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Abstract Audio-visual speech recognition (AVSR) system
is thought to be one of the most promising solutions for
reliable speech recognition, particularly when the audio is
corrupted by noise. However, cautious selection of sensory
features is crucial for attaining high recognition perfor-
mance. In the machine-learning community, deep learn-
ing approaches have recently attracted increasing attention
because deep neural networks can effectively extract robust
latent features that enable various recognition algorithms to
demonstrate revolutionary generalization capabilities under
diverse application conditions. This study introduces a
connectionist-hidden Markov model (HMM) system for
noise-robust AVSR. First, a deep denoising autoencoder
is utilized for acquiring noise-robust audio features. By
preparing the training data for the network with pairs of con-
secutive multiple steps of deteriorated audio features and
the corresponding clean features, the network is trained to
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output denoised audio features from the corresponding fea-
tures deteriorated by noise. Second, a convolutional neural
network (CNN) is utilized to extract visual features from
raw mouth area images. By preparing the training data for
the CNN as pairs of raw images and the corresponding
phoneme label outputs, the network is trained to predict
phoneme labels from the corresponding mouth area input
images. Finally, a multi-stream HMM (MSHMM) is applied
for integrating the acquired audio and visual HMMs inde-
pendently trained with the respective features. By compar-
ing the cases when normal and denoised mel-frequency
cepstral coefficients (MFCCs) are utilized as audio features
to the HMM, our unimodal isolated word recognition results
demonstrate that approximately 65 % word recognition rate
gain is attained with denoised MFCCs under 10 dB signal-
to-noise-ratio (SNR) for the audio signal input. Moreover,
our multimodal isolated word recognition results utilizing
MSHMM with denoised MFCCs and acquired visual fea-
tures demonstrate that an additional word recognition rate
gain is attained for the SNR conditions below 10 dB.

Keywords Audio-visual speech recognition · Feature
extraction · Deep learning · Multi-stream HMM

1 Introduction

Human–machine interfaces for intelligent machines, such
as smartphones, domestic robots, and auto-driving cars, are
expected to become increasingly common in everyday life.
Consequently, noise-robust speech recognition will become
crucial for achieving effective human–machine interaction.
Audio-visual speech recognition (AVSR) is thought to be
one of the most promising solutions for reliable speech
recognition, particularly when the audio is corrupted by
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noise. The fundamental idea of AVSR is to use visual infor-
mation derived from a speaker’s lip motion to complement
corrupted audio speech inputs. However, cautious selection
of sensory features for the audio and visual inputs is crucial
in AVSR because sensory features significantly influence
the recognition performance.

Regarding sensory feature extraction mechanisms, deep
learning approaches have recently attracted increasing
attention among the machine-learning community [5]. For
example, deep neural networks (DNNs) have successfully
been applied to unsupervised feature learning for single
modalities such as text [47], images [25], and audio [17].
The same approach has also been applied to the learning
of fused representations over multiple modalities, resulting
in significant improvements in speech recognition perfor-
mance [37]. Expanding on ideas from recent successes in
deep learning studies, we propose to apply two major DNN
architectures, deep denoising autoencoder [48, 49] and con-
volutional neural network (CNN) [27], for audio feature
extraction and visual feature extraction, respectively.

Audio feature extraction by a deep denoising autoen-
coder is achieved by training the network to predict original
clean audio features, such as mel-frequency cepstral coef-
ficients (MFCCs), from deteriorated audio features that are
artificially generated by superimposing various strengths of
Gaussian noises to original clean audio inputs. Acquired
audio feature sequences are then processed with a con-
ventional hidden Markov model (HMM) with a Gaussian
mixture observation model (GMM-HMM) to conduct an
isolated word recognition task. The main advantage of our
audio feature extraction mechanism is that noise-robust
audio features are easily acquired by a rather simple mech-
anism.

For the visual feature extraction mechanism, we propose
application of a CNN, one of the most successfully utilized
neural network architectures for image clustering problems.
This is achieved by training the CNN with over a hundred
thousand mouth area image frames in combination with cor-
responding phoneme labels. CNN parameters are learned
in order to maximize the average across training cases for
the log-probability of the correct label under the prediction
distribution. Through supervised training, multiple layers
of convolutional filters, which are responsible for extract-
ing primitive visual features and predicting phonemes from
raw image inputs, are self-organized. Our visual feature
extraction mechanism has two main advantages: (1) the
proposed model is easy to implement because dedicated lip-
shape models or hand-labeled data are not required; (2) the
CNN has superiority in shift- and rotation- resistant image
recognition.

To perform an AVSR task by integrating both audio and
visual features into a single model, we propose a multi-
stream hidden Markov model (MSHMM) [6, 7, 20]. The

main advantage of the MSHMM is that we can explicitly
select the observation information source (i.e., from audio
input to visual input) by controlling the stream weights of
the MSHMM depending on the reliability of multimodal
inputs. Our evaluation results demonstrate that the isolated
word recognition performance can be improved by utiliz-
ing visual information, especially when audio information
reliability is degraded. The results also demonstrate that the
multimodal recognition attains an even better performance
than when audio and visual features are separately utilized
for isolated word recognition tasks.

The remainder of this study is organized as follows. In
Section 2, we briefly review related work on audio and
visual feature extraction mechanisms for automatic speech
recognition (ASR). In Section 3, we describe several learn-
ing algorithms for various deep neural network architec-
tures, including deep autoencoder and CNN. In Section 4,
we describe the audiovisual dataset utilized for the eval-
uation experiments of our proposed speech recognition
models. In Section 5, we introduce the general framework of
the proposed AVSR system and describe implementations
for audio feature extraction, visual feature extraction, and
audio-visual integration. The proposed frameworks are eval-
uated in Section 6. We conduct isolated word recognition
experiments to evaluate audio and visual features and inte-
grated inputs. In Section 7, we discuss our current results
and describe directions for future work. Conclusions are
presented in Section 8.

2 Related work

2.1 Audio feature extraction mechanisms

The use of MFCCs has been a de facto standard for ASR
for decades. However, advances in deep learning research
have led to recent breakthroughs in unsupervised audio
feature extraction methods and exceptional recognition per-
formance improvements [13, 17, 32]. Advances in novel
machine learning algorithms, improved availability of com-
putational resources, and the development of large databases
have led to self-organization of robust audio features by effi-
cient training of large-scale DNNs with large-scale datasets.

One of the most successful applications of DNNs to ASR
is the deep neural network hidden Markov model (DNN-
HMM) [12, 36], which replaces the conventional Gaussian
mixture model (GMM) with a DNN to represent the direct
projection between HMM states and corresponding acous-
tic feature inputs. The idea of utilizing a neural network
to replace a GMM and construct a hybrid model that com-
bines a multilayer perceptron and HMMs was originally
proposed decades ago [8, 41]. However, owing to limited
computational resources, large and deep models were not
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experimented with in the past, which led to hybrid systems
that could not outperform GMM-HMM systems.

Other major approaches for application of DNNs to ASR
involve using a deep autoencoder as a feature extraction
mechanism. For example, Sainath et al. utilized a deep
autoencoder as a dimensionality compression mechanism
for self-organizing higher-level features from raw sensory
inputs and utilized the acquired higher-level features as
inputs to a conventional GMM-HMM system [43]. Another
example is the deep denoising autoencoder proposed by
Vincent et al. [48, 49]. This model differs from the for-
mer model in that the outputs of the deep autoencoder are
utilized as the sensory feature rather than the compressed
vectors acquired from the middle layer of the network. The
key idea of the denoising model is to make the learned repre-
sentations robust to partial destruction of the input by train-
ing a deep autoencoder to reconstruct clean repaired input
from corrupted, partially destroyed input. We adopt the deep
denoising autoencoder for acquiring noise-robust audio fea-
tures by training the network to reconstruct clean audio
features from deteriorated ones. In this study, the acquired
denoised audio features are processed with a GMM-HMM
system. The primary reason for utilizing a GMM-HMM
rather than DNN-HMM is to apply theMSHMM seamlessly
as a multimodal integration mechanism for the subsequent
AVSR task.

2.2 Visual feature extraction mechanisms

Incorporation of speakers’ lip movements as visual infor-
mation for ASR systems is known to contribute to robust-
ness and accuracy, especially in environments where audio
information is corrupted by noise. In previous studies,
several different approaches have been proposed for extract-
ing visual features from input images [24, 34]. These
approaches can be broadly classified into two representative
categories.

The first is a top-down approach, where an a priori lip-
shape representation framework is embedded in a model;
for example, active shape models (ASMs) [31] and active
appearance models (AAMs) [11]. ASMs and AAMs extract
higher-level, model-based features derived from the shape
and appearance of mouth area images. Model-based features
are suitable for explicitly analyzing internal representations;
however, some elaboration of lip-shape models and pre-
cise hand-labeled training data are required to construct a
statistical model that represents valid lip shapes.

The second is a bottom-up approach. Various meth-
ods can be used to directly estimate visual features from
the image; for example, dimensionality compression algo-
rithms, such as discrete cosine transform [35, 44], principal
component analysis (PCA) [3, 35], and discrete wavelet
transform [35]. These algorithms are commonly utilized to

extract lower-level image-based features, which are advan-
tageous because they do not require dedicated lip-shape
models or hand-labeled data for training; however, they are
vulnerable to changes in lighting conditions, translation,
or rotation of input images. In this study, we adopt the
bottom-up approach by introducing a CNN as a visual fea-
ture extraction mechanism, because it is possible that CNNs
can overcome the weaknesses of conventional image-based
feature extraction mechanisms. The acquired visual features
are also processed with a GMM-HMM system.

Several approaches for application of CNNs to speech
recognition studies have been proposed. Abdel-Hamid et al.
[1, 2] applied their original functionally extended CNNs
for sound spectrogram inputs and demonstrated that their
CNN architecture outperformed earlier basic forms of fully
connected DNNs on phone recognition and large vocab-
ulary speech recognition tasks. Palaz et al. [39] applied
a CNN for phoneme sequence recognition by estimating
phoneme class conditional probabilities from raw speech
signal inputs. This approach yielded comparable or better
phoneme recognition performance relative to conventional
approaches. Lee et al. [29] applied a convolutional deep
belief network (DBN) for various audio classification tasks,
such as speaker identification, gender classification, and
phone classification, that showed better performance com-
pared with conventional hand-crafted audio features. Thus,
CNNs are attracting increasing attention in speech recog-
nition studies. However, applications of CNNs has been
limited to audio signal processing; applications to lipreading
remains unaddressed.

2.3 Audio-visual integration mechanisms

Multimodal recognition can improve performance com-
pared with unimodal recognition by utilizing complemen-
tary sources of information [9, 15, 42]. Multimodal inte-
gration is commonly achieved by two different approaches.
First, in the feature fusion approach, feature vectors from
multiple modalities are concatenated and transformed to
acquire a multimodal feature vector. For example, Ngiam
et al. [37] utilized a DNN to extract fused representations
directly from multimodal signal inputs by compressing the
input dimensionality. Huang et al. [19] utilized a DBN for
audio-visual speech recognition tasks by combining mid-
level features learned by single modality DBNs. However,
these approaches have difficulty explicitly and adaptively
selecting the respective information gains depending on the
dynamic changes in the reliability of multimodal informa-
tion sources. Alternatively, in the decision fusion approach,
outputs of unimodal classifiers are merged to determine a
final classification. Unlike the previous method, decision
fusion techniques can improve robustness by incorporat-
ing stream reliabilities associated with multiple information
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sources as a criterion of information gain for a recogni-
tion model. For example, Gurban et al. [14] succeeded in
dynamic stream weight adaptation based on modality confi-
dence estimators in the MSHMM for their AVSR problem.
Placing emphasis on the simplicity and explicitness of the
decision fusion approach, we adopted the MSHMM as our
multimodal integration mechanism.

3 Deep neural networks

Efforts to apply neural network architectures as feature
extraction mechanisms have been attempted for decades
[30]. However, the following three factors have made a
major breakthrough in the application of DNNs to the
problems of image classification and speech recognition.
First, popularization of low-cost, high-performance com-
putational environments, i.e., high-end consumer personal
computers equipped with general-purpose graphics process-
ing units (GPGPUs), has allowed a wider range of users
to conduct brute force numerical computation with large
datasets [10]. Second, the availability of larger datasets
has enabled unsupervised learning mechanisms to self-
organize robust features that can outperform conventional
handcrafted features. Third, the development of powerful
machine learning techniques, e.g., improved optimization
algorithms, has enabled large-scale neural network mod-
els to be efficiently trained with large datasets, which
has made deep neural networks generating robust features
possible [17]. In this section, we introduce representative
deep learning algorithms that have contributed to the recent
development of deep learning studies.

3.1 Deep autoencoder

The deep autoencoder is a variant of a DNN commonly
utilized for dimensionality compression and feature extrac-
tion [18, 37]. DNNs are artificial neural network models
with multiple layers of hidden units between inputs and
outputs. An autoencoder is a variant of a multilayered
artificial neural network with a bottleneck-shaped struc-
ture (the number of nodes for the central hidden layer
becomes smaller than that for the input (encoder) and out-
put (decoder) layers), and the network is trained to model
the identity mappings between inputs and outputs. Regard-
ing dimensionality compression mechanisms, a simple and
commonly utilized approach is PCA. However, Hinton et al.
demonstrated that the deep autoencoder outperformed PCA
in image reconstruction and compressed feature acquisition
[18].

To train DNNs, Hinton et al. first proposed an unsu-
pervised learning algorithm to use greedy layer-wise unsu-
pervised pretraining followed by fine-tuning methods to

overcome the high prevalence of unsatisfactory local optima
in learning objectives of deep models [18]. Subsequently,
Martens proposed a novel approach by introducing a
second-order optimization method, Hessian-free optimiza-
tion, to train deep networks [33]. The proposed method
efficiently trained the models by a general optimizer without
pretraining. Placing emphasis on the theoretical clarity of
their algorithm, we adopted the learning method proposed
by Martens for optimizing our deep autoencoder.

3.2 Hessian-free optimization

The Hessian-free algorithm originates from Newton’s
method, a well-known numerical optimization technique. A
canonical second-order optimization scheme, such as New-
ton’s method, iteratively updates parameter θ ∈ R

N of an
objective function f by computing gradient vector p and
updates θ as θn+1 = θn + αpn with learning parameter α.
The core idea of Newton’s method is to locally approximate
f around each θ , up to the second order, by the following
quadratic equation:

Mθn(θ) ≡ f (θn) + ∇f (θn)
T pn + 1

2
pT

n Bθnpn, (1)

where Bθn is a damped Hessian matrix of f at θn. As H can
become indefinite, the Hessian matrix is re-conditioned to
be Bθn = H(θn) + λI , where λ ≥ 0 is a damping parameter
and I is the unit matrix.

Using the standard Newton’s method, Mθn(θ) is opti-
mized by computing N × N matrix Bθn and solving the
system Bθnpn = −∇f (θn)

T . However, this computation
is very expensive for a large N , which is a common case
even with modestly sized neural networks. To overcome
this, the variant of Hessian-free optimization developed by
Martens utilizes the linear conjugate gradient (CG) algo-
rithm to optimize quadratic objectives in combination with
a positive semidefinite Gauss-Newton curvature matrix,
instead of the possibly indefinite Hessian matrix. The name
“Hessian-free” indicates that the CG does not necessar-
ily require the costly, explicit Hessian matrix; instead, the
matrix-vector product between the Hessian matrix H or
Gauss-Newton matrix G and gradient vector p is sufficient
(for implementation details, see [33], [40], and [45]).

3.3 Convolutional neural network

A CNN is a variant of a DNN commonly utilized for
image classification problems [26–28]. CNNs integrate
three architectural ideas to ensure spatial invariance: local
receptive fields, shared weights, and spatial subsampling.
Accordingly, CNNs are advantageous compared with ordi-
nary fully connected feed-forward networks in the following
three ways.
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First, the local receptive fields in the convolutional layers
extract local visual features by connecting each unit only to
small local regions of an input image. Local receptive fields
can extract visual features such as oriented-edges, end-
points, and corners. Typically, pixels in close proximity are
highly correlated and distant pixels are weakly correlated.
Thus, the stack of convolutional layers is structurally advan-
tageous for recognizing images by effectively extracting and
combining the acquired features. Second, CNNs have an
advantage to some degree relative to spatial invariance with
respect to shift, scale, or local distortion of inputs by forc-
ing sharing of same weight configurations across the input
space. Units in a plane are forced to perform the same oper-
ation on different parts of the image. As CNNs are equipped
with several local receptive fields, multiple features are
extracted at each location. In principle, fully connected net-
works are also able to perform similar invariances. However,
learning such weight configurations requires a very large
number of training datasets to cover all possible variations.
Third, subsampling layers, which perform local averaging
and subsampling, are utilized to reduce the resolution of the
feature map and sensitivity of the output to input shifts and
distortions (for implementation details, see [27]).

In terms of computational scalability, shared weights
allow CNNs to possess fewer connections and parameters
compared with standard feed-forward neural networks with
similar-sized layers. Moreover, current improvements in
computational resource availability, especially with highly-
optimized implementations of two-dimensional convolution
algorithms processed with GPGPUs, has facilitated efficient
training of remarkably large CNNs with datasets containing
millions of images [22, 25].

4 The dataset

A Japanese audiovisual dataset [23, 51] was used for the
evaluation of the proposed models. In the dataset, speech
data from six males (400 words: 216 phonetically-balanced
words and 184 important words from the ATR speech
database [23]) were used. In total, 24000 word recordings
were prepared (one set of words per speaker; approxi-
mately 1 h of speech in total). The audio-visual synchronous
recording environment is shown in Fig. 1. Audio data was
recorded with a 16 kHz sampling rate, 16-bit depth, and
a single channel. To train the acoustic model utilized for
the assignment of phoneme labels to image sequences, we
extracted 39 dimensions of audio features, composed of
13 MFCCs and their first and second temporal derivatives.
To synchronize the acquired features between audio and
video, MFCCs were sampled at 100 Hz. Visual data was
a full-frontal 640 × 480 pixel 8-bit monochrome facial
view recorded at 100 Hz. For visual model training and

PC 

Camera 
Light 

Microphone 

Fig. 1 Audio-visual synchronous data recording environment

evaluation, we prepared a trimmed dataset composed of
multiple image resolutions by manually cropping 128×128
pixels of the mouth area from the original data and resizing
the cropped data to 64 × 64, 32 × 32, and 16 × 16 pixels.

5 Model

A schematic diagram of the proposed AVSR system is
shown in Fig. 2. The proposed architecture consists of two
feature extractors to process audio signals synchronized
with lip region image sequences. For audio feature extrac-
tion, a deep denoising autoencoder [48, 49] is utilized to
filter out the effect of background noise from deteriorated
audio features. For visual feature extraction, a CNN is uti-
lized to recognize phoneme labels from lip image inputs.
Finally, a multi-stream HMM recognizes isolated words by
binding acquired multimodal feature sequences.

5.1 Audio feature extraction by deep denoising autoencoder

For the audio feature extraction, we utilized a deep denois-
ing autoencoder [48, 49]. Eleven consecutive frames of
audio features are used as the short-time spectral repre-
sentation of speech signal inputs. To generate audio input
feature sequences, partially deteriorated sound data are arti-
ficially generated by superimposing several strengths of
Gaussian noises to original sound signals. In addition to the
original clean sound data, we prepared six different dete-
riorated sound data; the signal-to-noise-ratio (SNR) was
from 30 to −20 dB at 10 dB intervals. Utilizing sound fea-
ture extraction tools, the following types of sound features
are generated from eight variations of original clean and
deteriorated sound signals. HCopy command of the hid-
den Markov model toolkit (HTK) [52] is utilized to extract
39 dimensions of MFCCs. Auditory Toolbox [46] is uti-
lized to extract 40 dimensions of log mel-scale fiterbank
(LMFB). Finally, the deep denoising autoencoder is trained
to reconstruct clean audio features from deteriorated fea-
tures by preparing the deteriorated dataset as input and the
corresponding clean dataset as the target of the network.
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Fig. 2 Architecture of the proposed AVSR system. The proposed sys-
tem is composed of two deep learning architectures, a deep denoising
autoencoder and CNN for the audio and visual feature extraction,
respectively. The deep denoising autoencoder is trained to predict
clean audio features from deteriorated ones to filter out the effect

of noise from the input. The CNN is trained to predict phoneme
labels from the mouth area image inputs to generate the visual fea-
ture sequences from the lip motion of speakers. Finally, an MSHMM
is utilized for the isolated word recognition by integrating the acquired
audio and visual features

Among a 400-word dataset, sound signals from 360 training
words (2.76×105 samples) and the remaining 40 test words
(2.91×104 samples) from six speakers are used to train and
evaluate the network, respectively.

The denoised audio features are generated by record-
ing the neuronal outputs of the deep autoencoder when 11
frames of audio features are provided as input. To compare
the denoising performance relative to the construction of the
network, several different network architectures are com-
pared. Table 1 summarizes the number of input and output
dimensions, as well as layer-wise dimensions of the deep
autoencoder.

In the initial experiment, we compared three differ-
ent methods to acquire denoised features with respect to
MFCCs and LMFB audio features. The first generated 11
frames of output audio features and utilized the middle
frame (SequenceOut). The second acquired audio feature
from the activation pattern of the central middle layer of

Table 1 Settings for audio feature extraction

IN∗ OUT∗ LAYERS∗

429 429 300-150-80-40-80-150-300 (a)

429 39 300-150-80 (b)

429 429 300-300-300-300-300-300-300 (c)

429 429 300-300-300-300-300 (d)

429 429 300-300-300 (e)

429 429 300 (f)

*IN, OUT, and LAYERS give the number of input and output dimen-
sions, and layer-wise dimensions of the network, respectively

the network (BottleNeck). For these two experiments, a
bottleneck-shaped network was utilized (Table 1 (a)). The
last generated a single frame of an output audio feature that
corresponds to the middle frame of the inputs (SingleFrame-
Out). For this experiment, a triangle-shaped network was
utilized (Table 1 (b)).

In the second experiment, we compared the performance
relative to the number of hidden layers of the network uti-
lizing an MFCCs audio feature. In this experiment, we
prepared four straight-shaped networks with different num-
bers of layers (i.e., one to seven layers) at intervals of two
(Table 1 (c)–(f)). Outputs were acquired by generating 11
frames of output audio features and utilizing the middle
frame. Regarding the activation functions of the neurons,
a linear function and logistic nonlinearity are utilized for
the central middle layer of the bottleneck-shaped network
and the remaining network layers, respectively. Parameters
for the network structures are empirically determined with
reference to previous studies [18, 21].

The deep autoencoder is optimized to minimize the
objective function E defined by the sum of L2-norm
between the output of the network and target vector across
training dataset D under the model parameterized by θ ,
represented as

E(D, θ) =
√
√
√
√

|D|
∑

i=1

(x̂(i) − x(i))2, (2)

where x̂(i) and x(i) are the output of the network and
corresponding target vector from the i-th data sample,
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respectively. To optimize the deep autoencoder, we adopted
the Hessian-free optimization algorithm proposed by
Martens [33]. In our experiment, the entire dataset was
divided into 12 chunks with approximately 85000 samples
per batch. We utilized 2.0 × 10−5 for the L2 regularization
factor on the connection weights. For the connection weight
parameter initialization, we adopted the sparse random ini-
tialization scheme to limit the number of non-zero incoming
connection weights to each unit to 15. Bias parameters were
initialized at 0. To process the substantial amount of linear
algebra computation involved in this optimization algo-
rithm, we developed a software library using the NVIDIA
CUDA Basic Linear Algebra Subprograms [38]. The opti-
mization computation was conducted on a consumer-class
personal computer with an Intel Core i7-3930K processor
(3.2 GHz, 6 cores), 32 GB RAM, and a single NVIDIA
GeForce GTX Titan graphics processing unit with 6 GB
on-board graphics memory.

5.2 Visual feature extraction by CNN

For visual feature extraction, a CNN is trained to predict
phoneme label posterior probabilities corresponding to the
mouth area input images. Mouth area images of 360 train-
ing words from six speakers were used to train and evaluate
the network. To assign phoneme labels to every frame of
the mouth area image sequences, we trained a monophone
HMM with MFCCs utilizing the HTK and assigned 40
phoneme labels, including Japanese 39 phonemes (Table 2)
and short pause /sp/, to the visual feature sequence by con-
ducting a forced alignment by using the HVite command in
the HTK.

To enhance shift- and rotation-invariance, artificially
modulated images created by randomly shifting and rotat-
ing the original images are added to the original dataset. In
addition, images labeled as short pause /sp/ are eliminated,
with the exception of the five adjacent frames before and
after the speech segments. The image dataset (3.05 × 105

samples) were shuffled and 5/6 of the data were used for
training; the remainder was used evaluation of a phoneme

Table 2 39 types of Japanese phonemes

Category Phoneme labels

Vowels
/a/ /i/ /u/ /e/ /o/

/a:/ /i:/ /u:/ /e:/ /o:/

Consonants

/b/ /d/ /g/ /h/ /k/ /m/ /n/

/p/ /r/ /s/ /t/ /w/ /y/ /z/ /ts/

/sh/ /by/ /ch/ /f/ /gy/ /hy/ /j/

/ky/ /my/ /ny/ /py/ /ry/

Others /N/ /q/

recognition experiment. From our preliminary experiment,
we confirmed that phoneme recognition precision degrades
if images from all six speakers are modeled with a single
CNN. Therefore, we prepared an independent CNN for each
speaker.1 The visual features for the isolated word recog-
nition experiment are generated by recording the neuronal
outputs (phoneme label posterior probability distribution)
from the last layer of the CNN when mouth area image
sequences corresponding to 216 training words were pro-
vided as inputs to the CNN.

A seven-layered CNN is used in reference to the work
by Krizhevsky et al. [22]. Table 3 summarizes construction
of the network containing four weighted layers: three con-
volutional (C1, C3, and C5) and one fully connected (F7).
The first convolutional layer (C1) filters the input image
with 32 kernels of 5 × 5 pixels with a stride of one pixel.
The second and third convolutional layers (C3 and C5) take
the response-normalized and pooled output of the previous
convolutional layers (P2 and P4) as inputs and filter them
with 32 and 64 filters of 5×5 pixels, respectively. The fully
connected layer (F7) takes the pooled output of the previ-
ous convolutional layer (P6) as input and outputs a 40-way
soft-max, regarded as a posterior probability distribution
over the 40 classes of phoneme labels. A max-pooling layer
follows the first convolution layer. Average-pooling layers
follow the second and third convolutional layers. Response-
normalization layers follow the first and second pooling
layers. Rectified linear unit nonlinearity is applied to the
outputs of the max-pooling layer as well as the second and
third convolutional layers. Parameters for the network struc-
tures are empirically determined in reference to previous
studies [22, 27].

The CNN is optimized to maximize the multinomial
logistic regression objective of the correct label. This is
equivalent to maximizing the likelihood L defined by the
sum of log-probability of the correct label across training
dataset D under the model parameterized by θ , represented
as

L(D, θ) =
|D|
∑

i=1

log(P (Y = y(i)|x(i), θ)), (3)

where y(i) and x(i) are the class label and input pattern
corresponding to the i-th data sample, respectively. The pre-
diction distribution is defined with the softmax function as

P(Y = i|x, θ) = exp(hi)

�C
j=1 exp(hj )

, (4)

1We think this degradation is mainly due to the limited variations of
lip region images that we prepared to train the CNN. To generalize
the higher-level visual features that enable a CNN to attain speaker
invariant phoneme recognition, we believe that more image samples
from different speakers are needed.
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Table 3 Construction of convolutional neural network

IN∗ OUT∗ LAYERS∗

256/1024/4096 40 C1-P2-C3-P4-C5-P6-F7∗∗

*IN, OUT, and LAYERS give the input dimensions, output dimen-
sions, and network construction, respectively
**C, P, and F denote the convolutional, local-pooling, and fully con-
nected layer, respectively. The numbers after the layer types represent
layer indices

where hi and C are the total input to output unit i and
number of classes, respectively. The CNN is trained using a
stochastic gradient descent method [22]. The update rule for
the connection weight w is defined as

vi+1 = αvi − γ εwi − ε

〈
∂L
∂w

|wi

〉

Di

(5)

wi+1 = wi + vi+1 (6)

where i is the learning iteration index, vi is the update vari-
able, α is the factor of momentum, ε is the learning rate, γ

is the factor of weight decay, and
〈
∂L
∂w

|wi

〉

Di

is the average

over the i-th batch data Di of the derivative of the objec-
tive with respective tow, evaluated atwi . In our experiment,
the mini batches are one-sixth of the entire dataset for each
speaker (approximately 8500 samples per batch). We uti-
lized α = 0.9, ε = 0.001, and γ = 0.004 in our leaning
experiment. The weight parameters were initialized with
a zero-mean Gaussian distribution with standard deviation
0.01. The neuron biases in all layers were initialized at 0. We
used open source software (cuda-convnet) [22] for practical
implementation of the CNN. The software was processed
on the same computational hardware as the audio feature
extraction experiment.

5.3 Audio-visual integration by MSHMM

In our study, we adopt a simple MSHMM with manu-
ally selected stream weights for the multimodal integration
mechanism. We utilize the HTK for the practical MSHMM
implementation. The HTK can model output probability dis-
tributions composed of multiple streams of GMMs [52].
Each observation vector at time t is modeled by splitting it
into S independent data streams ost . The output probabil-
ity distributions of state j is represented with multiple data
streams as

bj (ot ) =
S

∏

s=1

[
Ms∑

m=1

cjsmN (ost ; μjsm, �jsm)

]γs

, (7)

where ot is a speech vector generated from the probability
density bj (ot ), Ms is the number of mixture components
in stream s, cjsm is the weight of the m’th component,
N (·; μ, �) is a multivariate Gaussian with mean vector μ

and covariance matrix �, and the exponent γs is a stream
weight for stream s.

Definitions of MSHMM are generated by combining
multiple HMMs independently trained with corresponding
audio and visual inputs. In our experiment, we utilize 16
mixture components for both audio and visual output prob-
ability distribution models. When combining two HMMs,
GMM parameters from audio and visual HMMs are utilized
to represent stream-wise output probability distributions.
Model parameters from only the audio HMM are utilized to
represent the common state transition probability distribu-
tion. Audio stream weights γa are manually prepared from
0 to 1.0 at 0.1 intervals. Accordingly, visual stream weights
γv are prepared to satisfy γv = 1.0 − γa . In evaluating
the acquired MSHMM, the best recognition rate is selected
from the multiple evaluation results corresponding to all
stream weight pairs.

6 Results

6.1 ASR performance evaluation

The acquired audio features are evaluated by conducting
an isolated word recognition experiment utilizing a single-
stream HMM. To recognize words from the audio features
acquired by the deep denoising autoencoder, monophone
HMMs with 8, 16, and 32 GMM components are utilized.
While training is conducted with 360 train words, evalua-
tion is conducted with 40 test words from the same speaker,
yielding a closed-speaker and open-vocabulary evaluation.
To enable comparison with the baseline performance, word
recognition rates utilizing the original audio features are
also prepared. To evaluate the robustness of our proposed
mechanism against the degradation of audio input, partially
deteriorated sound data were artificially generated by super-
imposing several strengths of Gaussian noises to original
sound signals. In addition to the original clean sound data,
we prepared 11 different deteriorated sound data such that
the SNR was 30 dB to −20 dB at 5 dB intervals.

Figure 3 shows word recognition rates from the differ-
ent word recognition models for MFCCs and LMFB audio
features evaluated with 12 different SNRs for sound inputs.
These results demonstrate that MFCCs generally outper-
forms LMFB. The sound feature acquired by integrating
consecutive multiple frames with a deep denoising autoen-
coder has an effect on higher noise robustness compared
with the original input. By comparing the audio features
acquired from the different network architectures, it was
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Fig. 3 Word recognition rate evaluation results utilizing audio fea-
tures depending on the number of Gaussian mixture components for
the output probability distribution models of HMM. Changes of word

recognition rates depending on the types of audio features (MFCCs
for (a) to (c) and LMFB for (d) to (f)), the types of feature extraction
mechanism, and changes of the SNR of audio inputs are shown

observed that “SingleFrameOut” obtains the highest recog-
nition rates for the higher SNR range, whereas “Sequence-
Out” outperforms for the lower SNR range. While “Bottle-
Neck” performs slightly better than the original input for the
middle SNR range, the advantage is scarce. Overall, approx-
imately a 65 % word recognition gain was attained with
denoised MFCCs under 10 dB SNR. Although there is a
slight recognition performance difference depending on the
increase of the number of Gaussian mixture components,
the effect is not significant.

Figure 4 shows word recognition rates for the dif-
ferent number of hidden layers of the deep denoising
autoencoder utilizing MFCCs audio features evaluated with
12 different SNRs for sound inputs. The deep denois-
ing autoencoder with five hidden layers obtained the best
noise robust word recognition performance among all SNR
ranges.

6.2 Visual-based phoneme recognition performance
evaluation

After training the CNN, phoneme recognition performance
is evaluated by recording neuronal outputs from the last
layer of the CNN when the mouth area image sequences
corresponding to the test image data are provided to the

CNN. Table 4 shows that the average phoneme recognition
performance for the 40 phonemes, normalized with the
number of samples for each phoneme over six speakers,
attained approximately 48 % when 64× 64 pixels of mouth
area images are utilized as input.

Figure 5 shows the mean and standard deviation of the
phoneme-wise recognition rate from six different speakers
for four different input image resolutions.

This result generally demonstrates that visual phoneme
recognition works better for recognizing vowels than con-
sonants. The result derives from the fact that the mean
recognition rate for all vowels is 30–90 %, whereas for
all other phonemes it is 0–60 %. This may be attributed
to the fact that generation of vowels is strongly correlated

Table 4 Speaker-wise visual-based phoneme recognition rates and
averaged values [%] depending on the input image sizes

Img. size p1 p2 p3 p4 p5 p6 Avr.

16 × 16 42.13 43.40 39.92 39.03 47.67 46.73 43.15

32 × 32 43.77 47.07 42.77 41.05 49.74 50.83 45.87

64 × 64 45.93 50.06 46.51 43.57 49.95 51.44 47.91

*p1–p6 correspond to the six speakers
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Fig. 4 Word recognition rate evaluation results utilizing MFCCs
depending on the number of Gaussian mixture components for the
output probability distribution models of HMM. Changes of word

recognition rates depending on the number of hidden layers of DNN
and changes of the SNR of audio inputs are shown

with visual cues represented by lips or jaw movements
[4, 50].

Figure 6 shows the confusion matrix of the phoneme
recognition evaluation results. It should be noted that, in
most cases, wrongly recognized consonants are classified
as vowels. This indicates that articulation of consonants
is attributed to not only the motion of the lips but also
the dynamic interaction of interior oral structures such as
tongue, teeth, oral cavity, which are not evident in frontal
facial images.

Visually explicit phonemes, such as bilabial consonants
(/m/, /p/, or /b/), are expected to be relatively well dis-
criminated by a VSR system. However, the recognition
performance was not as high as expected. To improve the
recognition rate, the procedure to obtain phoneme target
labels for the CNN training should be improved. In gen-
eral pronunciation, consonant sounds are shorter than vowel
sounds; therefore, the labeling for consonants is more time
critical than vowels. In addition, the accuracy of consonant
labels directly affects recognition performance because the

number of training samples for consonants is much smaller
than for vowels.

6.3 Visual feature space analysis

To analyze how the acquired visual feature space is self-
organized, the trained CNN is used to generate phoneme
posterior probability sequences from test image sequences.
Forty dimensions of the resulting sequences are processed
by PCA, and the first three principal components are
extracted to visualize the acquired feature space. Figure 7
shows the visual feature space corresponding to the five rep-
resentative Japanese vowel phonemes, /a/, /i/, /u/, /e/, and
/o/, generated from 64× 64 pixels image inputs. The cumu-
lative contribution ratio with 40 selected components was
31.1 %.

As demonstrated in the graph, raw mouth area images
corresponding to the five vowel phonemes are discriminated
by the CNN and clusters corresponding to the phonemes
are self-organized in the visual feature space. This result
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Fig. 5 Phoneme-wise visual-based phoneme recognition rates, the
mean and the standard deviations from six speakers’ results are shown.
Four different shapes of the plots correspond to the recognition results

when four different visual features, acquired by the CNN from four
different image resolutions for the mouth area image inputs, are
utilized
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Fig. 6 Visual-based
phoneme-recognition confusion
matrix; mean values from six
speakers’ results (64 × 64 pixels
image input)
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indicates that the acquired phoneme posterior probability
sequences can be utilized as visual feature sequences for
isolated word recognition tasks.

6.4 VSR performance evaluation

The acquired visual features are evaluated by conducting
an isolated word recognition experiment utilizing a single-
stream HMM. To recognize words from the phoneme label
sequences generated by the CNN trained with 360 training
words, monophone HMMs with 1, 2, 4, 8, 16, 32, and 64
Gaussian components are utilized. While training is con-
ducted with 360 train words, evaluation is conducted with
40 test words from the same speaker, yielding a closed-
speaker and open-vocabulary evaluation. To compare with
the baseline performance, word recognition rates utilizing
two other visual features are also prepared. One feature has
36 dimensions, generated by simply rescaling the images
to 6 × 6 pixels, and the other feature has 40 dimensions,
generated by compressing the raw images by PCA.

Figure 8 shows the word recognition rates acquired
from 35 different models with a combination of five types
of visual features and seven different numbers of Gaus-
sian mixture components for GMMs. Comparison of word
recognition rates from different visual features within the
same number of Gaussian components shows that visual
features acquired by the CNN attain higher recognition rates
than the other two visual features. However, the effect of the
different input image resolutions is not prominent. Among

all word recognition rates, visual features acquired by the
CNNwith 16×16 and 64×64 input image resolutions attain
a rate of approximately 22.5 %, the highest word recognition
rate, when a mixture of 32 Gaussian components is used.
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Fig. 7 Visual feature distribution for the five representative Japanese
vowel phonemes (64 × 64 pixels image input)
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Fig. 8 Word recognition rates using image features. Evaluation results
from 40 test words over six speakers depending on the different mix-
ture of Gaussian components for the HMM are shown. Six visual
features, including two image-based features, one generated by sim-
ply resampling the mouth area image into 6 × 6 pixels image and the

other generated by compressing the dimensionality of the image into
40 dimensions by PCA, and four visual features acquired by predict-
ing the phoneme label sequences from four different resolutions of the
mouth area images utilizing the CNN, are employed in this evaluation
experiment

6.5 AVSR performance evaluation

We evaluated the advantages of sensory features acquired
by the DNNs and noise robustness of the AVSR by con-
ducting an isolated word recognition task. Training data
for the MSHMM are composed of image and sound fea-
tures generated from 360 training words of six speakers.
For sound features, we utilized the neuronal outputs of
the straight-shaped deep denoising autoencoder with five
hidden layers (Table 1 (d)) when clean MFCCs are pro-
vided as inputs. For visual features, we utilized the output
phoneme label sequences generated from 32 × 32 pixels
mouth area image inputs by the CNN. Evaluation data for
the MSHMM are composed of image and sound features
generated from the 40 test words. Thus, closed-speaker and
open-vocabulary evaluation was conducted. To evaluate the
robustness of our proposed mechanism against the degrada-
tion of audio input, partially deteriorated sound data were
artificially generated by superimposing several strengths of
Gaussian noises to original sound signals. In addition to the
original clean sound data, we prepared 11 different deterio-
rated sound data such that the SNR was 30 dB to −20 dB at
5 dB intervals. In our evaluation experiment, we compared
the performance under four different conditions. The initial
two models were the unimodal models that utilize single-
frame MFCCs and the denoised MFCCs acquired by the
straight-shaped deep denoising autoencoder with five hid-
den layers. These are identical to the models “Original” and
“5 layers” presented in Figs. 3 and 4, respectively. The third
model was the unimodal model that utilized visual features
acquired by the CNN. The fourth model was the multimodal

model that binds the acquired audio and visual features by
the MSHMM.

Figure 9 shows word recognition rates from the four dif-
ferent word recognition models under 12 different SNRs
for sound inputs. These results demonstrate that when two
modalities are combined to represent the acoustic model,
the word recognition rates are improved, particularly for
lower SNRs. At minimum, the same or a better perfor-
mance was attained compared with cases when both fea-
tures are independently utilized. For example, the MSHMM
attained an additional 10 % word recognition rate gain
under 0 dB SNR for the audio signal input compared with
the case when single-stream HMM and denoised MFCCs
are utilized as the recognition mechanism and input fea-
tures, respectively. Although there is a slight recognition
performance difference depending on the increase of the
number of Gaussian mixture components, the effect is not
significant.

7 Discussion and future work

7.1 Current need for the speaker dependent visual feature
extraction model

In our study, we demonstrated an isolated word recognition
performance from visual sequence inputs by the integra-
tion of CNN and HMM. We showed that the CNN works
as a phoneme recognition mechanism with mouth region
image inputs. However, our current results are attained
by preparing an independent CNN corresponding to each
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Fig. 9 Word recognition rate evaluation results utilizing dedicated
features and multimodal features depending on the number of Gaus-
sian mixture components for the output probability distribution models
of HMM. Top: changes of word recognition rates depending on the
types of utilized features and changes of the SNR of audio inputs.
“MFCC,” “DNN Audio,” “CNN Visual,” and “Multi-stream” denote

the original MFCCs feature, audio feature extracted by the deep
denoising autoencoder, visual feature extracted by the CNN, and
MSHMM composed of “DNN Audio” and “CNN Visual” features,
respectively. Bottom: audio stream weights that give the best word
recognition rates for the MSHMM depending on changes of the audio
inputs SNR

speaker. As generally discussed in previous deep learning
studies [22, 25], the number and variation of training sam-
ples are critical for maximizing the generalization ability of
a DNN. A DNN (CNN) framework is scalable; however,
it requires a sufficient training dataset to reduce overfitting
[22]. Therefore, in future work, we need to investigate the
possibility of realizing a VSR system applicable to multiple
speakers with a single CNN model by training and evaluat-
ing our current mechanism with a more diverse audio-visual
speech dataset that has large variations, particularly for
mouth region images.

7.2 Adaptive stream weight selection

Our AVSR system utilizing MSHMM achieved satisfactory
speech recognition performance, despite its quite simple
mechanism, especially for audio signal inputs with lower
reliability. The transition of the stream weight in accordance
with changes of the SNR for the audio input (Fig. 9) clearly
demonstrates that the MSHMM can prevent the degrada-
tion of recognition precision by shifting the observation
information source from audio input to visual input, even if
the quality of the audio input degrades. However, to apply
our AVSR approach to real-world applications, automatic
and adaptive selection of the stream weight in relation to
changes in audio input reliability becomes an important
issue to be addressed.

7.3 Relations of our AVSR approach with DNN-HMM
models

As an experimental study for an AVSR task, we adopted
a rather simple tandem approach, a connectionist-HMM
[16]. Specifically, we applied heterogeneous deep learning
architectures to extract the dedicated sensory features from
audio and visual inputs and combined the results with an
MSHMM. We acknowledge that a DNN-HMM is known to
be advantageous for directly estimating the state posterior
probabilities of an HMM from raw sensory feature inputs
over conventional GMM-HMM owing to the powerful non-
linear projection capability of DNN models [17]. In future,
it might be interesting to formulate an AVSR model based
on the integration of DNN-HMM and MSHMM. This novel
approach may succeed because of the recognition capabil-
ity of DNNs and simplicity and explicitness of the proposed
decision fusion approach.

8 Conclusion

In this study, we proposed an AVSR system based on deep
learning architectures for audio and visual feature extrac-
tion and an MSHMM for multimodal feature integration
and isolated word recognition. Our experimental results
demonstrated that, compared with the original MFCCs,



Audio-visual speech recognition using deep learning 735

the deep denoising autoencoder can effectively filter out
the effect of noise superimposed on original clean audio
inputs and that acquired denoised audio features attain sig-
nificant noise robustness in an isolated word recognition
task. Furthermore, our visual feature extraction mechanism
based on the CNN effectively predicted the phoneme label
sequence from the mouth area image sequence, and the
acquired visual features attained significant performance
improvement in the isolated word recognition task rela-
tive to conventional image-based visual features, such as
PCA. Finally, an MSHMM was utilized for an AVSR task
by integrating the acquired audio and visual features. Our
experimental results demonstrated that, even with the sim-
ple but intuitive multimodal integration mechanism, it is
possible to attain reliable AVSR performance by adaptively
switching the information source from audio feature inputs
to visual feature inputs depending on the changes in the
reliability of the different signal inputs. Although automatic
selection of stream weight was not attained, our experi-
mental results demonstrated the advantage of utilizing an
MSHMM as an AVSR mechanism. The next major tar-
get of our work is to examine the possibility of applying
our current approach to develop practical, real-world appli-
cations. Specifically, future work will include a study to
evaluate how the VSR approach utilizing translation, rota-
tion, or scaling invariant visual features acquired by the
CNN contributes to robust speech recognition performance
in a real-world environment, where dynamic changes such
as reverberation, illumination, and facial orientation, occur.
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