and 1, is restricted by (29). This relation is highly nonlinear. A scatter
plot of values of 7; and , that satisfy (29) for LED16 is shown in Figure 4.

G(0) = sin(0) exp (—4 In(2) (
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Figure 5 Comparison of the measured effective intensity Z, the least squares fit and the LightTools
model of LED16. The graph of the LightTools model is not visible because it is hidden behind the least
squares fit.
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Figure 6 Comparison of measured chromaticity coordinates x and y, the least squares fit and the
LightTools Model of LED16. The graph of the LightTools model is not visible because it is hidden behind the
least squares fit.

We chose 7 = 0.2 and 1, = 0.257. The second collimator was designed for the same
LED and target intensity, but this time we chose 7; = 0.16r and t; = 0.37, which gives a
larger second segment. The third collimator was designed for LEDO2. The target intensity
was chosen to be a block function, yielding the effective intensity G(0) = sin(0), with 0 <
0 < Omax = /9. We chose 11 = 0.2 and 1, = 0.257, which satisfies (29). An overview of
the values chosen and calculated for the three collimators is shown in Table 2.

The ODE system (22a)-(22c) with initial conditions (19a) was solved using the ODE-
solver ode45 in Matlab. The calculation times were a few seconds on a laptop computer
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Table 2 Parameter values and characteristics for the three different collimators

Collimator LED T T2 r yr c Omax

Gaussian, small 2nd segment LED16 0.201 0257 0.1630 0.3862 5,585.9 11.25
Gaussian, large 2nd segment LED16 0.16m 0.30m 04417 0.3862 5,585.9 11.25m
Block profile LEDO2 0.201 0257 0.1612 0.3986 4,843.3 o
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035/ — |

031 ‘ T
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Figure 7 Transfer functions for the collimator with Gaussian profile and a small second segment.
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Figure 8 Transfer functions for the collimator with Gaussian profile and a large second segment.

with a 2.4 GHz processor and 4 GB RAM. The calculated transfer functions are shown
in Figure 7, 8 and 9. The transfer functions are indeed monotonic, as expected. Also,
11 (Bmax) = 12(Omax) = 71 and n3(Omax) = /2, as anticipated.

4.3 Performance of the TIR collimators
Subsequently, a TIR collimator was designed for each set of transfer functions, and eval-
uated using LightTools. We chose for all the collimators d = 4 mm, b = 0.4 mm and
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Figure 9 Transfer functions for the collimator with block profile.

Figure 10 LightTools model of the first
collimator.

o =47 /180. For every collimator, each free surface was discretized using 500 points and
converted into a LightTools model. A screenshot of the LightTools model of the first col-
limator can be seen in Figure 10. Results of the simulations can be seen in Figures 11, 12
and 13. In these figures, we see the expected profiles of the effective intensity and chro-
maticity. Figures 11 and 12 look very similar, because the first and second collimator were
designed with the same output specifications. In these figures, an irregularity is visible in
the chromaticity coordinates near 6 = Oy« This can be explained as follows. Every bar in
the graph corresponds to a range of one degree (/180 rad). We chose 0yax = 257/180,
and thus the flux at this angle should be zero. Due to small errors in the free surfaces, a
small number of rays exits the collimator at angles larger than 6y,,x. This happens at sur-
face C, and therefore the chromaticity coordinates at 6 > 0,,,x are larger than the target
values. Because the luminous flux of this light is very small, the irregularity is not visible.
A similar irregularity is visible for the collimator with the block profile, only with a smaller
chromaticity difference.

Apart from this small irregularity, the variation in chromaticity is very small. The max-
imum difference between the average chromaticity of the LEDs and chromaticity coordi-
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Figure 11 LightTools simulation results for the collimator with Gaussian profile and a small second

segment.
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Figure 12 LightTools simulation results for the collimator with Gaussian profile and a large second
segment.

nates in the simulations are shown in Table 3. A color difference of 0.003 is considered very
good by optical designers and is invisible for the human eye [8, 17]. The measured color
differences in the simulations are comfortably below this value, thus the color variation in
the beam is eliminated.

5 Conclusions

We introduced an inverse method to design a TIR collimator that eliminates CoA variation
for a point light source. This method improves the method introduced earlier in [6] by
producing collimators that closely resemble standard collimators and at the same time
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Figure 13 LightTools simulation results for the collimator with Block profile for LED02.

Table 3 Average chromaticity coordinates of the LEDs and the maximum difference with the
chromaticity coordinates in the simulations

Collimator LED Target x max(|Ax|) Targety max(|Ay|)
Gaussian, small 2nd segment LED16 04181 4.10™ 0.3862 7107
Gaussian, large 2nd segment LED16 04181 4.10* 0.3862 1.1073
Block profile LEDO2 04691 4.10™ 0.3985 5.107

have more parameters for optical design. In Section 3 we discussed which choices for
these design parameters give meaningful results. In Section 4 we tested the method and
verified the resulting collimators with Monte-Carlo raytracing using the software package
LightTools. The simulations show color variations that are not visible with the human eye.

Unfortunately, LEDs are too large to be treated as a point light source. In future research,
we would like to extend this method to take the finite size of the light source into ac-
count using iterative methods such as described in for example [18, 19]. This point source
method will be an important building block in such an iterative method.
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