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1 Introduction

In this work we argue that the mechanism of Spontaneous Symmetry Breaking (SSB) in a

five-dimensional pure gauge theory is related to the ability of the system to be sensitive to

its global symmetries. Our motivation comes from the finite temperature deconfinement

phase transition. With periodic boundary conditions the system is symmetric under a

transformation by a center element.1 The nature of a certain order parameter — the

Polyakov Loop, a gauge invariant loop winding one of the dimensions — that transforms

non-trivially under this symmetry, determines the action that can force the system to

become aware of its center symmetry: reducing the size of the dimension. The shrinking

of a dimension is an external action to the gauge theory, in the sense that by itself a

gauge theory does not spontaneously change the sizes of its dimensions. Once however

this is imposed on it, the system at some point responds by undergoing a phase transition.

Without the possibility of breaking the center symmetry and an associated order parameter

1Center transformations in the continuum are non-periodic gauge transformations Λ(x + LN̂) = zΛ(x),

where z is an element of the center ZN of SU(N) and L is the size of the periodic dimension N .
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that controls the breaking, one would never be able to tell that it is the center symmetry

that governs the confinement-deconfinement phase transition.

Apart from the center symmetry (and the global subgroup of gauge transformations)

the other global symmetries that gauge theories possess originate from the automorphisms

of their local gauge group. Without any external action these symmetries remain inert in

the sense that they do not have any measurable physical consequences. We will consider

a special class of models where the external action involves a projection of the underlying

geometry but also a projection of the algebra with respect to some of its inner automor-

phisms. More specifically, we require the external action to be such that a) translational

invariance be broken along one of the dimensions and b) the original gauge field be broken

into a subset of gauge fields and a subset that can be interpreted as matter. Clearly, these

conditions can not be met in four dimensions, without violating observations. Thus, the

minimal version of these models is realized in five dimensions. We show in the following

that the system responds to the projections by becoming spontaneously aware of its other

global symmetries, notably of its outer automorphisms, which is physically realized by the

system developing a mass gap in its spin 1 sector. One of our goals is to try to understand

if this purely non-perturbative effect has anything to do with the Higgs mechanism that

we observe in the Standard Model.2

In Gauge-Higgs Unification (GHU) models [1, 2] the Higgs field originates from the

extra-dimensional components of a higher than four dimensional gauge field AM , M =

1, · · · , d (the gauge fields are Lie algebra elements AM = i AAM TA with TA the Hermitian

and traceless generators of the algebra of the gauge group G). The simplest version of GHU

models is five-dimensional (d = 5) gauge theories compactified on the S1/Z2 orbifold.3 As

a result of the orbifold boundary conditions, the fifth dimension becomes an interval thus

breaking translational invariance, the original five-dimensional gauge group G breaks on

the four dimensional boundaries at the ends of the interval down to H and some of the

extra dimensional components of the gauge field transform as matter under H — the

candidate for a Higgs with perturbatively finite mass [17–20]. This is the external action

on the system the spontaneous respond to which we intend to study, in the spirit of finite

temperature phase transitions. It is important to recall that the embedding of the orbifold

action in the algebra is typically via the rank preserving inner automorphism

AM −→ g AM g−1 , (1.1)

with g an appropriate element of G. Inner automorphisms induce transformations that

can be always represented as group conjugations. Actions of the type eq. (1.1) trigger

the breaking patterns G → H, with H an equal rank subgroup of G. For example for

G = SU(N) one has SU(p + q) −→ SU(p) × SU(q) × U(1) (see for example [9]). The

question of our interest then is, under what circumstances H can somehow further break,

2One may ask why not just consider a Higgs-like scalar coupled to a four dimensional gauge system.

From this point of view it is the gauge hierarchy problem associated with these four-dimensional systems

that provides motivation to study five-dimensional gauge theories.
3Orbifolds entered the high energy physics world through the seminal work of [3, 4]. In the gauge theory

context they appeared later [5–9].
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resulting in the breaking sequence

G −→ H −→ E (1.2)

with the first, rank preserving breaking due to the orbifold boundary conditions and the

second, rank reducing breaking due to SSB.

The perturbative analysis of these models states that if some component of A5 acquires

a vacuum expectation value (vev) v, then the 1-loop Coleman-Weinberg potential possesses

a non-trivial minimum which breaks H spontaneously to a subgroup E, only if fermions of

appropriate representations and boundary conditions are coupled to the gauge field. SSB

realized in this way is called the Hosotani mechanism. According to perturbation theory,

in the pure gauge theory the second stage in eq. (1.2), that of the spontaneous breaking is

therefore absent. Let us see what happens non-perturbatively.

2 Global symmetries, phases and order parameters

2.1 The periodic lattice

The first thing one would like to understand is the general structure of the phase diagram.

Let us consider for a moment a five-dimensional, large, periodic lattice with a pure gauge

theory with local symmetry G defined on it. Gauge links in direction N at the node mM

are denoted as UN (mM ). There are L5 nodes in the lattice. The phase diagram can be

split, to begin, at most into two types, the confined and the deconfined phase. The process

in order to distinguish these two phases is already described in the Introduction and here

we reiterate it, adjusted this time to the lattice. One typically proceeds by identifying

a global symmetry of the lattice action that is not a gauge transformation and an order

parameter that transforms non-trivially under it. In a theory without fundamental scalar

fields and with periodic boundary conditions the global symmetry is Z : UN → zUN at

a fixed slice orthogonal to direction N , such that z lies in the center of G. That z is a

center element guarantees that under the transformation a group element remains a group

element (Z should not break G), the action is invariant and it is not a gauge transformation

since under Z, links do not transform covariantly. A gauge invariant order parameter that

transforms non-trivially is the Polyakov Loop P

P =
L−1∏
mM=0

UN (mM ) , (2.1)

a loop that winds the dimension N of the lattice: Z : P → zP . The external action

necessary to expose Z is reducing the number of lattice nodes in the N -direction. Then,

the confined phase is defined as the phase where 〈P 〉 = 0 and the deconfined phase where

〈P 〉 6= 0. Monte Carlo analysis of the phase diagram of the five-dimensional periodic SU(2)

theory can be found in [10–16].
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Let us now imagine that we are in the deconfined phase and ask if we can further

characterize it as a Coulomb or as a Higgs phase.4 Following the previous line of thought,

a Higgs phase exists if and only if a gauge invariant order parameter that transforms

non-trivially under a global, non-gauge symmetry, the breaking of which can trigger the

breaking of G, takes a non-zero expectation value. The first task then is to find such a

global symmetry and then the corresponding order parameter. The automorphism group

of G pertains on the lattice so we have a candidate for the global symmetry. Regarding

the order parameter, since tr (P ) is invariant under automorphism group transformations,

a new order parameter is needed. The operator that can play this role has the generic form

O = −iTA V (2.2)

with V a gauge invariant object that can be arranged to have the quantum numbers of a

vector boson. However, tr {O} is not gauge invariant for non-Abelian groups. The reason

is that products of adjoint representations, never contain a fundamental representation

and in order to make V in eq. (2.2) gauge invariant one needs at least one object in the

fundamental representation [23]. We conclude that in this case since there is no external

action that can expose the inert global symmetries and (consistently) no associated order

parameter, SSB can not be realized in the periodic, pure gauge system. The deconfined

phase must be purely Coulomb. Next we turn to the orbifold lattice.

2.2 The orbifold on the lattice

We first repeat the properties of the orbifold lattices necessary to study GHU non-

perturbatively, following their construction in [24]. Consider lattices of dimensionless size

L4 in the four-dimensional sense and N5 in the fifth-dimension. We will be often taking

L → ∞ but we will always keep N5 finite. The nodes of such a lattice are denoted by

nM = {nµ, n5} with µ = 1, · · · , 4 and n5 = 0, · · · , N5. The orbifold boundary conditions

are implemented in the gauge group via an SU(N) element g, such that g2 is in the center

of SU(N). The action of g on the lattice links is via the inner automorphism

U(nM , N) −→ gU(nM , N) g−1 . (2.3)

Only gauge transformations that commute with g are allowed on the boundaries. In other

words, g is an element of CG(H), the centralizer5 of H in G. Because of this, the lattice links

have to be split in three types: links on the “left” (right) boundary U(nµ, n5 = 0; ν) ≡ Tν(n)

(U(nµ, n5 = N5; ν) ≡ Vν(n)), links along the extra dimension U(nµ, n5; 5) ≡ U(n5) and the

rest, to which we do not assign any special notation. We will generally refer to U(0) and

U(N5− 1) as “hybrid” links. The proper gauge transformations for the lattice orbifold are

Tν(n) −→ ΩH(n) Tν(n) ΩH(n+ ν̂)† , Vν(n) −→ ΩH(n)Vν(n) ΩH(n+ ν̂)† ,

U(0) −→ ΩH(0)U(0) ΩG(1)† , U(N5 − 1) −→ ΩG(N5 − 1)U(N5 − 1)ΩH(N5)
† ,

(2.4)

4By Higgs we mean here a strictly spontaneously broken phase where some of the gauge bosons be-

come massive. This excludes from our discussion the mass that gauge bosons may acquire from magnetic

monopoles [21, 22].
5The centralizer of a subgroup H of G is defined as CG(H) = {gG ∈ G |hgG = gGh ∀h ∈ H}.
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and for all other links UM (n) −→ ΩG(n)UM (n) ΩG(n+M̂)†. Here ΩH ∈ H with [g,ΩH ] = 0

and ΩG ∈ G. The set of gauge transformations given above define the local symmetry G
of the lattice orbifold. In the following, when an operator or a transformation property

depends on a single space-time dummy index, the index will be sometimes suppressed. The

G invariant action we use will be generally anisotropic, with β4 a coupling multiplying all

four-dimensional plaquettes U4(p) and β5 multiplying plaquettes with two sides along the

fifth dimension U5(p):

S[U ] =
1

N

∑
4d−plaq.

β4

(
1− 1

2
δn5,0

) (
1− 1

2
δn5,N5

)
Re tr [1− U4(p)]

+
1

N

∑
5d−plaq.

β5 Re tr [1− U5(p)] . (2.5)

Note that only plaquettes with a counterclockwise orientation are summed over. The

isotropic lattice is realized for β4 = β5. The above defines what we call from now on

the orbifold lattice. Notice that no boundary terms are required in eq. (2.5). For a more

detailed description see [24]. Notice that on the orbifold lattice, the breaking pattern we

are interested in is expressed as

G −→ H −→ E . (2.6)

We use calligraphic letters for the lattice local gauge symmetries because they are realized in

a particular way, mainly due to the hybrid links. As a group though, H is isomorphic to H.

We define the left-to-right boundary-to-boundary-line

l =

n5=N5−1∏
n5=0

U(n5) (2.7)

transforming as l→ ΩH(n5 = 0) lΩH(n5 = N5)
† under G, and from it the orbifold projected

scalar Polyakov Loops PL and PR

PL = l g l† g† , (2.8)

PR = l† g† l g . (2.9)

PL can be thought of as a field living on the left boundary and PR as a field on the

right boundary.

Scalar operators can be defined as tr (PL(R)) or as tr (Φ†Φ) using for Φ one of

the expressions

ΦL(R) =
1

4N5
[PL(R) − P

†
L(R), g]. (2.10)

These operators were introduced in [25–27].

We distinguish two types of vector boson operators, for which we use the symbol Zk
with spatial index k = 1, 2, 3. The first type has the same building blocks as the Polyakov

loops in eq. (2.8) or eq. (2.9) but there is only one insertion of g. The Z-operator introduced

in [25–27] (inspired by [28]) and defined on the left boundary is

ZLk(n)|n5=0 = g Tk(n) ΦL(n+ k̂) Tk(n)†ΦL(n) . (2.11)
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Analogously we can define a Z-operator on the right boundary

ZRk(n)|n5=N5
= g Vk(n) ΦR(n+ k̂)Vk(n)†ΦR(n) . (2.12)

tr (ZL(R)k) are vector operators of spin 1, have parity P = −1 and charge conjugation

C = −1, see appendix B. The gauge invariance of tr (ZL(R)k) relies on the fact that g

commutes with any H gauge transformation and since the centralizer CSU(p+q)(SU(p) ×
SU(q)× U(1)) ≡ Zp+q × U(1) [29], it is unlikely that other, independent operators of this

type can be constructed.

A second type of Z-boson operators can be constructed using the operators listed

in [30]. We define

Z+
L(R)k(n) = ΦL(R)(n) {F̂12(n), F̂k5(n)} , (2.13)

Z−L(R)k(n) = ΦL(R)(n) [F̂12(n), F̂k5(n)] , (2.14)

where n5 = 0 (n5 = N5) for the operators on the left (right) boundary. The lattice

expression for the field strength tensor F̂MN is given in eq. (B.2). The operators tr (Z±L(R)k)

have parity P = −1, charge conjugation C = ±1 and spin J = 1, see appendix B.

In appendix B.4 we show that both type of Z operators have the same trace structure

thus they contain the same spectrum of gauge bosons.

2.3 Global symmetries of the orbifold

We discuss here only the symmetries that are not in the global subgroup of gauge transfor-

mations. Given this premise, by examining the action eq. (2.5) we find the global symmetry

Z × F ×Aut . (2.15)

Z is the transformation by a center element of G and governs the phase transitions on

four-dimensional hyperplanes. F is the reflection symmetry around the middle of the fifth

dimension. It is a non-local symmetry as it relates for example the two boundaries.

Aut is the group of automorphisms of H. It consists of the elements that descend from

the automorphism group of G including “accidental” elements such as outer automorphisms

related to the interchange of two identical group factors in H. An example of an accidental

automorphism of H is met in the SU(4)
g−→ SU(2)×SU(2)×U(1) model. Automorphisms

induced by G on H also contain the non-accidental outer automorphisms of H. The latter

can be identified with the charge conjugation operator C for any SU(N) group with N 6= 2,

including the U(1) case. On the lattice charge conjugation acts as complex conjugation of

the gauge links, see appendix B.2. In other words, at the level of the Lie algebra charge

conjugation acts as

T a −→ −(T a)∗ , (2.16)

which is an outer automorphism of the Lie algebra. The only special case is SU(2) which

has no outer automorphisms, since charge conjugation is equivalent to a global gauge

transformation by (−iσ2). Two key properties that we note are that in general projecting

a gauge theory by outer automorphisms induces the breaking of its rank and that charge

– 6 –
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conjugation, when associated with an outer automorphism (i.e. for all SU(N) except SU(2))

in general can not be represented as a group conjugation. Finally, an outer automorphism

of H in some cases can be represented as a group conjugation when it is an induced outer

automorphism of G on H. This will be analyzed in detail in the following.

We start by defining the group of fixed point symmetries

F = FL ⊕FR (2.17)

The transformations in FL are defined as

U(0) −→ g−1F U(0) , Tν(nµ) −→ g−1F Tν(nµ) gF , (2.18)

where gF is a constant matrix in the normalizer of H in G, the group NG(H) = {gG ∈
G | g−1G HgG = H}. Links not included in the subset specified by eq. (2.18) are unchanged.

Analogously the transformations in FR are defined as

U(N5 − 1) −→ U(N5 − 1) gF , Vν(nµ) −→ g−1F Vν(nµ) gF . (2.19)

The hybrid links U(0) (U(N5 − 1)) transform under FL (FR) like a matter field. The

transformations eq. (2.18) and eq. (2.19) leave separately the action invariant.

The symmetry transformations in F have been introduced in [31], where the following

argument is presented. The transformations in F have to be consistent with the orbifold

projection. Consider gF ∈ FL and hi is a link on the left boundary. The following diagram

has to be consistent

hi
gF−→ g−1F hi gF ≡ hj ∈ H

g ↓ ↓ g
g hi g

−1 gF−→ X

therefore the quantity X has to satisfy the property

X = g
(
g−1F hi gF

)
g−1 = g−1F

(
g hi g

−1) gF .
It follows that

g gF = zG gF g , (2.20)

where zG is an element of the center of G, i.e. it commutes with any element of G (and H).

The transformations of lattice operators under FL(R) are summarized in appendix B.3.

When zG in eq. (2.20) is equal to the identity I, the transformations in F are either

global gauge transformations or transformations which do not break the rank and are

therefore inner automorphisms of H. We are interested in the case zG 6= I, which is an

outer automorphism. In this case, following [31], we call the transformations in F “stick”

symmetries and denote gF ≡ gs, with

{g, gs} = 0 . (2.21)
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Clearly, in an element gs we are looking at an element of the group WG(H) = NG(H)/H,

called the “generalized Weyl group” in [32]. In particular, one finds that

WSU(n+1)(SU(n)×U(1)) =

{
Z2 if n = 1

trivial if n > 1
(2.22)

telling us that in the SU(2)
g→ U(1) orbifold model (SU(1) factors in eq. (2.22) are re-

dundant) we should expect finding a stick symmetry, while in the SU(3)
g→ SU(2) × U(1)

orbifold model, we should not. In fact, in the classified cases, whenever WG(H) is non-

trivial, it is a Z2 symmetry. A practical way to recognize cases where a stick symmetry

might exist is to look at the orbifold projection matrix g: a stick symmetry is likely to exist

when tr g = 0 [31]. The simplest class of such models is the one with G = SU(2n), with

the lattice defined by generators in the fundamental representation and g = diag(1n,−1n),

where 1n is the n-dimensional unit vector. Notice that this class includes non-trivial cases

that are not contained in eq. (2.22), as it includes also models with an accidental outer

automorphism. Such an example is the G = SU(4) orbifold model on which we elaborate

below. We note another interesting case. It is the Sp(4)
g→ SU(2)×SU(2) orbifold model,6

where the non-perturbative SSB mechanism should be at work. Even though this may not

be the most convenient model for Monte Carlo simulations, it could be interesting from a

theoretical point of view.

We are therefore left to consider groups G = SU(2n) with n ∈ N+, which do have a

stick symmetry with zG = −I. The stick symmetry is a global transformation which is not

a global gauge transformation. It can be spontaneously broken, consistently with Elitzur’s

theorem [34]. Let us denote by SL and SR the eigenvalues (±1) of operators under the stick

transformations contained in F = FL ⊕ FR. The values of SL and SR can be found using

the results of appendix B.3 by inserting zG = −I (which defines stick transformations). We

are interested in the value of S = SL · SR since the product of the transformations on the

left and on the right boundary respect the reflection symmetry F . The operators tr (PL(R))

are even (S = 1) whereas the operators tr (ZL(R)k) are odd (S = −1). Therefore a non-zero

expectation value of tr (ZL(R)k) breaks spontaneously the stick symmetry.7 The breaking

of the stick symmetry induces the breaking of the group F , which contains global gauge

transformations as well, meaning that there will be massive gauge bosons. The deconfined

phase becomes a Higgs phase.

The only possibility to break the rank, which is alternative to the stick symmetry and

would be available also for groups G = SU(2n+ 1), is through the outer automorphism of

charge conjugation C. But this implies that the photon, which has C = −1, would become

massive and this “solution” for breaking the rank has to be dismissed.

Now we present explicit examples for the groups SU(2), SU(3) and SU(4).

6This, as well as the G = SU(4) model, have been considered as a possible GHU models in [33].
7The operator tr (ZL(R)k) is not a Euclidean invariant. In a simulation one can measure for example∑
k[tr (ZL(R)k)]2/3, see figure 1. What is meant here is an effective potential for tr (ZL(R)k), in analogy

with the Standard Model Higgs. We will return to this point in section 3.
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Figure 1. Scalar Polyakov loop (left plot) and vector Polyakov loop (right plot) from Monte Carlo

simulations of the G = SU(2) orbifold. Monte Carlo averages from hot and cold starts on 244 × 5

lattices are shown as a function of β = β4 = β5.

2.4 The SU(2) orbifold

The case of the G = SU(2) orbifold is the simplest of a class of models that have rank

reducing automorphisms that can be expressed as group conjugations and are amenable

to Monte Carlo simulations [25–27, 35, 36]. In the case of G = SU(2) where g = −iσ3, we

have H = {exp(ωg) , ω ∈ R} = U(1). There is a stick symmetry realized by gs = −iσ2 or

equivalently by gs = −iσ1. In short, in this model we have the breaking pattern

SU(2)
g−→ U(1)

SSB−→ D (2.23)

where E = D can be either trivial or a remnant Z2 subgroup of U(1). We conclude that

the rank of H is broken due to the spontaneous breaking of the generalized Weyl (or stick)

symmetry group, the only available non-trivial automorphism that the system can access.

Figure 1 shows Monte Carlo results for the quantities |tr (PL)| defined in eq. (2.8)

(left plot) and 1
3

∑
k[tr (ZLk)]

2 defined in eq. (2.11) (right plot). The loops PL and ZLk
are averaged over the points of the four-dimensional boundary. The lattices have size

244 × 5 points and in order to locate phase transitions, results of simulations starting

from a hot (random) and a cold (identity matrix) gauge link configuration are shown.

A first order transition manifests itself as an hysteresis where the results from hot and

cold start differ. The statistics of each simulation is 4000 measurements separated by two

update iterations, each iteration consisting of one heatbath sweep and 12 overrelaxation

sweeps. The thermalization is 1000 update iterations. The scalar and vector Polyakov

loops are measured using links smeared by 10 iterations of HYP smearing [37] adapted

to the orbifold [38]. Both observables show an hysteresis at values βc = 1.60–1.63 (β =

β4 = β5) thus confirming the presence of a first order bulk phase transition (the plaquette

has a similar behavior). The transition is from the confined phase at β < βc (where

both observables are zero or close to zero) into the Higgs phase at β > βc (where both

observables become non-zero). In the latter phase, the mass of the Z boson can be extracted

from correlators of tr (ZLk) and it is found to be non-zero [25–27, 35]. Therefore we call

the phase at β > βc a Higgs phase. Because it yields the value of the Z boson mass, we
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identify the operator constructed from tr (ZLk) as order parameter of the Higgs phase. In

addition, since tr (ZLk) is odd under the stick symmetry, the Monte Carlo results verify

the breaking pattern in eq. (2.23).

Finally we notice that the Monte Carlo results show that the gauge boson mass is

non-zero everywhere for β > βc [38]. It diminishes towards the perturbative limit β →∞
where it is expected to be zero. This means in particular that spontaneous symmetry

breaking is not a lattice (strong coupling) artifact.

2.5 The SU(3) orbifold

Consider the example of SU(3) with the orbifold projection g = diag(−1,−1, 1) that leaves

the symmetry H = SU(2) × U(1) on the boundaries.8 One can easily check that, as

expected from the general group theoretical discussion, there is no SU(3) stick matrix gs.

All there is in the group of fixed point symmetries are transformations which commute with

g and cannot break the rank. The non-perturbative gauge symmetry breaking mechanism

is absent.

2.6 The SU(4) orbifold

The next example is the G = SU(4) orbifold where if we take g = diag(1, 1,−1,−1) we

have H = SU(2)×SU(2)×U(1) surviving on the boundaries. This seems to be the simplest

example where G is unitary, the electroweak group can be embedded in H and the Higgs

mechanism is realized in a non-perturbative way.

The matrices

gs = −i


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 g′s = −i


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 (2.24)

fulfill all the constraints that stick matrices are supposed to. The stick symmetry is related

to the accidental outer automorphism due to the interchange symmetry and the internal

charge conjugation of the two SU(2) factors. It is a Z2 × Z2 transformation (it is not a

Z4 transformation since gs commutes with g′s and gsg
′
s commutes with g) and z2G = I in

eq. (2.20). For the transformation of the SU(4) generators under conjugation by gs and

g′s see appendix A. The symmetry that governs SSB is the part of F = FL ⊕ FR with

zG = −I and denoting the corresponding eigenvalues of operators by SL and SR, we are

therefore interested in the F-eigenvalue S = SL · SR. Heavy gauge bosons are represented

by the S-odd operators Z,Z±. The photon γ and the C = +1 state γ, also contained in

principle in the spectrum of these operators, if present, should appear as massless states.

In the table below we summarize the relevant operators of the left boundary, their global

8In the continuum the orbifold properties of a bulk group that is, or contains SU(3) have been studied

in [39–41].
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quantum numbers and the states that they may represent.

O J P C SL SR S CP state

Re tr (PL) 0 + + − − + + Higgs

tr (Z+
L ) 1 − + + − − − γ, Heavy gauge bosons

tr (Z−L ) 1 − − + − − + γ, Heavy gauge bosons

tr (ZL) 1 − − − + − + γ, Heavy gauge bosons

(2.25)

The Lie algebra analysis in appendix A implies that H breaks spontaneously to a U(1) via

the non-perturbative mechanism. Specifically, only one linear combination of generators is

invariant under conjugation by both gs and g′s so that we expect the total breaking pattern

SU(4)
g−→ SU(2)× SU(2)×U(1)

SSB−→ U(1) . (2.26)

The natural question is if one can deduce the existence and perhaps a possible prediction

for the value of a Weinberg angle. In the continuum, since SSB proceeds due to the pres-

ence of a local vev, the Lie algebra contains this information. On the lattice however this

is not straightforward. The reason for the obstruction to connect the Lie algebra picture

with the lattice is partially because on the lattice, by symmetry arguments only, there is

no way to tell how many and which are the physical scalars. The Polyakov loop operator

in its continuum limit gives the sum of all orbifold-even scalars squared (8 scalars in the

SU(4) model). We know that they can not be all physical since several generators break,

however the observable treats all continuum scalars, physical and non-physical democrati-

cally. This means that quantities like the Weinberg angle have a dynamical origin and can

be determined for example by Monte Carlo simulations.

3 Non-perturbative gauge-Higgs unification

The scalar Polyakov Loop in the continuum limit contains the even under the orbifold

projection fields Aâ5 (for SU(2) these would be A1,2
5 ) on the boundaries, in the perturbative

approach identified with the Higgs field of the four-dimensional effective theory. When one

of these scalars is shifted by v, the 1-loop Coleman-Weinberg-Hosotani potential plays the

role of the Higgs potential. Perturbatively this potential does not break any symmetry in

the pure gauge theory. Non-perturbatively we saw on the other hand that the deconfined

phase should be Higgs and this has been explicitly verified by various methods for the SU(2)

model. Apparently a mechanism of spontaneous symmetry breaking is at work, to which

perturbation theory (at least at 1-loop) is blind. For this reason, we call this mechanism

“Non-perturbative Gauge-Higgs Unification”, NPGHU for short.

In order to see why the perturbative analysis of SSB in the pure gauge case leads to

different conclusions, let us take for concreteness G = SU(N) and try to see if the Higgs

mechanism in NPGHU can be interpreted as the shift

A5 −→ A5 + v (3.1)
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as an attempt to connect to perturbation theory would suggest. Then, since

ei(A
A
5 T

A+vATA) = eiA
′A
5 T

A
eiv

′ATA
(3.2)

we can introduce such a vev by the shift

U(n5) −→ U(n5) gv . (3.3)

This shift changes the line l into

lv = U(0) gv U(1) gv · · · U(N5 − 1) gv . (3.4)

The matrix gv is a constant G-element and it is either in the center of G or not. Since we

are discussing a non-perturbative mechanism triggered by the breaking of the generalized

Weyl group, we would like to see if the shift of the gauge field by such an element gv can be

interpreted as a stick transformation. If gv is in the center, in a perturbative treatment it

could not trigger SSB, because gv commutes in particular with all the algebra generators.

This is consistently reflected by the fact that gv cancels from the Polyakov lines PL(R). If

on the other hand gv is not in the center of G, the vev can not be gauged away from the

bulk links so the shift in eq. (3.1) again can not be related to a stick transformation. To

see this we note that under gauge transformation the line lv in eq. (3.4) transforms as

lv −→ Ω(0)U(0) gv(1)U(1) gv(2) · · · U(N5 − 1) Ω(N5)
† gv , (3.5)

with gv(n5) = Ω(n5)
† gv Ω(n5), n5 = 1, 2, . . . , N5−1. In order to interpret eq. (3.5) as a stick

symmetry transformation SR in FR with the transformation l −→ l gs (cf. appendix B.3),

we would need gv(n5) = I, which implies gv = I. Therefore we conclude that a stick

symmetry transformation is not equivalent to introducing a vev in the scalar Polyakov Loop.

Note that the latter would be the Wilson line breaking mechanism typically employed in

string theory and string inspired models in order to reduce the effective gauge symmetry

in four dimensions: the surviving gauge symmetry is generally determined by the algebra

generators of H that commute with the Wilson line [42]. In some cases, in order to declare

SSB, the dynamics should harmonize itself with the symmetry argument. When there are

two or more extra dimensions available this means that the tree level potential of the four-

dimensional effective theory should have the proper structure to trigger the expected SSB.

If there is only one extra dimension on the other hand then the scalar potential vanishes

at the classical level but a non-trivial scalar potential for the phase of the Wilson line may

develop at the quantum level. This is now the potential that should trigger the expected

SSB, except that in the absence of fermions it turns out to respect the H symmetry. When

fermions are added, SSB can be achieved and this is the typical context of the Hosotani

mechanism in continuum GHU models. All the above seem to point to NPGHU being a

mechanism distinct from other known SSB mechanisms in higher dimensions. It could be

of course that when fermions are introduced for example, the Hosotani mechanism in its

lattice version [43–45] will add to it and one finally could have a combined mechanism of

SSB. Despite the fact that we do not see at the moment if and how fermions will modify
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our symmetry-order parameter arguments, a combined SSB picture should not be excluded

as a possibility.

Furthermore, in combination with the above discussion, our general analysis suggests

that NPGHU is a non-perturbative effect. The natural question that arises is if it can

be advocated as the origin of the Higgs mechanism in the Standard Model. We leave the

possible phenomenological obstructions aside and discuss only the core of the mechanism.

For this, it is sufficient to consider again the SU(2) model for which we have a sizable

amount of information. In this model we call the massive boundary U(1) gauge boson

the Z with mass mZ and we denote the mass of the Higgs by mH . We also denote the

physical size of the extra dimension by R. The mechanism in this case has been verified

by Monte Carlo and Mean-Field methods, and the latter could shed some more light on

its nature. In [46, 47] we argued that the lattice orbifold is essentially like a relativistic,

bosonic superconductor. This is consistent with the fact that it is a non-perturbative effect.

Furthermore, on the anisotropic lattice there is a regime on the phase diagram where the

system reduces dimensionally without the fifth dimension becoming small. Dimensional

reduction occurs instead via the Fu and Nielsen localization mechanism [48]. According

to this mechanism, the four-dimensional hyperplanes are weakly coupled while the fifth

dimension is strongly coupled (i.e. β4 > β5). This implies that physics on the orbifold

boundaries can be described by a four-dimensional effective action that can be treated per-

turbatively. From the superconductor point of view, this would be the Landau functional,

i.e. the effective action for the gauge-scalar system, evaluated on the boundaries.

The precise determination of this effective action is beyond the scope of the present

paper, however we can already extract its general form. Going back to general SU(N), it

is expected to be the effective action of the order parameter for SSB, say of Zk. It must

also be a scalar. Then it will have the general form

LL = c1
∑
k

tr (ZkZk) + c2
∑
k

tr (Zk)tr (Zk) + c3
∑
k,l

tr (ZkZkZlZl)

+c4
∑
k

tr (ZkZk)
∑
l

tr (Zl)tr (Zl) + · · · (3.6)

with the coefficients c1, c2, c3, c4, · · · to be determined. For concreteness let us consider the

vector boson operator defined in eq. (2.11) (dropping the L subscript for clarity)

Zk = gTk(n)Φ(n+ k̂)T †(n)Φ(n) (3.7)

and the expansions in the lattice spacing

Tk = eaAk = 1 + aAk +
1

2
a2A2

k + · · ·

Φ(n+ k̂) = Φ(n) + a ∂kΦ +
1

2
a2∂2kΦ + · · · , (3.8)

where A†k = −Ak, [Ak, g] = 0 and {Φ, g} = 0. Let us define the covariant derivative

Dk = ∂k + 4Ak (3.9)

and the dimensionless9 Higgs field H (not to be confused with the boundary gauge sym-

9A dimensionful Higgs field can be defined from eq. (B.7).
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metry for which we use the same letter)

H = Φ2 = −Φ†Φ . (3.10)

We obtain

tr (Zk) =
1

2
a tr (gDkH) + O(a2) (3.11)

and

tr (ZkZk) = η tr (H2) + a η tr (H∂kH) + O(a2) (3.12)

with the sign η defined in eq. (B.6). The effective action now for Zk then takes the form

LL = 3 c1 η tr (H2) + 9 c3 η
2 tr (H4)

+a

[
c1 η

∑
k

tr (H∂kH) + 3 c3
∑
k

tr (H2∂kH
2)

]
+ O(a2) (3.13)

The terms which are O(1) in the lattice spacing in the first line of eq. (3.13) build up a

Higgs potential V for H, to be compared with V = −µ2 tr (H2)+λ tr (H4). It is easy to see

that all terms in the potential contain an even number of g-insertions which then annihilate

yielding± signs. The coefficients c1, c2, c3, · · · can be computed numerically by Monte Carlo

methods or analytically in some approximation scheme, like the mean-field expansion. We

will postpone their computation for the near future. Notice that for SU(2k+1), −1 is not a

group element so η = 1, while for groups SU(2k), −1 is always a group element so η = −1.

Therefore, for SU(2k), the reason for the opposite relative sign in the potential could be

that in the quadratic term there are two g-insertions and in the quartic four g-insertions,

and that g2 = η = −1. Then if c1c3 > 0 we have a mexican hat potential. One observation

is that SSB is signaled in the effective action by a vev for the field H, a non-local operator

defined by eqs. (2.8), (2.10) and (3.10). As such, it can not be represented by the local field

A5 taking a vev in an action with a finite number of terms. Another observation is that

an effective action of the form eq. (3.13) would have not been possible to obtain from the

effective action of other observables. For example, the plaquette effective action would have

not yielded the potential V because there is no Fij term in 5d, with i, j extra dimensional

indices. On the other hand, above eq. (2.10) we have stated that a possibility for a scalar

operator is essentially tr (H). Indeed, its exponential time decay determines the scalar

mass spectrum [25–27]. As the ground state in the scalar sector is massive everywhere in

the deconfined phase, H has a non-zero expectation value. A simple calculation now gives

tr (H) = 4 tr [(P − P †)2] which implies that P can not have the form diag(1, · · · , 1), that

is, it has non-degenerate eigenvalues. Conversely, non-degenerate eigenvalues of P imply a

non-zero scalar mass. These arguments can be actually transferred identically on the fully

periodic system (i.e. without the orbifold boundary conditions), where we know that (in

the pure gauge theory) SSB is absent. All this can be summarized by the statement that it

is not clear whether the scalar Polyakov Loop is the appropriate order parameter for SSB,

that role played by the vector Polyakov Loop, in agreement with our symmetry argument.
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In [47], trajectories on the phase diagram along which mHR and mZR are constant

were constructed for the SU(2) model of section 2.4 . These Lines of Constant Physics

(LCPs) demonstrate the stability of the Higgs mass against quantum fluctuations, at least

in the context of the Mean-Field expansion (work for the Monte Carlo version of these

lines is in progress). A similar question arises in superconductors where one could ask

why the effective pole mass of the Higgs-Anderson field originating from the Cooper pairs

is stable under quantum corrections. Even though in that case there is a natural cut-

off scale associated with the size of an atom and one could argue that even if there is

a power dependence of the field’s mass on the cut-off, it does not generate a hierarchy

problem, the question in principle remains. One could have a low cut-off and a power law

cut-off dependence canceling mechanism at work nevertheless. We are not aware of such

computations regarding superconductors but we know that in the Mean-Field construction

the Higgs mass remains stable across a huge range of the values of the lattice spacing.

Therefore, some kind of cancellation mechanism must be at work. A possible further hint

is the fact that irrespectively of SSB, perturbation theory tells us that mHR is stable at

one and perhaps even at higher loops. Now given the fact that there is a well defined (if

tedious) way to take the perturbative limit of the Mean-Field expressions for mHR and the

fact that the Mean-Field at each order represents a resummation of an infinite number of

perturbative diagrams, we see two possibilities: either mHR remains constant everywhere

on the phase diagram, a possibility that can be dismissed rather easily based on the non-

renormalizability of the underlying gauge theory or by simply looking at Monte Carlo

data, or there is a cancelation mechanism from the point of view of the four-dimensional

effective boundary theory. In real life superconductors the stability of the scalar mass may

be simply a direct consequence of the field’s fermionic origin but it could also be that

there is something new to be understood there and that this knowledge could be perhaps

transferred to our orbifold lattices.

4 Conclusions

We argued that spontaneous symmetry breaking in extra dimensional orbifold lattice (pure)

gauge theories can be interpreted mathematically as the system’s spontaneous response to

the orbifold projection of becoming sensitive to its generalized Weyl group. Another, physi-

cal point of view sees it as a phenomenon of relativistic, bosonic superconductivity, triggered

by the breaking of translational invariance in the fifth dimension and the appearance of an

effective Higgs field due to the orbifold projections. It is a non-perturbative mechanism of

Gauge-Higgs Unification to which perturbation theory seems to be blind, called NPGHU

in this work. We have examined mainly models with original SU(N) symmetry. Realistic

model building could involve of course other gauge groups including also product groups.
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A SU(4) conjugations

In this appendix we list the conjugations of the SU(4) generators in the fundamental

representation by gs and g′s in eq. (2.24). The (unnormalized) generators are

H1 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 H2 =


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 H3 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 (A.1)

T 1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 T 2 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 (A.2)

T 3 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 T 4 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 (A.3)

T 5 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 T 6 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 (A.4)

T 7 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 T 8 =


0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0

 (A.5)

T 9 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 T 10 =


0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

 (A.6)

T 11 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 T 12 =


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 (A.7)
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and their conjugations (T a are the SU(2) × SU(2) × U(1) generators and T â are the odd

under the orbifold generators)

O g†sOgs g
′−1
s Og′s

T 1 + T 11 + +

T 1 − T 11 − −
T 2 + T 12 − +

T 2 − T 12 + −
1/3(H3 + 2H2) − −

H1 + 1/3(H3 −H2) − +

H1 − 1/3(H3 −H2) + −

The quick rule is that conjugation of a generator by gs amounts to reflecting the generator

with respect to its diagonal, and then reflecting it once more around its minor diagonal

while conjugation by g′s simply interchanges the two SU(2) blocks (this also proves that

conjugating an SU(2)× SU(2)×U(1) element by gs or g′s leaves the element in the group).

B Transformations of lattice operators

In this appendix, we discuss in detail the transformation properties of the lattice operators

introduced in section 2.2 under parity P , charge conjugation C and the fixed point sym-

metry F . Finally, their expressions in the classical continuum limit are presented, which

exhibit their spin J quantum number.

In the operators Z± in eq. (2.13), the field strength tensor appears. A symmetric defi-

nition of the field strength tensor is given in [49] using the sum QMN (n) of four plaquettes

in directions M and N with the same orientation (the first link in each plaquette is always

pointing towards the point n)

QMN (n) = UM (n)UN (n+ M̂)U †M (n+ N̂)U †N (n)

+UN (n)U †M (n− M̂ + N̂)U †N (n− M̂)UM (n− M̂)

+U †M (n− M̂)U †N (n− M̂ − N̂)UM (n− M̂ − N̂)UN (n− N̂)

+U †N (n− N̂)UM (n− N̂)UN (n+ M̂ − N̂)U †M (n) . (B.1)

The anti-Hermitian field strength tensor is given by

F̂MN =
1

8a2
[QMN (n)−Q†MN (n)] . (B.2)

A special case on the orbifold are the expressions for Qk5 at n5 = 0 and n5 = N5, where

only two plaquettes (the ones contained in the fundamental domain of the orbifold) in

eq. (B.1) are used.
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B.1 Parity P

The tree-dimensional space reflection or parity P acts on lattice coordinates as

P n = nP , nP = (n0,−~n, n5) (B.3)

and on gauge links as

P U(n, k) = U †(nP − k̂, k) , P U(n,M) = U(nP ,M) , (M = 0, 5) . (B.4)

It is easy to check that the field strength tensor eq. (B.2) transforms under parity as

P Fkl(n) = Fkl(nP ) and P Fk5(n) = −Fk5(nP ). The lattice operators introduced in sec-

tion 2.2 transform as10

P (n)
P−→ P (nP ) ,

Φ(n)
P−→ Φ(nP ) ,

tr [Zk(n)]
P−→ −tr [Zk(nP − k̂)] ,

Z±k (n)
P−→ −Z±k (nP ) .

After the sum over the spatial coordinates ~n is taken to project to zero spatial momentum

~p = 0, the operators tr (Zk) and tr (Z±k ) have parity P = −1.

B.2 Charge conjugation C

The charge conjugation C acts on the lattice as complex conjugation of the gauge links

C U(n,M) = U∗(n,M) . (B.5)

Under charge conjugation the lattice operators introduced in section 2.2 transform as

P (n)
C−→ P ∗(n) ,

Φ(n)
C−→ ηΦ∗(n) ,

tr [Zk(n)]
C−→ −tr [Zk(n)] ,

tr [Z±k (n)]
C−→ ±tr [Z±k (n)] .

Here we use that g = gT (since g = exp(−2πi~V · ~H) [9] and the Cartan generators are

symmetric HT
i = Hi) and

g∗ = η g , η = ±1 , (B.6)

which means g2 = η I. Note that charge conjugation is a good quantum number for the

orbifold, since if U = gUg−1 then using eq. (B.6) it follows U∗ = gU∗g−1, i.e. if U is

projected then also U∗ is.

10We omit the subscripts L(R) when the operators on the left and right boundaries have the same

transformations.
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B.3 Fixed point symmetry

The requirement of a definite transformation under the fixed point symmetry restricts the

matrix zG in eq. (2.20) to be ±I. Clearly, among simple unitary groups, the case −I is

possible only for G = SU(2n). The transformations of lattice operators under the fixed

point symmetries FL defined in eq. (2.18) are

l −→ g−1F l ,

PL −→ zG g
−1
F PL gF ,

PR −→ zG PR ,

ΦL −→ g−1F ΦL gF ,

ΦR −→ zG ΦR ,

ZLk −→ zG g
−1
F ZLk gF ,

ZRk −→ ZRk ,

Z±Lk −→ g−1F Z±Lk gF ,

Z±Rk −→ zG Z
±
Rk .

Under under the symmetries FR defined in eq. (2.19) the transformations are

l −→ l gF ,

PL −→ zG PL ,

PR −→ zG g
−1
F PR gF ,

ΦL −→ zG ΦL ,

ΦR −→ g−1F ΦR gF ,

ZLk −→ ZLk ,

ZRk −→ zG g
−1
F ZRk gF ,

Z±Lk −→ zG Z
±
Lk ,

Z±Rk −→ g−1F Z±Rk gF .

B.4 Classical continuum limit

In terms of the anti-hermitian linear combination s of the scalars contained in A5, we have

the classical continuum limits

l = I + as+
1

2
a2s2 + O(a3)

P = I ± a(s− gsg†) +
1

2
a2(gs2g† + s2 − 2sgsg†) + O(a3)

Φ = ±4a[s, g] + 2a2[gsg†, s]g + O(a3) , (B.7)

where the upper (lower) sign refers to the operators on the left (right) boundary. By

computing the traces one finds for example that

tr (P ) = tr (I) + 4
∑
â

(câA
â
5)2 + · · · (B.8)
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The continuum limit of the gauge boson operators Zk defined in eq. (2.11) and eq. (2.12)

is a covariant derivative of the Higgs field [25–27]

tr [Zk(x)] = atr [gΦ(x) (∂k + 2Ak(x))Φ(x)] + O(a2)

= 32 a3 η {tr [(∂ks)[g, s]] + 2 tr [Ak[s, gs]]}+ O(a4) . (B.9)

The continuum limit of the gauge boson operators Z±L(R)k defined in eq. (2.13) is

tr (Z−k ) = ±4 a5 F a12 F
â
k5tr

(
[s, g][T a, T â]

)
+ O(a6)

tr (Z+
k ) = ±4 a5 F a12 F

â
k5tr

(
[s, g]{T a, T â}

)
+ O(a6) (B.10)

We have used standard notation by which the G Lie algebra index even under the orbifold

projection is a (g T a g−1 = T a) and the odd is â (g T â g−1 = −T â).
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