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Abstract We investigate the quantisation in the Heisenberg
representation of a model which represents a simplification
of the Hopfield model for dielectric media, where the elec-
tromagnetic field is replaced by a scalar field φ and the role
of the polarisation field is played by a further scalar field
ψ . The model, which is quadratic in the fields, is still char-
acterised by a non-trivial physical content, as the physical
particles correspond to the polaritons of the standard Hop-
field model of condensed matter physics. Causality is also
taken into account and a discussion of the standard interac-
tion representation is also considered.

1 Introduction

In recent years, the investigations on possible revelations
of the Hawking effect in analogues realised in dielectric
media, [1–9], have raised the necessity of disposing of a
model describing the quantum electromagnetic field inter-
acting with a dispersive medium, reproducing the typical
phenomenological dispersion relations.

We recall that in the Hopfield model, a purely phenomeno-
logical quantisation of the electromagnetic field in the dielec-
tric medium is replaced by a picture where the electromag-
netic field interacts with a set of oscillators reproducing
sources for dispersive properties of the electromagnetic field
in matter [10–13]. We stress that we do not take into account
absorption in our paper, which is reasonable as far as the phe-
nomena one is interested in are not too close to the absorption
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region. Including absorption would imply a much more tricky
approach (cf. e.g. [14–16]), which is far beyond the scope of
the present paper.

Our model satisfies the requirement to be fully relativistic
covariant. This is in agreement with the necessity to proper
simulate electrodynamics of moving media [17–24], where
phenomenological electrodynamics is adopted. Also in our
case, in order to get a complete analysis, one needs to change
the inertial frame passing, for example, from the frame where
the medium is at rest, to the frame where a given signal
is at rest, or to the lab frame if it does not coincide with
one of them. With this in mind, a set of models taking into
account the dispersion relations have been developed, based
on a covariant reformulation of the Hopfield model [25–28].
In particular, in [25] the Hopfield model has been presented
in a simplified version, where, in a two dimensional model,
the electromagnetic field has been replaced by a massless
scalar field, linearly coupled to a polarisation field, repre-
sented by a field of oscillators with characteristic pulsation
ω0. This had the aim of simplifying several technical com-
plications, but keeping the main relevant characteristics, as
Lorentz covariance and the right dispersion relation. In the
latter reference, we were interested in the Hawking effect and
we did not focus on a systematic quantisation of the model.
A perturbative quantisation in a given gauge and in the lab
frame of the whole homogeneous and isotropic relativistic
Hopfield model has been presented in [27], and a Lorentz
and gauge covariant perturbative quantisation has been pro-
vided in [28]. However, this model can be quantised exactly,
the exact quantisation is involved with some significant phys-
ical characteristics of the given system, and in particular in
its spectral properties, so quantizing non-perturbatively in
the Heisenberg representation of quantum field theory is far
more than a simple and straightforward exercise. The exact
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quantisation of the relativistic Hopfield model will be pre-
sented elsewhere [29]: its construction is quite involved and
passes through several technical intricacies, which go beyond
the ones characterising the present model.

Since the main steps characteristic of the model are present
also in the scalar simplified analogue, without the intrica-
cies due to gauge invariance and the presence of unphys-
ical modes, we will present here the exact quantisation of
the scalar Hopfield model, which we dub the � − � model.
Since our aim is to illustrate here the strategy of [29] with-
out hiding it behind technical details, we will mainly present
the results without proves, illustrating the main steps at an
intuitive level, by mean of precise statements, which will be
fully proved, in a more general form, in [29] and [30].

In Sect. 2 we present the model and its quantisation, by
showing how the Fock representation for the whole interact-
ing model can be realised. In Sect. 3 we show how the prob-
lem of causality is related to Lorentz covariance and show
how it can be realised in our model, which is only covariant
and not invariant under Lorentz transformations. In Sect. 4
we compute the propagator both directly from the Fock rep-
resentation and with the path integral method, and state their
equivalence. In Sect. 5 we discuss the interaction represen-
tation and the Fano diagonalisation method. In Sect. 6 we
present some further discussion. All statements are simple
consequences of the ones proved in [29] and [30].

2 The � − � model and its quantisation

We consider the D + 1 dimensional � − � model whose
classical dynamics is defined by the action

S[φ,ψ] =
∫

dD+1x

[
1

2
∂μφ∂μφ + 1

2
vμ∂μψvν∂νψ

−ω2
0

2
ψ2 − gφvμ∂μψ

]

=
∫

dD+1x Lc, (1)

where vvv is the spacetime velocity of the rest frame for the ψ

field. The conjugate momenta are

πφ = ∂tφ, (2)

πψ = v0vμ∂μψ − gv0φ, (3)

so that the Hamiltonian is

H =
∫
RD

dDx

[
π2

φ

2
+ π2

ψ

2v2
0

+ πψ

v0

(
gφ − v

v0 · ∇ψ
)

+1

2
∇φ · ∇φ + g2

2
φ2 + ω2

0

2
ψ2

]
. (4)

The classical equations of motion in the Fourier space are

MMMV ≡
(−k2 −igω
igω −ω2 + ω2

0

)(
φ̃

ψ̃

)
=
(

0
0

)
, (5)

where ω := kμvμ. The dispersion relation is given by
det M = 0, that is

DR(kkk) := k2 − g2ω2

ω2 − ω2
0

= 0. (6)

This defines the support of the solutions in the momentum
space, with two positive branches, corresponding to the two
solutions having positive ω, which we will indicate with k0

(a),
a = 1, 2. Everywhere the suffix (a) will mean “evaluated at
k0 = k0

(a)(k)”. We will also use the symbol k for the spatial
component of a spacetime vectorkkk, and similar for all vectors,
whereas k2 := kkk · kkk.

The classical solutions of the equations of motion are

φ(xxx) =
2∑

a=1

∫
RD

dμ(k)
[
a(a)(k)e−ikkk(a)·xxx+a†

(a)(k)eikkk(a)·xxx
]
,

(7)

πφ(xxx) =
2∑

a=1

∫
RD

dμ(k)(−ik0
(a))

[
a(a)(k)e−ikkk(a)·xxx

−a†
(a)(k)eikkk(a)·xxx

]
, (8)

ψ(xxx) =
2∑

a=1

∫
RD

dμ(k)
igω(a)

ω2
(a) − ω2

0

[
a(a)(k)e−ikkk(a)·xxx

−a†
(a)(k)eikkk(a)·xxx

]
, (9)

πψ(xxx) =
2∑

a=1

∫
RD

dμ(k)
gv0ω2

0

ω2
(a) − ω2

0

[
a(a)(k)e−ikkk(a)·xxx

+a†
(a)(k)eikkk(a)·xxx

]
, (10)

where

dμ(k) := dDk
(2π)D

1

DR′
(a)

(11)

and

DR′
(a)(k) := dDR

dk0 (kkk(a)) = 2k0
(a) + 2

g2ω2
0ω(a)v

0

(ω2
(a) − ω2

0)
2
. (12)

The set of such functions

� =

⎛
⎜⎜⎝

φ

ψ

πφ

πψ

⎞
⎟⎟⎠ (13)

is endowed with the conserved scalar product

(�1|�2) = i
∫
RD

dDx�∗
1 (xxx)	�2(xxx), (14)
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with

	 =
(

O2 I2

−I2 O2

)
. (15)

A basis of positive norm plane waves is

ζ(a)(k; xxx) = e−ikkk(a)·xxx

⎛
⎜⎜⎜⎜⎝

1
ig

ω(a)

	2
(a)

−ω2
0

−ik0
(a)

gv0 ω2
0

ω2
(a)

−ω2
0

⎞
⎟⎟⎟⎟⎠ . (16)

Notice that

(ζ(a)(k)|ζ(b)(q)) = δabδ
D(k − q)(2π)DDR′

(a)(k), (17)

which gives

a(a)(k) = (ζ(a)(k)|�) (18)

and then

[a(a)(k), a†
(b)(q)] = (ζ(a)(k)|ζ(b)(q))

= δabδ
D(k − q)(2π)DDR′

(a)(k), (19)

and all other commutators vanish. This result has been
obtained by imposing the requirement that the quantum
fields satisfy the equal time canonical commutation relations,
which, as a consequence, are satisfied. This way, one can pro-
ceed in the usual way in constructing the Fock space, starting
from the vacuum state 	, the unique normalised state that is
annihilated by all a(a)(k), we can realise the Fock space as
the completion of the set of states generated by all polyno-
mial actions of the creator fields a†

(a)(k). This is standard
and free of particular difficulties, apart from the fact that the
vacuum state is unique only after fixing a choice of vvv, since
the theory is not invariant under the whole Poincaré group,
but only under the subgroup leaving vvv invariant.

Here, we simply notice that the fact that the CCR are sat-
isfied, together with Lorentz covariance, allows one to prove
that the principle of causality is satisfied. Since the explicit
presence of vvv breaks the Lorentz invariance, the question of
the covariance is a little bit delicate and requires a careful
analysis.

3 Causality and covariance

The algebra of quantum fields is generated by the canonical
commutation relations (CCR):

[φ(t, x), πφ(t, y)] = iδD(x − y),

[ψ(t, x), πψ(t, y)] = iδD(x − y),

where we indicated only the non-zero contributions. Causal-
ity conditions are apparently a little bit stronger:

[φ(xxx), φ(yyy)] = [φ(xxx), ψ(yyy)] = [φ(xxx), πψ(yyy)]
= [ψ(xxx), ψ(yyy)] = 0,

[ψ(xxx), πφ(yyy)] = [πφ(xxx), πφ(yyy)] = [πφ(xxx), πψ(yyy)]
= [πψ(xxx), πψ(yyy)] = 0, (20)

[φ(xxx), πφ(yyy)] = [ψ(xxx), πψ(yyy)] = 0,

for any pair of points xxx, yyy spatially separated, (xxx − yyy)2 < 0.
If the theory is Lorentz invariant, then (20) follow from
the CCRs, since we can change frame into the one where
x0 = y0 = t and then employ the CCRs in order to prove
their vanishing. Our model Lagrangian is associated with
equations of motion which are covariant with respect to the
Lorentz group. This fact does not correspond to a full Lorentz
invariance, due to the fact that the Lorentzian metric is not
the only absolute object of the theory, but a further abso-
lute object [31] appears: the velocity vvv of the medium. This
implies that our theory, and any covariant theory of a dielec-
tric medium (cf. e.g. [32]), is involved with a preferred frame,
which corresponds to the rest frame of the medium. The
explicit presence of the vector vvv in the Lagrangian implies
that, in general, boosts are no more symmetries. This breaks
the Poincaré symmetry group down to the subgroup leaving
vvv invariant. This behaviour should not be a surprise, as it
is common to all the cases where e.g. Klein–Gordon equa-
tion is studied in the presence of an external potential. Loss
of Lorentz invariance is evident, but, at the same time, the
field equations are covariant, and solutions are transformed
into solutions of the Klein–Gordon equation by the Lorentz
group, provided that external potential is transformed too.
See e.g. [33] (p. 516). In this sense, also our theory remains
Lorentz covariant, as the equations of motions are, and the
above argument proving causality applies again if the covari-
ance is respected at the level of the representation of the
quantum theory. Covariance ensures that different inertial
observers perceive the same physics, i.e. are involved with
the same processes with the same probability. In particular,
the number of polaritons in the process remain the same. Uni-
tary maps between Fock spaces of different inertial observer
are a natural consequence of Poincaré covariance, and is a
consequence of the fact that the Lagrangian is invariant under
simultaneous transformations of the fields and of the vector
vvv under Poincaré group. So, at the quantum level there exists
a Fock space Fvvv for any vvv and a set of unitary maps

U : G −→ U , (21)

� �−→ U (�) : Fvvv −→ FU (�)vvv, ∀vvv timelike, (22)

where U is the set of all possible isometric maps among Fock
spaces Fvvv and Fwww, and U (�) is defined by

Uvvv(�)|0〉vvv = |0〉�vvv, (23)
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and

Uvvv(�)o(k;vvv)Uvvv(�)−1 = o(U (�)k;U (�)vvv), (24)

where o is intended to be any one among the operators
a(a)(k), a†

(a)(k), a = 1, 2.

4 The propagator

Since the theory is Gaussian, it is completely determined by
the two point functions. It is given by the matrix

iG I J
vvv (xxx, yyy) = vvv〈0|T (I (xxx)J (yyy))|0〉vvv, I, J = 1, 2, (25)

where

1 = φ, 2 = ψ. (26)

We will also write

GI J
vvv (xxx, yyy) = GI J

vvv (xxx, yyy)+θ(x0 − y0)

+GI J
vvv (xxx, yyy)−θ(y0 − x0). (27)

Since GI J
vvv (xxx, yyy)− is easily obtained from GI J

vvv (xxx, yyy)+, we
will write down only the latter:

iG11
vvv (xxx, yyy)+ = vvv〈0|φ(xxx)φ(yyy)|0〉vvv

=
2∑

a=1

∫
RD

dμ(k)e−ikkk(a)·(xxx−yyy); (28)

iG12
vvv (xxx, yyy)+ = vvv〈0|φ(xxx)ψ(yyy)|0〉vvv

=
2∑

a=1

∫
RD

dμ(k)
−igω(a)

ω2
(a) − ω2

0

e−ikkk(a)·(xxx−yyy); (29)

iG22
vvv (xxx, yyy)+ = vvv〈0|ψ(xxx)ψ(yyy)|0〉vvv

=
2∑

a=1

∫
RD

dμ(k)
g2ω2

(a)

(ω2
(a) − ω2

0)
2
e−ikkk(a)·(xxx−yyy).

(30)

The propagator can be determined also by means of the path
integral formulation. After introducing the currents Jφ and
Jψ , we can define the functional generating the propagators:

Z [Jφ, Jψ ] =
∫∫∫

[DφDψ] exp

{
i
∫
RD+1

Lcd
D+1xxx

+i
∫
RD+1

JφφdD+1xxx + i
∫
RD+1

JψψdD+1xxx

}
.

(31)

From this we can formally compute the propagator, which as
a result is found to be

GIJ (xxx, yyy) = −i
δZ [Jφ, Jψ ]

δ JI (xxx)δ JJ (yyy)

∣∣∣∣
JJJ K

=
∫
R2

dD+1kkk

(2π)D+1 e
−ikkk·(xxx−yyy)MMM−1(kkk)I J , (32)

where MMM is defined in (5), so that

MMM−1(kkk) = 1

k2(ω2 − ω2
0) − g2ω2

(−ω2 + ω2
0 igω

−igω −k2

)
.

(33)

Naturally, this is not the complete story, since this expres-
sion requires a prescription avoiding the poles defined by the
dispersion relation. Such a prescription must respect causal-
ity. As a result this can be accomplished by means of a iε
Feynman prescription. Indeed, we have the following.

Theorem 1 The propagator is

GIJ (xxx, yyy) =
∫
RD+1

dD+1kkk

(2π)D+1 e
−ikkk·(xxx−yyy)MMM−1

iε (kkk)I J , (34)

whereMMM−1
iε (kkk) is obtained from (33) by taking the complex

shifts k2 → k2 + iε, ω2
0 → ω2

0 − ic2ε.

This proposition is a particular case of a more general one
proved in [30].

5 The interaction representation and Fano
diagonalisation

In this section we take into account the more standard Inter-
action representation, and perform the so-called Fano diag-
onalisation [11] of the full Hamiltonian operator in order to
find its eigenmodes. As the Hamiltonian is quadratic in the
fields and their conjugate momenta, we are able to obtain an
exact result which leads again to polaritons as physical states
of the system. It is interesting to stress that this approach,
which is pursued both in the original paper by Hopfield [10]
and in standard textbooks (see e.g. [12,13]), is in principle
apt to perturbation theory and leads to the same result thanks
to the diagonalisation process.

In line of principle, the interaction representation is con-
structed by assuming that g is small and allows a perturbation
theory in powers of g. For simplicity, we consider only the
case where vvv = (c, 0), and we put c = 1. The Hamiltonian
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is then characterised by three contributions: two free-field
contributions H0

φ , H0
ψ , and an interaction one Hint as in the

following equations:

H0
φ =

∫
RD

dDx

[
π2

φ

2
+ 1

2
∇φ · ∇φ

]
, (35)

H0
ψ =

∫
RD

dDx

[
π2

ψ

2v2
0

+ ω2
0

2
ψ2

]
, (36)

Hint =
∫
RD

dDx
[
gφ

1

v0 πψ + g2

2
φ2
]

. (37)

Note that the conjugate momentum πψ is now a free-field one
(i.e. it is the one in (3) with g = 0), and that the dispersion
relation for the free field φ is (k0)2 − k · k = 0, whereas the
dispersion relation for ψ is ω2 − ω2

0 = 0. We now write the
free fields in terms of creation and annihilation operators. In
order to allow for a more direct comparison with the existing
literature, we choose

φ(xxx) =
∫
RD

dDk
(2π)D/2

1√
2k0

[
b(k, t)e−ik·x + h.c.

]
, (38)

πφ(xxx) =
∫
RD

dDk
(2π)D/2

√
k0

2

[
−ib(k, t)e−ik·x + h.c.

]
,

(39)

ψ(xxx) =
∫
RD

dDk
(2π)D/2

1√
2ω0

[
d(k, t)e−ik·x + h.c.

]
,

(40)

πψ(xxx) =
∫
RD

dDk
(2π)D/2

√
ω0

2

[
−id(k, t)e−ik·x + h.c.

]
,

(41)

with

[b(k, t), b†(q, t)] = δD(k − q), (42)

[d(k, t), d†(q, t)] = δD(k − q), (43)

and all the remaining CCRs equal to zero. We obtain

H0
φ =

∫
dDp p0 b†(p, t)b(p, t), (44)

H0
ψ =

∫
dDp ω0 d†(p, t)d(p, t), (45)

Hint =
∫

dDp
[
−i

g

2

√
ω0

p0

(
d(p, t)b†(p, t) − d†(p, t)b(p, t)

+ d(p, t)b(−p, t) − d†(p, t)b†(−p, t)

)

+ g2

4p0

(
b(p, t)b†(p, t) + b†(p, t)b(p, t)

+ b(p, t)b(−p, t) + b†(p, t)b†(−p, t)

)]
.

(46)

The diagonalisation process consists in finding normal mode
annihilation operators,

α(p, t)=w b(p, t)+x d(p, t)+y b†(−p, t)+z d†(−p, t)

(47)

such that [10]

[
α(p, t), H

] = E(p)α(p, t). (48)

The former eigenvalue problem amounts to the following
one:

det[A − E I ] = 0, (49)

where A is the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

p0 + g2

2p0
i g2

√
ω0
p0

− g2

2p0
i g2

√
ω0
p0

−i g2

√
ω0
p0

ω0 i g2

√
ω0
p0

0

g2

2p0
i g2

√
ω0
p0

−p0 − g2

2p0
i g2

√
ω0
p0

i g2

√
ω0
p0

0 −i g2

√
ω0
p0

−ω0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (50)

From (49) one obtains the equation

E4 − E2(|k|2 + g2 + ω2
0) + |k|2ω2

0 = 0, (51)

which amounts to

|k|2 = E2

(
1 + g2

ω2
0 − E2

)
, (52)

which again gives the same eigenmodes as in the previ-
ous sections. In particular, two positive branches E± can
be obtained, with associated eigenvectors. One can obtain
αa , with a = ±, which correspond to the a(a) given in the
previous analysis.

6 Final comments

In the appendix it is shown that DR′
(a), a = 1, 2, are always

positive, apart in k = 0 for the lower branch. In this case,
DR′ vanishes linearly in |k|, and the integrals defining the
fields (in a distributional sense) are well posed for D > 1.
Thus, the fields and propagators are well defined as tempered
distributions.

On the opposite, in a two dimensional spacetime, the
integrals diverge unless the oscillator modes vanish quickly
enough at the origin. This divergence at k = 0 cannot be
interpreted as an infrared divergence, since it does not occur
only in the propagator, but also in the definition of the fields,
so that it needs to be eliminated by a suitable choice of the
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space of test functions. Assuming that these must be chosen
inside the set of smooth rapidly decreasing functions S(R2),
we must consider functions whose Fourier transform van-
ishes in k = 0 when k0 is evaluated on k0

(2)(k). Since also k0

vanishes, by employing smoothness, it is sufficient to con-
sider functions in S(R2) whose Fourier transform vanish in
kkk = 000. These are the rapidly decreasing smooth functions
having null mean. So, the test functions must be chosen in

S0(R
2) =

{
f ∈ S(R2)|

∫
R2

d2xxx f (xxx) = 0

}
. (53)

Thus, it is exactly the same as for any massless free field.
After having defined the fields, we have been able to treat

them exactly, being the action quadratic. However, despite
the theory is Gaussian and, then, essentially a free theory,
in a sense the interaction manifests itself through a highly
non-trivial dispersion relation.

The second difficulty, related to causality, is covariance,
which is realised in a non-trivial way. We have just sketched
how this can be done: in practice the quantum algebra is rep-
resented on a bundle of Fock spaces over the homogeneous
space1

B = P/G, (54)

where P is the Poincaré group and G its subgroup that leaves
vvv invariants (the little group of vvv).

Finally, we have computed the two point function, which
characterises the whole theory, being Gaussian. We have
done it both starting from the canonical representation and
with the path integral method. Here, the iε Feynman–
Stückelberg prescription has been introduced and stated to
be equivalent to the causal propagator computed in the oscil-
lator representation. The proof can be found in [30].

In the relativistic Hopfield model, the true target of all our
efforts, all these difficulties are present and amplified by the
presence of a higher number of field components, including
non-physical ones, a larger number of spectral branches, the

1 Since vvv is assumed to be a future directed timelike vector of norm 1,
and P acts transitively on the set of such vectors,

B � {xxx ∈ R
1,3|x2 = 1, x0 > 0},

which is the future paraboloid of mass 1 in the Minkowski space R
1,3.

necessity of taking under control the gauge symmetry, the
presence of constraints and of the dipole ghost, and a major
involution of all explicit formulae. However, all these addi-
tive complications, which one is required to overcome, are
not peculiar of the specific model and ends up in hiding the
specific ones, which are transparent in the simplified � − � − � − 

model we have presented here.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: On the dispersion relation

It may be useful to analyse some properties of the dispersion
relations. They can be exactly solved in the lab frame (defined
by vvv ≡ (1, 0)). There are four real solutions for k0, which
are k0

(1) = ω+(k), k0
(2) = ω−(k), k0

(3) = −ω−(−k), k0
(4) =

−ω+(−k), with

ω±(k) = 1

2

√
(ω0 + |k|)2 + g2 ± 1

2

√
(ω0 − |k|)2 + g2.

(A.1)

These four branches, two positive and two negative, are rep-
resented in Fig. 1 (in the D = 1 case), from which it is also
evident that DR′

(a) is positive for a = 1, 2 and negative for
a = 3, 4, and vanishes only in the origin, thus for k = 0 in
the branches 2, 3. In this limit we see that

ω− = ω0

ω+
|k| ≈ ω0√

ω2
0 + g2

|k|, (A.2)

and then DR′ vanishes linearly in |k|.
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Fig. 1 The thick black lines are
the solutions of dispersion
relations in the lab frame. Above
the upper one DR(kkk) is
positive. Below it is negative
until reaching the asymptote
k0 = ω0. Below it DR is again
positive and it changes sign in
crossing the line k0 = ω−(k).
This behaviour continues
symmetrically in the lower half
plane. The grey lines represent
the axes of a boosted frame and
the red line is at fixed k′. It cuts
the curves DR = 0 from
increasing values of DR (when
k′0 increases) in the upper half
plane and with decreasing sign
in the lower half plane
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