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Dipeptidyl peptidase-4 and kidney fibrosis
in diabetes
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Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated
with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed
that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the
organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4
inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the
renoprotective effects and possible mechanism of the DPP-4 inhibitors.
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Background
Diabetes mellitus has become a major global health issue
[1].The number of people with diabetes worldwide is
expected to rise from 382 million in 2013 to 592 million by
2035, according to the International Diabetes Federation [2].
Diabetic nephropathy (DN) is one of the most devastating
complications of diabetes [3, 4]. The risk of DN is tightly
linked to poor glucose control in both type 1 and type 2 dia-
betes, which is associated with hyperglycemia [5, 6], and the
impacts of hyperglycemia are generally mediated through di-
verse metabolic pathways, including increased reactive oxy-
gen species formation, excessive production of advanced
glycation end products (AGEs), and the activation of the
polyol, protein kinase C (PKC), and hexosamine pathways
[7]. The activation of these pathways leads to a complex dys-
regulation of various effector molecules, resulting in cellular
damage and dysfunction [7]. Experimental studies have
shown that some of these pathophysiological mechanisms
may be modified by dipeptidyl peptidase-4 (DPP-4) inhib-
ition [8, 9], and preclinical studies also suggest that DPP-4
inhibitors provide renoprotection above and beyond lower-
ing the glucose levels through its protein-protein interactions
and proteolytic and antioxidant properties [10]. In this re-
view, we focus on the possible mechanisms by which DPP-4
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inhibitors combat diabetic nephropathy, especially about
kidney fibrosis.

Biology of DPP-4
DPP-4 is a cell surface aminopeptidase that was originally
characterized as a T cell differentiation antigen (CD26). It is
a multifunctional protein that exerts diverse biological activ-
ities, such as protease activity, association with adenosine
deaminase (ADA), interaction with the extracellular matrix,
cell surface co-receptor activity to mediate viral entry, and
regulation of intracellular signal transduction coupled to the
control of cell migration and proliferation [11–15]. DPP-4 is
expressed ubiquitously and found in many cell types, includ-
ing the endothelial cells in multiple vascular beds, rendering
the enzyme highly accessible to the peptide substrates circu-
lating through the gut, liver, lung, and kidney [16].
DPP-4 is a member of the serine peptidase/prolyl oli-

gopeptidase gene family. The members of this family are
often classified into subgroups according to their struc-
ture and function and include: the membrane-bound
peptidases: fibroblast activation protein (FAP)/seprase;
the resident cytoplasmic enzymes: DPP-8 and DPP-9;
and the nonenzymatic peptidases: DPP-6 and DPP-10
[17]. The complexity of DPP-4’s action is amplified by
the panoply of bioactive DPP-4 substrates, which, in
turn, act as elegant biochemical messengers in multiple
tissues, including the immune and neuroendocrine sys-
tems. More than 30 peptide substrates for DPP-4 have
been identified, including glucagon-like peptide-1(GLP-1),
glucose-dependent insulinotropic peptide (GIP) [17], brain
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natriuretic peptide 1–32 [18, 19], neuropeptide Y [20],
high mobility group protein 1 (HMGB1) [21], and others
[20, 22, 23].
DPP-4 transmits signals across the cell membranes and

interacts with other membrane proteins. The DPP-4 gene
encodes a type II transmembrane protein of 766 amino
acids, which is anchored to the lipid bilayer by a single
hydrophobic segment located at the N-terminus and has a
short cytoplasmic tail of six amino acids [24] (29). The
extracellular portion of DPP-4 contains a glycosylation do-
main, a cysteine-rich domain, and a catalytic domain [17].
Mutation studies demonstrated that the C-terminal loop
of DPP-4 is essential for both dimer formation and cata-
lytic efficacy [25]. An analysis of the crystal structure re-
vealed that DPP-4 can also form tetramers between two
soluble DPP-4 proteins and two membrane-bound DPP-4
proteins. These interactions may influence the efficiency
of the entry and cleavage of substrates by the catalytic site
or allow cell-cell communication [25]. Catalytically active
DPP-4 is liberated from the plasma membrane to produce
a soluble circulating form, sDPP-4 (727 aa), which lacks
the intracellular tail and transmembrane regions and
accounts for a substantial proportion of DPP-4 activity
in human serum [26, 27]. Membrane-bound DPP-4
contains residues 1–766, whereas sDPP-4 contains residues
39–766. sDPP-4 lacks the cytoplasmic domain [residues 1–
6], transmembrane domain [residues 7–28], and the flexible
stalk [residues 29–39] [17, 26] (Fig. 1). sDPP-4 can activate
intracellular signaling pathways and increases the prolifera-
tion of human lymphocytes, independent of either its cata-
lytic activity [28] or binding to ADA [28]. sDPP-4 impairs
Fig. 1 Membrane-anchored DPP-4 and soluble DPP-4. Catalytically active DPP
circulating form, sDPP-4, which lacks the intracellular tail and transmembrane
addition to its exopeptidase activity, DPP-4 also functions as a binding protein
insulin-mediated activation of Akt in the human adipocyte,
skeletal muscle, and smooth muscle cells in vitro [29].
However, the mechanisms by which sDPP-4 activates signal
transduction are poorly understood.
DPP-4 activity is subject to regulation at many levels,

including control of gene and protein expression, inter-
actions with its binding partners, and modulation of its
enzyme activity. The importance of cytokines in regulat-
ing DPP-4 activity was demonstrated in chronic B
lymphocytic leukemia cells, leading to the upregulation
of both intracellular and cell surface DPP-4 expression,
as well as DPP-4 activity [30]. Cell surface and intracel-
lular DPP-4 expression is also highly regulated; it is
often expressed at low levels under basal conditions, and
then markedly induced by stimulation, such as T cell ac-
tivation by mitogenic or antigenic stimuli [31]. The con-
trol of DPP-4 shedding, which generates sDPP-4, is
poorly understood. Lamers et al. found that TNF-α and
insulin increased the release of sDPP-4, although there
were no changes in the expression of the DPP-4 mRNA
in human adipocytes isolated from visceral depots [29].
Some other studies have focused on the origin of sDPP-
4 and found that kidney extracts exhibited the highest
DPP-4 activity; however, the most important source of
sDPP-4 is the bone marrow and not the kidney [32].
These studies highlight our limited understanding of the
cell types and tissues that contribute to the generation
of sDPP-4 activity in the plasma in vivo. The
characterization of these cells, evaluation of additional
sources for sDPP-4, and the mechanism of release re-
quire additional studies.
-4 is liberated from the plasma membrane to produce a soluble
regions and accounts for a substantial proportion of DPP-4 activity. In
which can bind with fibronectin and adenosine deaminase (ADA)
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The role of DPP-4 inhibitors in diabetes and
kidney protection
In general, incretins are a group of metabolic hormones
that stimulate a decrease in the blood glucose levels, by
either increasing insulin release or reducing gastrointes-
tinal absorption. The prototypical incretins are the intes-
tinal GLP-1 and GIP hormones, and both GLP-1 and
GIP are rapidly inactivated by the enzyme DPP-4. There-
fore, DPP-4 is a well-documented drug target for the
treatment of type 2 diabetes [33–35]. The pharmaco-
logical inhibition of DPP-4 results in GLP-1 accumula-
tion, which stimulates insulin secretion and contributes
to the reduction of postprandial hyperglycemia. Re-
cently, the beneficial pleiotropic effects of DPP-4 inhibi-
tors were reported in both clinical research and
preclinical experiments.
Two types of DPP-4 inhibitors have been used in the

clinic: dipeptide structure mimetics and non-
peptidomimetics. The first type includes sitagliptin
(approved by FDA in 2006), vildagliptin (approved by
European Medicines Agency in 2007), and saxagliptin
(approved by FDA in 2009), while the non-
peptidomimetics include linagliptin (xanthine-based,
approved by FDA in 2011) and alogliptin (modified
pyrimidinedione, approved by FDA in 2013). These
are all small molecules that are rapidly absorbed fol-
lowing oral dosing, resulting in greater than 80% in-
hibition of the DPP-4 activity over a full 24-h period.
Typically, these drugs raise the peripheral plasma con-
centration of the intact forms of both incretins by
two- to three-fold. Although this class differs widely in
their chemistry, they are all selective for DPP-4 [22].
Clinical proof of concept for DPP-4 inhibition in dia-
betic patients was first reported in 2002, where a DPP-
4 inhibitor significantly reduced the fasting plasma
glucose and HbA1c levels in a 4-week study [36].
DPP-4 expression positively correlates with the
amount of visceral adipose tissue, adipocyte size,
inflammation, and HbA1c levels, and negatively
correlates with the glucose infusion rates during
euglycemic-hyperinsulinemic clamp [37, 38]. The effi-
cacy of the DPP-4 inhibitors in reducing glycemia is
weaker than that of sulfonylureas, insulin, and thiazo-
lidinediones, but they are significantly better tolerated
and do not produce weight gain [39–41]. Furthermore,
DPP-4 inhibitors not only have benefits for patients
who have recently developed diabetes [42] but also in
patients with long-standing diabetes [43].
In addition to their glucose-lowering action, DPP-4 in-

hibitors have been demonstrated to play a protective role
in cardiovascular diseases, including hypertension [44],
abdominal aortic aneurysm [45], cardiomyopathy [46],
atherosclerosis [47], and peripheral vascular disease [48],
via both GLP-1-dependent and GLP-1-independent
pathways due to their diverse, widely distributed, and
pleiotropic actions [49]. Many in vivo and in vitro stud-
ies also found that DPP-4 inhibitors can prevent organ
fibrosis, including cardiac fibrosis [50, 51], hepatic fibro-
sis [52], and kidney fibrosis [53]. DPP-4 is localized on
the surface of many cell types, including the endothelial
cells, kidney epithelial cells, and T cells, where they have
a binding partner and transmit intracellular signals [54].
In fact, the kidney expresses the highest levels of DPP-4
per organ weight [20]. Moreover, the mammalian kidney
has high concentrations of DPP-4 [20], and the expres-
sion of DPP-4 is increased in cultured human renal
glomerular epithelial cells during inflammation [55] and
in a rat model of type 2 diabetes mellitus [56]. Several
candidates for the GLP-1-independent effects of DPP-4
inhibitors in the kidney have been identified and include
the known substrates of DPP-4 cleavage, such as
HMGB1, Meprin β, neuropeptide Y (NPY), and peptide
YY (PYY) [57]. Thus, some researchers have demonstrated
that increased DPP-4 activity in the kidney or urine is a
hallmark for human glomerular diseases [54, 58]. Some of
the DPP-4 inhibitors were analyzed to confirm their role
in the kidney. In animal models, a reduction of albumin-
uria and an improvement in the histological changes in
the kidney were observed in T1DM models treated with
vildagliptin [59] and in T2DM models treated with sita-
gliptin [60]. A significant reduction in urinary albumin ex-
cretion was also observed in diabetic endothelial nitric
oxide synthase knockout mice treated with linagliptin in
addition to an Ang II receptor antagonist [8]. In the ex-
perimental model of renal ischemia/reperfusion injury
treated with vildagliptin, DPP-4 inhibition produced
nephroprotective effects that were mediated by antiapop-
totic, anti-inflammatory, and anti-oxidative effects [61].
Linagliptin is the recently approved DPP-4 inhibitor and
exhibits non-linear pharmacokinetic properties, with a less
than dose proportional profile and is almost completely
eliminated via the enteric system, with less than 5% found
in urine [62]. In humans, it was shown that linagliptin sig-
nificantly reduced the urinary albumin excretion of pa-
tients with T2DM after 24 weeks of treatment [63]. The
pharmacokinetic profiles after linagliptin administration
showed the accumulation t1/2 of linagliptin following
multiple 5 mg/day doses, and there were no significant
changes in the control and diabetic subjects, regardless of
their renal function [64]. The antifibrotic properties of
DPP-4 inhibitors have also been shown in other models of
kidney fibrosis, such as the unilateral ureteral obstruction
(UUO) model, where the administration of a novel DPP-4
inhibitor, LC15-0444, resulted in a significant decrease in
albuminuria, the urinary excretion of 8-isoprostane, and
renal fibrosis [65]. In our newest study, we found that lina-
gliptin restored the normal kidney structure of streptozo-
tocin (STZ)-induced diabetic kidney fibrosis in CD-1 mice
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without altering the blood pressure, body weights, blood
sugar levels, or organ weights (of the kidney, liver, and
heart) compared with the untreated diabetic mice [53].
Transforming growth factor β (TGFβ) is the primary

cytokine that drives fibrosis in the kidney and other or-
gans that are susceptible to fibrotic injury, such as the
lung and liver. Members of the TGFβ superfamily trans-
duce intracellular signals through Smad proteins. A
study demonstrates that TGFβ signals can mediate renal
fibrosis through Smad2/3 [66]. DPP-4 inhibitors may
ameliorate diabetic nephropathy and reduce the over-
production of TGF-β1. Renoprotection is attributed to
the inhibition of DPP-4 activity, which mimics incretin
action, and the activation of the GLP-1R [59]. In our
previous study, STZ-induced diabetic mice treated with
the DPP-4 inhibitor linagliptin exhibited a suppression
of DPP-4 activity/protein expression and an amelioration
of kidney fibrosis associated with the inhibition of the
endothelial-to-mesenchymal transition (EndMT) and
TGF-β2-induced Smad3 phosphorylation [53]. EndMT
was first discovered in heart development [9], which was
confirmed to be crucially important in forming the valves
and septa of the heart during embryogenesis [67, 68].
EndMT contributes to the accumulation of activated
fibroblasts and myofibroblasts in kidney fibrosis [69],
fibroblasts are key mediators of fibrosis in the kidney
and other organs [70]. Chronic kidney disease (CKD) is
associated with an increase in circulating angiogenesis
and NO inhibitors, which impact proliferation and
apoptosis of cardiac endothelial cells and promote
EndMT, leading to cardiac fibrosis and capillary rar-
efaction [71]. EndMT is not only involved in kidney fi-
brosis progress, Zeisberg et al. confirmed that EndMT
also involved in heart and tumor progression [72–77].
In this regard, linagliptin could exhibit an antifibrotic
effect through a mechanism that specifically targets
endothelial cells [53, 78, 79]. DPP-4 is essential for
TGF-β-induced receptor hetero-dimerization and sub-
sequent intracellular signal transduction, including the
levels of TGF-βRs and the protein-protein interactions
of TGF-βRs, both of which are critical for TGF-β signal
transduction. We found that the TGF-β2-induced for-
mation of the TGF-βR1/2 heterodimer was suppressed
in the DPP-4 siRNA-transfected endothelial cells com-
pared with the cells transfected with a control siRNA
[79]. In a UUO model, a DPP-4 inhibitor, LC15-0444,
reduced the levels of inflammatory and fibrotic
markers, such as phosphorylated Smad2/3, TGF-β1,
toll-like receptor 4, HMGB1, NADPH oxidase4, and
nuclear factor kappa B [65]. These results suggest that
the activation of DPP-4 in the kidney has an important
role in TGF-β signaling and the progression of renal
disease and that targeted therapy that inhibits DPP-4
may prove to be a useful new approach in the
management of progressive renal disease, including
kidney fibrosis.

Interaction of DPP-4 and integrin β1 in kidney fibrosis
Integrins exist as αβ heterodimers that are formed from
18 α- and 8 β-subunits, each of which exhibits different
ligand binding and signaling properties [80]. Each integ-
rin subunit consists of an extracellular domain, which
determines the ligand binding properties, a transmem-
brane domain, and a short cytoplasmic tail that binds to
multiple cytosolic and transmembrane proteins to form
focal adhesions (with the exception of β4) [81]. Integrins
bind to extracellular matrix (ECM) glycoproteins, in-
cluding collagens, fibronectins, and laminins, and cellu-
lar receptors, such as vascular cell adhesion molecule-1
(VCAM-1) and members of the intercellular cell adhe-
sion molecule (ICAM) family [82, 83]. In addition, integ-
rins also play key roles in the assembly of the actin
cytoskeleton as well as in modulating the signal trans-
duction pathways that control biological and cellular
functions, including cell adhesion, migration, prolifera-
tion, cell differentiation, and apoptosis [84]. Integrins are
able to transduce signals intracellularly following ligand
binding (“outside-in” signaling) [85]. Unlike most other
cell receptors, integrins can shift between high- and low-
affinity conformations for ligand binding (“inside-out”
signaling) [86]. Depending on the cell type, integrins can
be either basally activated, as is the case in most adher-
ent cells that are attached to a basement membrane, or
basally inactive, as is the case with platelets or leuko-
cytes that freely circulate until they are activated to
undergo platelet aggregation or mediate an inflamma-
tory response, respectively. Integrins themselves have
no kinase activity, but instead provide a connection be-
tween the ECM and the actin cytoskeleton. This con-
nection allows integrins to regulate the cytoskeletal
organization and cell motility, as well as to alter the
fluxes of many intracellular-signaling pathways, includ-
ing cell survival, cell proliferation, cell shape, and
angiogenesis [86, 87]. Thus, integrins are critical for
maintaining cellular homeostasis, triggering a number
of signaling pathways under normal conditions; under
pathological conditions, integrins are associated with a
wide variety of renal pathologies, including obstructive
nephropathy and DN [88–91].
Among the members of the integrin family, the β1-

integrin is the most critical, given that β1-integrin can
pair with different α-subunits, making it a receptor for
many types of stimuli [92–95] (Fig. 2). Integrin β1 is ubi-
quitously expressed and can bind to multiple partners,
and thus it is not surprising that knockout of β1-integrin
results in embryonic lethality due to a complete inhib-
ition of preimplantation development. In contrast,
knockouts of the α1, α2, α10, and α11 integrin subunits,



Fig. 2 Integrin β1 receptors and their ligands. In the integrin family, the β1-integrin is the most critical, given that β1-integrin can pair with different
α-subunits, making it a receptor for many types of stimuli
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which each exclusively heterodimerize with β1 to func-
tion as primary collagen receptors, are all viable and fer-
tile, but possess distinct characteristic abnormalities
[96]. Focal adhesion kinase (FAK) is the most essential
intracellular integrator in the integrin β1-FAK signaling
pathway, and the abnormal redistribution and decreased
expression of integrin β1 and FAK are important mo-
lecular events that regulate the functions of podocytes
under abnormal hemodynamic conditions [97]. Expres-
sion of integrin β1 by fibroblasts is required for fibro-
genesis. Blocking integrin β1 signaling can diminish the
progression of cutaneous fibrosis [98]. Yeh et al. found
that the expression of the β1-integrin mRNA and pro-
tein was significantly upregulated in UUO mice, which
was accompanied by a corresponding elevation in the
tubular expression of TGF-β1 [90]. The inhibition of β1-
integrin signals reduced the TGF-β1 levels and amelio-
rated fibrosis, demonstrating strong correlations
between the expression of β1-integrin within the tubu-
lointerstitium and the presence of tubulointerstitial fi-
brosis [90]. Hamzeh et al. also found that in the absence
of β1-integrin, human proximal tubular cells fail to acti-
vate the signaling cascade that would lead to the synthe-
sis of profibrotic proteins and, ultimately, to the
development of renal fibrosis. They also showed that
cyclic stretch-induced TGF-β1 and fibronectin expres-
sion is mediated by β1-integrin through c-Src- and
STAT3-dependent pathways in renal epithelial cells [91].
The loss of DPP-4 cell surface expression has shown

to be associated with decreased phosphorylation of in-
tegrin β1 at the S785 residue, which has a key role in
cellular adhesion to ECM [99]. In our most recent pub-
lished paper, we identified a new profibrotic molecular
mechanism that was associated with the interaction be-
tween DPP-4 and integrin β1 [79] (Fig. 3). The DPP-4-
associated EndMT was inhibited by integrin β1 deletion.
In addition, DPP-4 or integrin β1 deficiency resulted in
the inhibition of TGF-β2-stimulated hetero-dimerization
of TGF-βRs. Finally, the interaction between DPP-4 and
integrin β1 induced vascular endothelial growth factor-
receptor (VEGF-R)1 expression, with the concomitant
suppression of VEGF-R2 levels [79]. This is relevant be-
cause VEGF is the most prominent stimulus for endo-
thelial cells and angiogenesis. The endothelial cell
responses toward VEGF are modulated by distinct VEGF
receptors, as VEGFR1 favors the EndMT, whereas
VEGFR2 counteracts the EndMT [100]. These results in-
dicate that the interaction between DPP-4 and integrin
β1 may be a therapeutic target for kidney fibrosis in
diabetes [79].

MicroRNAs and DPP-4 in the kidney
The cumulative effects of hyperglycemia, inflammatory cy-
tokines, proteinuria, ageing, high blood pressure, and hyp-
oxia result in alterations of the miRNA expression profiles.
The altered miRNA levels initiate a transition program in
the normal kidney that ultimately leads to fibrosis. Micro-
RNAs (miRs) were discovered 20 years ago. The actions
and synthesis of miRs are tightly regulated. The key antifi-
brotic miRs miR-let-7s and miR-29s are involved in sup-
pression and are important for understanding the fibrotic
mechanism in the diabetic kidney [53, 101, 102]. According
to the prediction of microRNA targets by TargetScan
(http://www.targetscan.org/vert_60/), we identified the
miR29 bind site in 3′UTR of DPP-4 [53]. By cloning and
utilizing the reporter vector containing 3′UTR legends of
human DPP-4 mRNA, we have confirmed that miR29
binding site in DPP-4 3′UTR negatively regulated DPP-4
gene expression. In diabetic kidney, the increased DPP-4
levels were associated with the suppression of miR29s when
compared with the normoglycemic kidney [53] (Fig. 4).
Linagliptin, a DPP-4 inhibitor, ameliorates the kidney
functions by inducing miR-29 expression in the diabetic
kidney model [53]. A quantitative analysis revealed that

http://www.targetscan.org/vert_60/


Fig. 3 Interaction of DPP-4 and integrin β1 in the endothelial cells. Interaction between DPP-4 and integrin β1 displays key role in the TGF-β-induced
signal transductions and VEGF-induced survival signaling in endothelial cells as well as in the subsequent induction of EndMT, which is associated with
regulation of miR-29s

Shi et al. Fibrogenesis & Tissue Repair  (2016) 9:1 Page 6 of 10
microRNAs 29 a, b, and c were suppressed in the dia-
betic kidney compared with the control kidneys, and
linagliptin restored the diabetes-suppressed microRNA
29s levels. Similarly, the TGF-β2-suppressed micro-
RNA29s levels were restored by linagliptin in vitro
(Fig. 5). These molecules exhibited similar antifibrotic
mechanisms, such as anti-EndMT and anti-TGF-β/
Smad signaling effects [53]. A microRNA array analysis
of the kidney samples revealed that the expression of
the mmu-let-7 family of microRNAs was suppressed in
the diabetic kidney [101]. Blockade of FGF signaling in-
duced an EndMT program that can be mimicked by
let-7b or let-7c miRNA inhibition [103, 104], and the
FGF receptor-microRNA let-7 family axis can suppress
Fig. 4 DPP-4 3′UTR and microRNA 29. TGF-β2-stimulated luciferase activity
involved, DPP-4 inhibitor may restore the miR29 levels by inhibiting TGF-β/
the TGF-β receptor I levels [101]. DPP-4 inhibitors
have been shown to inhibit the EndMT, and thus may
regulate expression levels of miR-let-7s in the diabetic
kidney. Additionally, microRNA23 and microRNA 21
have been shown to have an important role in the
EndMT and kidney fibrosis [105, 106]; the regulation of
these microRNAs by DPP-4 inhibitors must be ana-
lyzed to determine the detailed mechanism of kidney
fibrosis.

Perspective
In a Zucker Diabetic Fatty rat model, Takai et al.
found there was no significant difference in the blood
glucose and plasma insulin concentrations between the
of 3′UTR fragment of DPP-4, where microRNA 29 binding site was
Smad3 signaling



Fig. 5 Fibrosis of diabetic kidney. Diabetic kidney fibrosis is associated with suppression of microRNA29s, which targets both DPP-4 protein levels
and TGFβ-activating process
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sitagliptin- and linagliptin-treated groups, but the DPP-4
activity in the plasma and vascular tissues of the
linagliptin-treated group was significantly lower than
those in the sitagliptin-treated group [108]. Another
study found that CD26/DPP-4 was localized to the nu-
cleus, and its nuclear translocation was enhanced by an
anti-CD26 monoclonal antibody, suggesting that DPP-4
inhibition helps the DPP-4 on the cell surface move into
the nucleus [109]. These data suggest that DPP-4 can be
expressed on the membrane and in the nucleus. Al-
though every DPP-4 inhibitor displays similar role in
suppressing DPP-4 activity in the plasma and other tis-
sues, each DPP-4 inhibitor might exert unique, drug-
specific effects. Indeed, we have recently reported that
Linagliptin can suppress all of the following: DPP-4 activ-
ity and protein level, integrin β1 protein levels, EndMT,
DPP-4 3’UTR activity, and VEGF-R1 induction/-R2 sup-
pression; Sitagliptin, inhibited none of these [110]. Future
studies need to focus on the molecular mechanisms of the
DPP-4 inhibitors in different organs and cells.

Conclusions
The present review describes various aspects and pos-
sible mechanisms by which DPP-4 inhibitors combat
kidney fibrosis. The activation of DPP-4 in the kidney
has an important role in TGF-β signaling, and the pro-
gression of renal disease by regulating the microRNA29s
levels, and that targeted the inhibition of DPP-4 may
prove to be a useful new approach in the management
of progressive renal disease, including kidney fibrosis.
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