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1 Introduction

In this paper, we develop geometry of affine algebraic varieties in K n over Henselian
rank one valued fields K of equicharacteristic zero with valuation v, value group �,
valuation ring R and residue field k. Every rank one valued field has a metric topology
induced by its absolute value. Examples of such fields are the quotient fields of the
rings of formal power series and of Puiseux series with coefficients from a field k of
characteristic zero as well as the fields of Hahn series (maximally complete valued
fields also called Malcev–Neumann fields; cf. [24]):

k((t�)) :=
⎧
⎨

⎩
f (t) =

∑

γ∈�

aγ tγ : aγ ∈ k, supp f (t) is well ordered

⎫
⎬

⎭
.

Let X be a K -algebraic variety. We always assume that X is reduced, but we allow
it to be reducible. The set X (K ) of its K -rational points (K -points for short) inherits
from K a topology, called the K -topology. In this paper, we are going to investigate
continuous and differentiable functions X (K ) → K that come from algebraic geom-
etry and their zero sets. Therefore, we shall (and may) most often assume that X is
an affine K -variety such that X (K ) is Zariski dense in X . Throughout the paper, by
“definable” we shall mean “definable with parameters.”

Several results concerning algebraic geometry over such ground fields K are estab-
lished. Let L be the three-sorted language of Denef–Pas. We prove that the projection

K n × P
m(K ) → K n

is an L-definably closed map (Theorem 3.1). Further, we shall draw several conclu-
sions, including the theorem that blowups of the K -points of smooth K -varieties are
definably closed maps (Corollary 3.5), a descent property for such blowups (Corol-
lary 3.6), curve selection for L-definable sets (Proposition 8.2) and for valuative
semialgebraic sets (Proposition 8.1) as well as a general version of the Łojasiewicz
inequality for continuous L-definable functions on subsets locally closed in the
K -topology (Proposition 9.2). Also given is a theorem on extending continuous hered-
itarily rational functions over such ground fields (Theorem 10.2), established for the
real and p-adic varieties in our joint paper [27] with J. Kollár. The proof makes use
of the descent property and the Łojasiewicz inequality. The descent property enables
application of resolution of singularities and transformation to a normal crossing by
blowing up (see [25, Chap. III] for references and relatively short proofs) in much the
same way as over the locally compact ground field. Our approach relies on quantifier
elimination due to Pas and on a certain concept of fiber shrinking for definable sets,
which is a relaxed version of curve selection. Note that this paper comprises our two
earlier preprints [39,40].

Remark 1.1 This paper is principally devoted to geometry over rank one valued fields
(in other words, fields with non-archimedean absolute value). Therefore, from Sect. 3
on, we shall most often assume that so is the ground field K . Nevertheless, it is plau-
sible that the closedness theorem (Theorem 2.6) and curve selection (Propositions 8.1
and 8.2) hold over arbitrary Henselian valued fields.
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We should emphasize that our approach to the subject of this paper is possible
just because the language L in which we investigate valued fields is not too rich; in
particular, it does not contain the inclusion language on the auxiliary sorts and the
only symbols of L connecting the sorts are two functions from the main K -sort to
the auxiliary �-sort and k-sort. Hence and by elimination of K -quantifiers, the L-
definable subsets of the products of the two auxiliary sorts are precisely finite unions
of the Cartesian products of sets definable in those two sorts. This allows us to reduce
our reasonings to an analysis of ordinary cells (i.e., fibers of a cell in the sense of Pas).

The organization of the paper is as follows. In Sect. 2, we set up notation and
terminology including, in particular, the language L of Denef–Pas and the concept
of a cell. We recall the theorems on quantifier elimination and on preparation cell
decomposition, due to Pas [41]. Next we draw some conclusions as, for instance,
Corollary 2.3 on definable functions and Corollary 2.7 on certain decompositions of
definable sets. The former will be applied in Sect. 5, and the latter is crucial for our
proof of the closedness theorem (Theorem 3.1), which is stated in Sect. 3 together
with several direct corollaries, including the descent property. Section 4 gives a proof
(being of algorithmic character) of this theorem for the case where the value group �

is discrete.
In Sect. 5, we study L-definable functions of one variable. A result playing an

important role in the sequel is the theorem on existence of the limit (Proposition 5.2).
Its proof makes use of Puiseux’s theorem for the local ring of convergent power
series. In Sect. 6, we introduce a certain concept of fiber shrinking forL-definable sets
(Proposition 6.1), which is a relaxed version of curve selection. Section 7 provides a
proof of the closedness theorem (Theorem 3.1) for the general case. This proof makes
use of fiber shrinking and existence of the limit for functions of one variable.

In the subsequent three sections, some further conclusions from the closedness
theorems are drawn. Section 8 provides some versions of curve selection: for arbitrary
L-definable sets and for valuative semialgebraic sets. The next section is devoted to a
general version of the Łojasiewicz inequality for continuous L-definable functions on
subsets locally closed in the K -topology (Proposition 9.2). In Sect. 10, the theorem on
extending continuous hereditarily rational functions (established for the real and p-
adic varieties in [27]) is carried over to the casewhere the groundfield K is aHenseliam
rank one valued field of equicharacteristic zero. Let us mention that in real algebraic
geometry applications of continuous hereditarily rational functions and the extension
theorem, in particular, are given in the papers [28–30] and [31], which discuss rational
maps into spheres and stratified-algebraic vector bundles on real algebraic varieties.

The last three sections are devoted to the theory of regulous functions and sets over
Henselian rank one valued fields of equicharacteristic zero. Regulous geometry over
the real ground field R was developed by Fichou–Huisman–Mangolte–Monnier [16].
In Sect. 11, we set up notation and terminology as well as provide basic results about
regulous functions and sets, including the noetherianity of the constructible and regu-
lous topologies. Those results are valid over arbitrary fields with the density property.
The next section establishes a regulous version of Nullstellensatz (Theorem 12.4),
valid over Henselian rank one valued fields of equicharacteristic zero. The proof relies
on the Łojasiewicz inequality (Proposition 9.2). Also drawn are several conclusions,
including the existence of a one-to-one correspondence between the radical ideals of
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the ring of regulous functions and the closed regulous subsets, or one-to-one corre-
spondences between the prime ideals of that ring, the irreducible regulous subsets and
the irreducible Zariski closed subsets (Corollaries 12.5 and 12.10).

Section 13 provides an exposition of the theory of quasi-coherent regulous sheaves,
which generally follows the approach given in the real algebraic case by Fichou–
Huisman–Mangolte–Monnier [16]. It is based on the equivalence of categories
between the category of R̃k-modules on the affine scheme Spec

(Rk(K n)
)
and the cat-

egory ofRk-modules on K n which, in turn, is a direct consequence of the one-to-one
correspondences mentioned above. The main results here are the regulous versions of
Cartan’s theorems A and B. We also establish a criterion for a continuous function on
an affine regulous subvariety to be regulous (Proposition 13.10), which relies on our
theorem on extending continuous hereditarily rational functions (Theorem 10.2).

Note finally that the metric topology of a non-archimedean field K with a rank
one valuation v is totally disconnected. Rigid analytic geometry (see, e.g., [6] for its
comprehensive foundations), developed by Tate, compensates for this defect by intro-
ducing sheaves of analytic functions in a Grothendieck topology. Another approach
is due to Berkovich [3], who filled in the gaps between the points of K n , producing
a locally compact Hausdorff space (the analytification of K n), which contains the
metric space K n as a dense subspace whenever the ground field K is algebraically
closed. His construction consists in replacing each point x of a given K -variety with
the space of all rank one valuations on the residue field κ(x) that extend v. Further, the
theory of stably dominated types, developed by Hrushovski–Loeser [23], deals with
non-archimedean fields with valuation of arbitrary rank and generalizes that of tame
topology for Berkovich spaces. Currently, various analytic structures over Henselian
rank one valued fields are intensively investigated (see, e.g., [11,12] for more infor-
mation and [34] for the case of algebraically closed valued fields).

2 Quantifier elimination and cell decomposition

We begin with quantifier elimination due to Pas in the language L of Denef–Pas with
three sorts: the valued field K -sort, the value group �-sort and the residue field k-
sort. The language of the K -sort is the language of rings; that of the �-sort is any
augmentation of the language of ordered abelian groups (and ∞); finally, that of the
k-sort is any augmentation of the language of rings. We denote K -sort variables by
x, y, z, . . ., k-sort variables by ξ, ζ, η, . . ., and �-sort variables by k, q, r, . . ..

In the case of non-algebraically closed fields, passing to the three sorts with addi-
tional two maps: the valuation v and the residue map, is not sufficient. Quantifier
elimination due to Pas holds for Henselian valued fields of equicharacteristic zero in
the above three-sorted language with additional two maps: the valuation map v from
the field sort to the value group and a map ac from the field sort to the residue field
(angular component map) which is multiplicative, sends 0 to 0 and coincides with the
residue map on units of the valuation ring R of K .

Not all valued fields K have an angular component map, but it exists if K has a
cross section, which happens whenever K is ℵ1-saturated (cf. [9, Chap. II]). More-
over, a valued field K has an angular component map whenever its residue field k
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is ℵ1-saturated (cf. [42, Corollary 1.6]). In general, unlike for p-adic fields and their
finite extensions, adding an angular component map does strengthen the family of
definable sets. For both p-adic fields (Denef [13]) and Henselian equicharacteristic
zero valued fields (Pas [41]), quantifier elimination was established by means of cell
decomposition and a certain preparation theorem (for polynomials in one variable with
definable coefficients) combined with each other. In the latter case, however, cells are
no longer finite in number, but parametrized by residue field variables. In the proof of
the closedness theorem, which is a fundamental tool for many results of this paper,
we may use an angular component map because a given valued field can always be
replaced with an ℵ1-saturated elementary extension.

Finally, let us mention that quantifier elimination based on the sort RV := K ∗/(1+
m)∪{0} (where K ∗ := K\{0} andm is the maximal ideal of the valuation ring R) was
introduced by Besarab [4]. This new sort binds together the value group and residue
field into one structure. In the paper [22, Sect. 12], quantifier elimination for Henselian
valued fields of equicharacteristic zero, based on this sort, was derived directly from
that by Robinson [43] for algebraically closed valued fields. Yet another, more general
result, including Henselian valued fields of mixed characteristic, was achieved by
Cluckers–Loeser [10] for so-called b-minimal structures (from “ball minimal”); in the
case of valued fields, however, countably many sorts RVn := K ∗/(1 + nm) ∪ {0},
n ∈ N, are needed.

Below we state the theorem on quantifier elimination due to Pas [41, Theorem 4.1].

Theorem 2.1 Let (K , �,k) be a structure for the three-sorted language L of Denef–
Pas. Assume that the valued field K is Henselian and of equicharacteristic zero. Then
(K , �,k) admits elimination of K -quantifiers in the language L.

We immediately obtain the following

Corollary 2.2 The three-sorted structure (K , �,k) admits full elimination of quanti-
fiers whenever the theories of the value group � and the residue field k admit quantifier
elimination in the languages of their sorts.

Below we prove another consequence of elimination of K -quantifiers, which will
be applied to the study of definable functions of one variable in Sect. 5.

Corollary 2.3 Let f : A → K be an L-definable function on a subset A of K n. Then
there is a finite partition of A into L-definable sets Ai and irreducible polynomials
Pi (x, y), i = 1, . . . , k, such that for each a ∈ Ai the polynomial Pi (a, y) in y does
not vanish and

Pi (a, f (a)) = 0 for all a ∈ Ai , i = 1, . . . , k.

Proof By elimination of K -quantifiers, the graph of f is a finite union of sets Bi ,
i = 1, . . . , k, defined by conditions of the form

(v( f1(x, y)), . . . , v( fr (x, y))) ∈ P, (ac g1(x, y), . . . , ac gs(x, y)) ∈ Q,



460 K. J. Nowak

where fi , g j ∈ K [x, y] are polynomials, and P and Q are L-definable subsets of
�r and k

s , respectively. Each set Bi is the graph of the restriction of f to an L-
definable subset Ai . Since, for each point a ∈ Ai , the fiber of Bi over a consists of
one point, the above condition imposed on angular components includes one of the
form ac g j (x, y) = 0 or, equivalently, g j (x, y) = 0, for some j = 1, . . . , s, which
may depend on a, where the polynomial g j (a, y) in y does not vanish. This means
that the set

{(ac g1(x, y), . . . , ac gs(x, y)) : (x, y) ∈ Bi }

is contained in the union of hyperplanes
⋃s

j=1{ξ j = 0} and, furthermore, that for each
point a ∈ Ai there is an index j = 1, . . . , s such that the polynomial g j (a, y) in y
does not vanish and g j (a, f (a)) = 0. Clearly, for any j = 1, . . . , s, this property of
points a ∈ Ai is L-definable. Therefore, we can partition the set Ai into subsets each
of which fulfills the condition required in the conclusion with some irreducible factors
of the polynomial g j (x, y). �	

Recall now some notation concerning cell decomposition. Consider anL-definable
subset D of K n × k

m , three L-definable functions

a(x, ξ), b(x, ξ), c(x, ξ) : D → K

and a positive integer ν. For each ξ ∈ k
m set

C(ξ) := {(x, y) ∈ K n
x × Ky : (x, ξ) ∈ D,

v(a(x, ξ)) �1 v((y − c(x, ξ))ν) �2 v(b(x, ξ)), ac(y − c(x, ξ)) = ξ1},

where �1,�2 stand for <,≤ or no condition in any occurrence. If the sets C(ξ),
ξ ∈ k

m , are pairwise disjoint, the union

C :=
⋃

ξ∈km

C(ξ)

is called a cell in K n × K with parameters ξ and center c(x, ξ); C(ξ) is called a fiber
of the cell C .

Theorem 2.4 (Preparation Cell Decomposition, [41, Theorem 3.2]) Let

f1(x, y), . . . , fr (x, y)

be polynomials in one variable y with coefficients being L-definable functions on
K n

x . Then K n × K admits a finite partition into cells such that on each cell C with
parameters ξ and center c(x, ξ) and for all i = 1, . . . , r we have:

v( fi (x, y)) = v
(

f̃i (x, ξ)(y − c(x, ξ))νi
)

, ac fi (x, y) = ξμ(i),
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where f̃i (x, ξ) are L-definable functions, νi ∈ N for all i = 1, . . . , r , and the map
μ : {1, . . . , r} → {1, . . . , m} does not depend on x, y, ξ .

Remark 2.5 The functions f1(x, y), . . . , fr (x, y) are said to be prepared with respect
to the variable y.

Every divisible ordered group � admits quantifier elimination in the language (<

,+,−, 0) of ordered groups. Therefore, it is not difficult to deduce from Theorems 2.1
and 2.4 the following

Corollary 2.6 (Cell decomposition) If, in addition, the value group � is divisible,
then every L-definable subset B of K n × K is a finite disjoint union of cells.

Every archimedean ordered group � (which of course may be regarded as a sub-
group of the additive group R of real numbers) admits quantifier elimination in the
Presburger language (<,+,−, 0, 1)with binary relation symbols≡n for congruences
modulo n > 1, n ∈ N, where 1 denotes the minimal positive element of � if it exists
or 1 = 0 otherwise. Under the circumstances, one can deduce in a similar manner the
following

Corollary 2.7 If, in addition, the valuation v is of rank 1, then every L-definable
subset B of K n × K is a finite disjoint union of sets each of which is a subset

F :=
⋃

ξ∈km

F(ξ)

of a cell

C :=
⋃

ξ∈km

C(ξ)

determined by finitely many congruences:

F(ξ) =
{
(x, y) ∈ C(ξ) : v

(
fi (x, ξ)(y − c(x, ξ))ki

)
≡M 0, i = 1, . . . , s

}
,

where fi are L-definable functions, ki ∈ N for i = 1, . . . , s, and M ∈ N, M > 1.

Remark 2.8 Corollary 2.7 will be applied to establish the closedness theorem (Theo-
rem 3.1) in Sect. 7.

3 Closedness theorem

In this paper, we are interested mainly in geometry over a Henselian rank one valued
field of equicharacteristic zero. Fromnowon,we shall assume (unless otherwise stated)
that the ground field K is such a field. Below we state one of the basic theorems, on
which many other results of our paper rely.
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Theorem 3.1 (Closedness theorem) Let D be an L-definable subset of K n. Then the
canonical projection

π : D × Rm −→ D

is definably closed in the K -topology, i.e., if B ⊂ D × Rm is an L-definable closed
subset, so is its image π(B) ⊂ D.

Observe that the K -topology is L-definable whence the above theorem is a first-
order property. Therefore, it can be proven using elementary extensions, and thus, one
may assume that an angular component map exists. We shall provide two different
proofs for this theorem. The first, given in Sect. 4, is valid whenever the value group
� is discrete, and is based on a procedure of algorithmic character. The other, given in
Sect. 7, is valid for the general case and makes use of Corollary 2.7 and fiber shrinking
from Sect. 6 which, in turn, relies on some results on L-definable functions of one
variable from Sect. 5. When the ground field K is locally compact, the closedness the-
orem holds by a routine topological argument. We immediately obtain five corollaries
stated below.

Corollary 3.2 Let D be an L-definable subset of K n and P
m(K ) stand for the pro-

jective space of dimension m over K . Then the canonical projection

π : D × P
m(K ) −→ D

is definably closed.

Corollary 3.3 Let A be a closed L-definable subset of P
m(K ) or Rm. Then every

continuous L-definable map f : A → K n is definably closed in the K -topology.

Corollary 3.4 Let φi , i = 0, . . . , m, be regular functions on K n, D be an L-definable
subset of K n and σ : Y −→ KA

n the blowup of the affine space KA
n with respect to

the ideal (φ0, . . . , φm). Then the restriction

σ : Y (K ) ∩ σ−1(D) −→ D

is a definably closed quotient map.

Proof Indeed, Y (K ) can be regarded as a closed algebraic subvariety of K n ×P
m(K )

and σ as the canonical projection. �	
Since the problem is local with respect to the target space, the above corollary

immediately generalizes to the case where the K -variety Y is the blowup of a smooth
K -variety X .

Corollary 3.5 Let X be a smooth K -variety, φi , i = 0, . . . , m, regular functions on
X, D be an L-definable subset of X (K ) and σ : Y −→ X the blowup of the ideal
(φ0, . . . , φm). Then the restriction

σ : Y (K ) ∩ σ−1(D) −→ D
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is a definably closed quotient map.

Corollary 3.6 (Descent property)Under the assumptions of the above corollary, every
continuous L-definable function

g : Y (K ) ∩ σ−1(D) −→ K

that is constant on the fibers of the blowup σ descends to a (unique) continuous
L-definable function f : D −→ K .

4 Proof of Theorem 3.1 when the valuation is discrete

The proof given in this section is of algorithmic character. Through the transfer prin-
ciple of Ax–Kochen–Ershov (see, e.g., [9]), it suffices to prove Theorem 3.1 for the
case where the ground field K is a complete, discretely valued field of equicharacter-
istic zero. Such fields are, by virtue of Cohen’s structure theorem, the quotient fields
K = k((t)) of formal power series rings k[[t]] in one variable t with coefficients
from a field k of characteristic zero. The valuation v and the angular component ac
of a formal power series are the degree and the coefficient of its initial monomial,
respectively.

The additive group Z is an example of ordered Z -group, i.e., an ordered abelian
groupwith a (unique) smallest positive element (denoted by 1) subject to the following
additional axioms:

∀ k k > 0 ⇒ k ≥ 1

and

∀ k ∃ q
n−1∨

r=0

k = nq + r

for all integers n > 1. The language of the value group sort will be the Presburger
language of ordered Z -groups, i.e., the language of ordered groups {<,+,−, 0} aug-
mented by 1 and binary relation symbols ≡n for congruence modulo n subject to the
axioms:

∀ k, r k ≡n r ⇔ ∃ q k − r = nq

for all integers n > 1. This theory of ordered Z -groups has quantifier elimination
and definable Skolem (choice) functions. We can replace the above two countable
axiom schemas with universal ones after adding the unary function symbols

[ k
n

]
of

one variable k for division by n with remainder, which fulfill the following postulates:

[
k

n

]

= q ⇔
n−1∨

r=0

k = nq + r
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for all integers n > 1. The theory of ordered Z -groups admits therefore both quantifier
elimination and universal axioms in the Presburger language augmented by division
with remainder. Thus every definable function is piecewise given by finitely many
terms and, consequently, is piecewise linear.

In the residue field sort, we can add new relation symbols for all definable sets and
impose suitable postulates. This enables quantifier elimination for the residue field
in the augmented language. In this fashion, we have full quantifier elimination in the
three-sorted structure (K ,Z,k) with K = k((t)).

Now we can readily pass to the proof of Theorem 3.1 which, of course, reduces
easily to the case m = 1. So let B be anL-definable closed (in the K -topology) subset
of D × Ry ⊂ K n

x × Ry . It suffices to prove that if a lies in the closure of the projection
A := π(B), then there is a point b ∈ B such that π(b) = a.

Without loss of generality, we may assume that a = 0. Put

� := {(v(x1), . . . , v(xn)) ∈ Z
n : x = (x1, . . . , xn) ∈ A}.

The set � contains points all coordinates of which are arbitrarily large, because the
point a = 0 lies in the closure of A. Hence and by definable choice, � contains a set
�0 of the form

�0 = {(k, α2(k), . . . , αn(k)) ∈ N
n : k ∈ �} ⊂ �,

where � ⊂ N is an unbounded definable subset and

α2, . . . , αn : � −→ N

are increasing unbounded functions given by a term (because a function in one variable
givenby a term is either increasingor decreasing).Weare going to recursively construct
a point b = (0, w) ∈ B with w ∈ R by performing the following procedure of
algorithmic character.

Step 1 Let

�1 := {(v(x1), . . . , v(xn), v(y)) ∈ �0 × N : (x, y) ∈ B},

and

β1(k) := sup {l ∈ N : (k, α2(k), . . . , αn(k), l) ∈ �1} ∈ N ∪ {∞}, k ∈ �0.

If lim supk→∞ β1(k) = ∞, there is a sequence (x (ν), y(ν)) ∈ B, ν ∈ N, such that

v(x (ν)
1 ), . . . , v(x (ν)

n ), v(y(ν)) → ∞

when ν → ∞. Since the set B is a closed subset of D × Ry , we get

(x (ν), y(ν)) → 0 ∈ B when ν → ∞,



Some results of algebraic geometry over Henselian… 465

and thus w = 0 is the point we are looking for. Here the process stops. Otherwise

�1 × {l1} ⊂ �1

for some infinite definable subset �1 of �0 and l1 ∈ N. The set

{(v(x1), . . . , v(xn); ac(y)) ∈ �1 × k : (x, y) ∈ B, v(y) = l1}

is definable in the languageL. By full quantifier elimination, it is given by a quantifier-
free formula with variables only from the value group �-sort and the residue field
k-sort. Therefore, there is a finite partitioning of �1 into definable subsets over each
of which the fibers of the above set are constant, because quantifier-free L-definable
subsets of the productZn ×k of the two sorts are finite unions of the Cartesian products
of definable subsets in Z

n and in k, respectively. One of those definable subsets, say
�′

1, must be infinite. Consequently, for some ξ1 ∈ k, the set

�2 := {(v(x1), . . . , v(xn), v(y − ξ1t l1)) ∈ �′
1 × N : (x, y) ∈ B}

contains points of the form (k, l) ∈ N
n+1, where k ∈ �′

1 and l > l1.
Step 2 Let

β2(k) := sup {l ∈ N : (k, α2(k), . . . , αn(k), l) ∈ �2} ∈ N ∪ {∞}, k ∈ �′
1.

If lim supk→∞ β2(k) = ∞, there is a sequence (x (ν), y(ν)) ∈ B, ν ∈ N, such that

v
(

x (ν)
1

)
, . . . , v

(
x (ν)

n

)
, v
(

y(ν) − ξ1t l1
)

→ ∞

when ν → ∞. Since the set B is a closed subset of D × Ry , we get

(
x (ν), y(ν)

)
→

(
0, ξ1t l1

)
∈ B when ν → ∞,

and thus w = ξ1t l1 is the point we are looking for. Here the process stops. Otherwise

�2 × {l2} ⊂ �2

for some infinite definable subset �2 of �′
1 and l2 > l1. Again, for some ξ2 ∈ k, the

set

�3 := {(v(x1), . . . , v(xn), v
(

y − ξ1t l1 − ξ2t l2)
)

∈ �′
2 × N : (x, y) ∈ B}

contains points of the form (k, l) ∈ N
n+1, where k ∈ �′

2, �
′
2 is an infinite definable

subset of �2 and l > l2.
Step 3 is carried out in the same way as the previous ones; and so on.
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In this fashion, the process either stops after a finite number of steps and then yields
the desired point w ∈ R (actually, w ∈ k[t]) such that (0, w) ∈ B, or it does not stop
and then yields a formal power series

w := ξ1t l1 + ξ2t l2 + ξ3t l3 + . . . , 0 ≤ l1 < l2 < l3 < . . .

such that for each ν ∈ N there exists an element (x (ν), y(ν)) ∈ B for which

v(y(ν) − ξ1t l1 − ξ2t l2 − . . . − ξν t lν ) ≥ lν + 1 ≥ ν, v(x (ν)
1 ), . . . , v(x (ν)

1 ) ≥ ν.

Hencev(y(ν)−w) ≥ ν, and thus the sequence (x (ν), y(ν)) tends to the pointb := (0, w)

when ν tends to ∞. Since the set B is a closed subset of D × R, the point b belongs
to B, which completes the proof.

5 Definable functions of one variable

Consider first a complete rank one valued field L . For every nonnegative integer r , let
L{x}r be the local ring of all formal power series

φ(x) =
∞∑

k=0

ak xk ∈ L[[x]]

in one variable x such that v(ak) + kr tends to ∞ when k → ∞; L{x}0 coincides
with the ring of restricted formal power series. Then the local ring

L{x} :=
∞⋃

r=0

L{x}r

is Henselian, which can be directly deduced bymeans of the implicit function theorem
for restricted power series in several variables (see [7, Chap. III, Sect. 4], [17] and
also [19, Chap. I, Sect. 5]).

We keep the assumption that the ground field K is a Henselian rank one valued field
of equicharacteristic zero. Let L be the completion of the algebraic closure K of K .
Clearly, the Henselian local ring L{x} is closed under division by the coordinate and
power substitution. Therefore, it follows from our paper [38, Sect. 2] that Puiseux’s
theorem holds for L{x}. We still need an auxiliary lemma.

Lemma 5.1 The field K is a closed subspace of its algebraic closure K .

Proof This follows directly from that the field K is algebraically maximal (as it is
Henselian and finitely ramified; see, e.g., [15, Chap. 4]), but can also be shown as
follows.Denote by cl (E, F) the closure of a subset E in F , and let K̂ be the completion
of K . We have

cl (K , K ) = cl (K , L) ∩ K = K̂ ∩ K .
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Now, through the transfer principle of Ax–Kochen–Ershov (see, e.g., [9]), K is an
elementary substructure of K̂ and, a fortiori, is algebraically closed in K̂ . Hence
cl (K , K ) = K̂ ∩ K = K , as asserted.

Now consider an irreducible polynomial

P(x, y) =
d∑

i=0

pi (x)yi ∈ K [x, y]

in two variables x, y of y-degree d ≥ 1. Let Z be the Zariski closure of its zero locus
in K × P

1(K ). Performing a linear fractional transformation over the ground field K
of the variable y, we can assume that the fiber {w1, . . . , ws}, s ≤ d, of Z over x = 0
does not contain the point at infinity, i.e.,w1, . . . , ws ∈ K . Then pd(0) �= 0 and pd(x)

is a unit in L{x}. Via Hensel’s lemma, we get the Hensel decomposition

P(x, y) = pd(x) ·
s∏

j=1

Pj (x, y)

of P(x, y) into polynomials

Pj (x, y) = (y − w j )
d j + p j1(x)(y − w j )

d j−1 + · · · + p jd j (x) ∈ L{x}[y − w j ]

which areWeierstrass with respect to y −w j , j = 1, . . . , s, respectively. By Puiseux’s
theorem, there is a neighborhood U of 0 ∈ K such that the trace of Z on U × K is a
finite union of sets of the form

Zφ j = {(xq , φ j (x)) : x ∈ U } with φ j ∈ L{x}, q ∈ N, j = 1, . . . , s.

Obviously, for j = 1, . . . , s, the fiber of Zφ j over x ∈ U tends to the pointφ j (0) = w j

when x → 0.
If φ j (0) ∈ K\K , it follows from Lemma 5.1 that

Zφ j ∩ ((U ∩ K ) × K ) = ∅,

after perhaps shrinking the neighborhood U .
Let us mention that if

φ j (0) ∈ K and φ j ∈ L{x}\K̂ {x},

then

Zφ j ∩ ((U ∩ K ) × K ) = {(0, φ j (0))}
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after perhaps shrinking the neighborhood U . Indeed, let

φ j (x) =
∞∑

k=0

ak xk ∈ L[[x]]

and p be the smallest positive integer with ap ∈ L\K̂ . Since K̂ is a closed subspace
of L , we get

∞∑

k=p

ak xk = x p

⎛

⎝ap + x ·
∞∑

k=p+1

ak xk−(p+1)

⎞

⎠ /∈ K̂

for x close enough to 0, and thus the assertion follows.
Suppose now that an L-definable function f : A → K satisfies the equation

P(x, f (x)) = 0 for x ∈ A

and 0 is an accumulation point of the set A. It follows immediately from the foregoing
discussion that the set A can be partitioned into a finite number of L-definable sets
A j , j = 1, . . . , r with r ≤ s, such that, after perhaps renumbering of the fiber
{w1, . . . , ws} of the set {P(x, f (x)) = 0} over x = 0, we have

lim
x→0

f |A j (x) = w j for each j = 1, . . . , r.

Hence and by Corollary 2.3, we immediately obtain the following

Proposition 5.2 (Existence of the limit) Let f : A → K be an L-definable function
on a subset A of K and suppose 0 is an accumulation point of A. Then there is a finite
partition of A into L-definable sets A1, . . . , Ar and points w1 . . . , wr ∈ P

1(K ) such
that

lim
x→0

f |A j (x) = w j for j = 1, . . . , r.

Moreover, there is a neighborhood U of 0 such that each definable set

{(v(x), v( f (x))) : x ∈ (A j ∩ U )\{0}} ⊂ � × (� ∪ {∞}), j = 1, . . . , r,

is contained in an affine line with rational slope

l = p j

q
· k + β j , j = 1, . . . , r,

with p j , q ∈ Z, q > 0, β j ∈ �, or in � × {∞}.
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Remark 5.3 Note that the first conclusion (existence of the limit) could also be estab-
lished via the lemma on the continuity of roots of a monic polynomial (which can
be found in, e.g., [6, Chap. 3, Sect. 4]). Yet another approach for the case of tame
theories is provided in [18, Lemma 2.20]. The second conclusion relies on Puiseux’s
parametrization.

6 Fiber shrinking for definable sets

Let A be an L-definable subset of K n with accumulation point

a = (a1, . . . , an) ∈ K n

and E an L-definable subset of K with accumulation point a1. We call an L-definable
family of sets

� =
⋃

t∈E

{t} × �t ⊂ A

an L-definable x1-fiber shrinking for the set A at a if

lim
t→a1

�t = (a2, . . . , an),

i.e., for any neighborhood U of (a2, . . . , an) ∈ K n−1, there is a neighborhood V of
a1 ∈ K such that ∅ �= �t ⊂ U for every t ∈ V ∩ E , t �= a1. When n = 1, A is itself
a fiber shrinking for the subset A of K at an accumulation point a ∈ K . This concept
is a relaxed version of curve selection. It is used in Sects. 7 and 8 in the proofs of the
closedness theorem and a certain version of curve selection.

Proposition 6.1 (Fiber shrinking) Every L-definable subset A of K n with accumula-
tion point a ∈ K n has, after a permutation of the coordinates, an L-definable x1-fiber
shrinking at a.

Proof We proceed with induction with respect to the dimension of the ambient affine
space n. The case n = 1 is trivial. So assuming the assertion to hold for n, we shall
prove it for n + 1. We may, of course, assume that a = 0. Let x = (x1, . . . , xn+1) be
coordinates in K n

x .
If 0 is an accumulation point of the intersections

A ∩ {xi = 0}, i = 1, . . . , n + 1,

we are done by the induction hypothesis. Thus we may assume that the intersection

A ∩
n+1⋃

i=1

{xi = 0} = ∅
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is empty. Then the definable (in the �-sort) set

P := {(v(x1), . . . , v(xn+1)) ∈ �n+1 : x ∈ A}

has an accumulation point (∞, . . . ,∞).
Since the �-sort admits quantifier elimination in the language of ordered groups

augmented by binary relation symbols ≡n for congruence modulo n, every definable
subset of �n+1 is a finite union of subsets of semilinear sets contained in �n+1 that
are determined by a finite number of congruences

n+1∑

j=1

ri j · k j ≡N αi , i = 1, . . . , s; (6.1)

here N ∈ N, N > 1, ri j ∈ Z, αi ∈ � for i = 1, . . . , s, j = 1, . . . , n + 1.
Consequently, there exists a semilinear subset P0 of Rn+1 given by finitely many

linear equations and inequalities with integer coefficients andwith constant terms from
� such that the subset P1 of P0 ∩ �n+1 determined by congruences of the form 6.1
is contained in P and has an accumulation point (∞, . . . ,∞). Therefore, there exists
an affine semiline

L := {(r1 · k + γ1, . . . , rn+1 · k + γn+1) : k ∈ �, k ≥ 0} ,

where r1, . . . , rn+1 are positive integers, passing through a point

(γ1, . . . , γn+1) ∈ P1 ⊂ �n+1

and contained in P0. It is easy to check that the set

L0 := {(γ1 + rr1N , . . . , γn+1 + rrn+1N ) : r ∈ N} ⊂ P1

is contained in P1. Then

� := {x ∈ A : (v(x1), . . . , v(xn+1)) ∈ L0}

is an L-definable x1-fiber shrinking for the set A at 0. This finishes the proof. �	

7 Proof of Theorem 3.1 for the general case

The proof reduces easily to the case m = 1. We must show that if B is an L-definable
subset of D × R and a point a lies in the closure of A := π(B), then there is a point
b in the closure of B such that π(b) = a. We may obviously assume that a = 0 /∈ A.
By Proposition 6.1, there exists, after a permutation of the coordinates, anL-definable
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x1-fiber shrinking � for A at a:

� =
⋃

t∈E

{t} × �t ⊂ A, lim
t→0

�t = 0;

here E is the canonical projection of A onto the x1-axis. Put

B∗ := {(t, y) ∈ K × R : ∃ u ∈ �t (t, u, y) ∈ B};

it easy to check that if a point (0, w) ∈ K 2 lies in the closure of B∗, then the point
(0, w) ∈ K n+1 lies in the closure of B. The problem is thus reduced to the case n = 1
and a = 0 ∈ K .

By Corollary 2.7, we can assume that B is a subset F of a cell C

F ⊂ C ⊂ Kx × R ⊂ Kx × Ky

of the form

F(ξ) := {(x, y) ∈ Kx × Ky : (x, ξ) ∈ D,

v(a(x, ξ)) �1 v((y − c(x, ξ))ν) �2 v(b(x, ξ)), ac(y − c(x, ξ)) = ξ1,

v
(

fi (x, ξ)(y − c(x, ξ))ki
)

≡M 0, i = 1, . . . , s}.

But the set

{(v(x), ξ) ∈ � × k
m : ∃ y ∈ R (x, y) ∈ F(ξ)}

is anL-definable subset of the product�×k
m of the two sorts, which is, by elimination

of K -quantifiers, a finite union of the Cartesian products of definable subsets in � and
inkm , respectively. It follows that 0 is an accumulation point of the projectionπ(F(ξ ′))
of the fiber F(ξ ′) for a parameter ξ ′ ∈ k

m . We are thus reduced to the case where
B is the fiber F(ξ ′) of the set F for a parameter ξ ′. For simplicity, we abbreviate
c(x, ξ ′), a(x, ξ ′), b(x, ξ ′) and fi (x, ξ ′) to c(x), a(x), b(x) and fi (x), i = 1, . . . , s.
Denote by E ⊂ K the domain of these functions; then 0 is an accumulation point of
E .

In the statement of Theorem 3.1, we may equivalently replace R with the projective
line P1(K ), because the latter is the union of two open and closed charts biregular to
R. By Proposition 5.2, we can thus assume that the limits, say c(0), a(0), b(0), fi (0)
of c(x), a(x), b(x), fi (x) (i = 1, . . . , s) when x → 0 exist in P1(K ) and, moreover,
there is a neighborhood U of 0 such that, each definable set

{(v(x), v( fi (x))) : x ∈ (E ∩ U )\{0}} ⊂ � × (� ∪ {∞}), i = 1, . . . , s,

is contained in an affine line with rational slope

l = pi

q
· k + βi , i = 1, . . . , s, (7.1)
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with pi , q ∈ Z, q > 0, βi ∈ �, or in � × {∞}.
Performing a linear fractional transformation of the coordinate y, we get

c(0), a(0), b(0) ∈ K .

The role of the center c(x) is immaterial. We can assume, without loss of generality,
that it vanishes, c(x) ≡ 0, for if a point b = (0, w) ∈ K 2 lies in the closure of the cell
with zero center, the point (0, w + c(0)) lies in the closure of the cell with center c(x).

When �1 occurs and a(0) = 0, the set F(ξ ′) is itself an x-fiber shrinking at (0, 0)
and the point b = (0, 0) is an accumulation point of B lying over a = 0, as desired.

So suppose that either only �2 occurs or �1 occurs and a(0) �= 0. By elimination
of K -quantifiers, the set v(E) is a definable subset of �. The value group � admits
quantifier elimination in the language of ordered groups augmented by symbols ≡n

for congruences modulo n, n ∈ N, n > 1 (cf. Sect. 2). Therefore, the set v(E) is of
the form

v(E) = {k ∈ (α,∞) ∩ � : m j k ≡N γ j , j = 1, . . . , t}, (7.2)

where α, γ j ∈ �, m j ∈ N for j = 1, . . . , t .
Now, take an element (u, w) ∈ F(ξ ′) with u ∈ (E ∩U )\{0}. By equality 7.2, there

is a point xr ∈ E , r ∈ N, with

v(ur ) = v(u) + rq M N .

By equality 7.1, we get

v( fi (ur )) = v( fi (u)) + r pi M N , i = 1, . . . , s.

Hence

v
(

fi (ur )w
ki
)

= v( fi (ur )) + kiv(w)

= v( fi (u)) + r pi M N + kiv(w)

= v
(

fi (u)wki
)

+ r pi M N ≡M 0. (7.3)

Of course, after shrinking the neighborhood U , we may assume that v(a(x)) =
v(a(0)) < ∞ for all x ∈ (E ∩ U )\{0}. Consequently,

v(a(ur )) �1 v(wν) �2 v(b(ur )).

Hence and by 7.3, we get (ur , w) ∈ F(ξ ′). Since ur tends to 0 ∈ K when r → ∞,
the point (0, w) is an accumulation point of F(ξ ′) lying over 0 ∈ K , which completes
the proof of the closedness theorem.
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8 Curve selection

We now pass to curve selection over non-locally compact ground fields under study.
While the real version of curve selection goes back to the papers [8,45] (see also [5,
35,36]), the p-adic one was achieved in the papers [14,44]. Before proving a general
version for L-definable sets, we give a version for valuative semialgebraic sets. Our
approach relies on resolution of singularities, which was already suggested by Denef–
van den Dries [14] in the remark after Theorem 3.34.

By a valuative semialgebraic subset of K n , wemean a (finite) Boolean combination
of elementary valuative semialgebraic subsets, i.e., sets of the form

{
x ∈ K n : v( f (x)) ≤ v(g(x))

}
,

where f and g are regular functions on K n . We call a map ϕ semialgebraic if its graph
is a valuative semialgebraic set.

Proposition 8.1 Let A be a valuative semialgebraic subset of K n. If a point a ∈ K n

lies in the closure (in the K -topology) of A\{a}, then there is a semialgebraic map
ϕ : R −→ K n given by restricted power series such that

ϕ(0) = a and ϕ(R\{0}) ⊂ A\{a}.

Proof It is easy to check that every valuative semialgebraic set is a finite union of
basic valuative semialgebraic sets, i.e., sets of the form

{x ∈ K n : v( f1(x)) �1 v(g1(x)), . . . , v( fr (x)) �r v(gr (x))},

where f1, . . . , fr , g1, . . . , gr are regular functions and �1, . . . ,�r stand for ≤ or
<. We may assume, of course, that A is a set of this form and a = 0. Take a finite
composite

σ : Y −→ KA
n

of blowups along smooth centers such that the pullbacks of the coordinates x1, . . . , xn

and the pullbacks

f σ
1 := f1 ◦ σ, . . . , f σ

r := fr ◦ σ and gσ
1 := g1 ◦ σ, . . . , gσ

r := gr ◦ σ

are normal crossing divisors ordered with respect to divisibility relation, unless they
vanish. Since the restriction σ : Y (K ) −→ K n is definably closed (Corollary 3.5),
there is a point b ∈ Y (K ) ∩ σ−1(a) which lies in the closure of the set

B := Y (K ) ∩ σ−1(A\{a}).

Further, we get

Y (K ) ∩ σ−1(A) = {
v( f σ

1 (y)) �1 v(gσ
1 (y))

} ∩ . . . ∩ {v( f σ
r (y)) �r v

(
gσ

r (y)
)}

,



474 K. J. Nowak

and thus σ−1(A) is in suitable local coordinates y = (y1, . . . , yn) near b = 0 a finite
intersection of sets of the form

{
v(yα) ≤ v(u(y))}, {v(u(y)) ≤ v(yα)

}
,
{
v(yβ) < ∞}

or {∞ = v(yγ )
}
,

where α, β, γ ∈ N
n and u(y) is a regular, nowhere vanishing function.

The first case cannot occur because b = 0 lies in the closure of B; the second case
holds in a neighborhood of b; the third and fourth cases are equivalent to yβ �= 0 and
yγ = 0, respectively. Consequently, since the pullbacks of the coordinates x1, . . . , xn

are monomial divisors too, B contains the set (R\{0}) · c when c ∈ B is a point
sufficiently close to b = 0. Then the map

ϕ : R −→ K n, ϕ(z) = σ(z · c)

has the desired properties. �	
We now pass to the general version of curve selection for L-definable sets.

Proposition 8.2 Let A be an L-definable set subset of K n. If a point a ∈ K n lies
in the closure (in the K -topology) of A\{a}, then there exist a semialgebraic map
ϕ : R −→ K n given by restricted power series and an L-definable subset E of R with
accumulation point 0 such that

ϕ(0) = a and ϕ(E\{0}) ⊂ A\{a}.

Proof We proceed with induction with respect to the dimension of the ambient space
n. The case n = 1 being evident, suppose n > 1. By elimination of K -quantifiers,
similarly as in Sect. 2, the set A\{a} is a finite union of sets defined by conditions of
the form

(v( f1(x)), . . . , v( fr (x))) ∈ P, (ac g1(x), . . . , ac gs(x)) ∈ Q,

where fi , g j ∈ K [x] are polynomials, and P and Q are definable subsets of �r and
k

s , respectively (since x = 0 iff ac x = 0). Thus we may assume that A is such a set
and, of course, that a = 0.

Again, take a finite composite

σ : Y −→ KA
n

of blowups along smooth centers such that the pullbacks

f σ
1 , . . . , f σ

r and gσ
1 , . . . , gσ

r

are normal crossing divisors unless they vanish. Since the restriction σ : Y (K ) −→
K n is definably closed (Corollary 3.5), there is a point b ∈ Y (K )∩σ−1(a) which lies
in the closure of the set

B := Y (K ) ∩ σ−1(A\{a}).
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Take local coordinates y1. . . . , yn near b in which b = 0 and every pullback above is
a normal crossing. We shall first select a semialgebraic map ψ : R −→ Y (K ) given
by restricted power series and an L-definable subset E of R with accumulation point
0 such that

ψ(0) = b and ψ(E\{0}) ⊂ B.

Since the valuation map and the angular component map composed with a con-
tinuous function are locally constant near any point at which this function does not
vanish, the conditions which describe the set B near b are of the form

(v(y1), . . . , v(yn)) ∈ P̃, (ac y1, . . . , ac yn) ∈ Q̃,

where P̃ and Q̃ are definable subsets of �n and k
n , respectively.

The set B0 determined by the conditions

(v(y1), . . . , v(yn)) ∈ P̃,

(ac y1, . . . , ac yn) ∈ Q̃ ∩
n⋃

i=1

{ξi = 0},

is contained near b in the union of hyperplanes {yi = 0}, i = 1, . . . , n. If b is an
accumulation point of the set B0, then the desired map ψ exists by the induction
hypothesis. Otherwise b is an accumulation point of the set B1 := B\B0.

Analysis from the proof of Proposition 6.1 (fiber shrinking) shows that the congru-
ences describing the definable subset P̃ of�n are not an essential obstacle to finding the
desired mapψ , but affect only the definable subset E of R. Neither are the conditions

Q̃ \
n⋃

i=1

{ξi = 0}

imposed on the angular components of the coordinates y1, . . . , yn , because then none
of them vanishes. Therefore, in order to select the map ψ , we must first of all analyze
the linear conditions (equalities and inequalities) describing the set P̃ .

The set P̃ has an accumulation point (∞, . . . ,∞) as b = 0 is an accumulation
point of B. We see, similarly as in the proof of Proposition 6.1 (fiber shrinking), that
P̃ contains a definable subset of a semiline

L := {(r1 · k + γ1, . . . , rn · k + γn) : k ∈ �, k ≥ 0} ,

where r1, . . . , rn are positive integers, passing through a point

γ1, . . . , γn ∈ P̃ ⊂ �n;

clearly, (∞, . . . ,∞) is an accumulation point of that definable subset of L .
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Now, take some elements

(ξ1, . . . , ξn) ∈ Q̃ \
n⋃

i=1

{ξi = 0}

and next some elements w1, . . . , wn ∈ K for which

v(w1) = γ1, . . . , v(wn) = γn and ac w1 = ξ1, . . . , ac wn = ξn .

There exists an L-definable subset E of R which is determined by some congruences
imposed on v(t) (as in the proof of Proposition 6.1) and the conditions ac t = 1 such
that the subset

F := {(
w1 · tr1 , . . . , wn · trn

) : t ∈ E
}

of the arc

ψ : R → Y, ψ(t) = (
w1 · tr1, . . . , wn · trn

)

is contained in B1. Then ϕ := σ ◦ ψ is the map we are looking for. This completes
the proof. �	

9 Łojasiewicz inequality

In this section, we provide certain general versions of the Łojasiewicz inequality. For
the classical version over the real ground field, we refer the reader to [5, Thm. 2.6.6].

Proposition 9.1 Let f, g : A → K be two continuous L-definable functions on a
closed (in the K -topology) L-definable subset A of Rm. If

{x ∈ A : g(x) = 0} ⊂ {x ∈ A : f (x) = 0},

then there exist a positive integer s and a continuous L-definable function h on A such
that f s(x) = h(x) · g(x) for all x ∈ A.

Proof It is easy to check that the set

Aγ := {x ∈ A : v( f (x)) = γ }

is a closed L-definable subset of A for every γ ∈ �. Hence and by Corollary 3.3 to
the closedness theorem, the set g(Aγ ) is a closedL-definable subset of K\{0}, γ ∈ �.
The set v(g(Aγ )) is thus bounded from above, i.e.,

v(g(Aγ )) < α(γ )
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for some α(γ ) ∈ �. By elimination of K -quantifiers, the set

� := {(v( f (x)), v(g(x))) ∈ �2 : x ∈ A} ⊂ {(γ, δ) ∈ �2 : δ < α(γ )}

is a definable subset of �2, and thus it is described by a finite number of linear
inequalities and congruences. Hence

� ∩ {(γ, δ) ∈ �2 : γ > γ0} ⊂ {(γ, δ) ∈ �2 : δ < s · γ }

for a positive integer s and some γ0 ∈ �. We thus get

v(g(x)) < s · v( f (x)) if x ∈ A, v( f (x)) > γ0,

whence

v(g(x)) < v( f s(x)) if x ∈ A, v( f (x)) > γ0.

Consequently, the quotient f s/g extends by zero through the zero set of the denom-
inator to a (unique) continuous L-definable function on A. This finishes the proof.

�	
The above theorem can be generalized as follows.

Proposition 9.2 Let U and F be two L-definable subsets of K m, suppose U is open
and F closed in the K -topology and consider two continuous L-definable functions
f, g : A → K on the locally closed subset A := U ∩ F of K m. If

{x ∈ A : g(x) = 0} ⊂ {x ∈ A : f (x) = 0},

then there exist a positive integer s and a continuous L-definable function h on A such
that f s(x) = h(x) · g(x) for all x ∈ A.

Proof We shall adapt the foregoing arguments. Since the setU is open, its complement
V := K m\U is closed in K m and A is the following union of open and closed subsets
of K m and of Pm(K ):

Xβ := {x ∈ K m : v(x1), . . . , v(xm) ≥ −β,

v(x − y) ≤ β for all y ∈ V },

where β ∈ �, β ≥ 0. As before, we see that the sets

Aβ,γ := {x ∈ Xβ : v( f (x)) = γ } with β, γ ∈ �

are closed L-definable subsets of Pm(K ), and next that the sets g(Aβ,γ ) are closed
L-definable subsets of K\{0} for all β, γ ∈ �. Likewise, we get

� := {(β, v( f (x)), v(g(x))) ∈ �3 : x ∈ Xβ} ⊂
⊂ {(β, γ, δ) ∈ �3 : δ < α(β, γ )}
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for some α(β, γ ) ∈ �. Consequently, since � is a definable subset of �3, there exist
a positive integer s and elements γ0(β) ∈ � such that

� ∩ {(β, γ, δ) ∈ �3 : γ > γ0(β)} ⊂ {(β, γ, δ) ∈ �3 : δ < s · γ }.

Since A is the union of the sets Xβ , it is not difficult to check that the quotient f s/g
extends by zero through the zero set of the denominator to a (unique) continuous
L-definable function on A, which is the desired result. �	

10 Extending continuous hereditarily rational functions

We first recall an elementary lemma from [27, Lemma 15].

Lemma 10.1 If the ground field K is not algebraically closed, then there are polyno-
mials Gr (x1, . . . , xr ) in any number of variables whose only zero on K r is (0, . . . , 0).
In particular,

G2(x1, x2) = xd
1 + a1xd−1

1 x2 + · · · + ad xd
2 ,

where

td + a1td−1 + · · · + ad ∈ K [t]

is a polynomial with no roots in K .

We keep further the assumption that K is a Henselian rank one valued field of
equicharacteristic zero and, additionally, that it is not algebraically closed. We have
at our disposal the descent property (Corollary 3.6) and the Łojasiewicz inequality
(Proposition 9.2). Therefore, by adapting mutatis mutandis its proof, we are able to
carry over Proposition 11 from [27] on extending continuous hereditarily rational
functions (being its main extension result) to the case of such non-archimedean fields.
We first recall the definition. Given a K -variety Z , we say that a continuous function
f : Z(K ) → K is hereditarily rational if every irreducible subvariety Y ⊂ Z has a
Zariski dense open subvariety Y 0 ⊂ Z such that f |Y 0(K ) is regular.

Theorem 10.2 Let X be a smooth K -variety and W ⊂ Z ⊂ X closed subvarieties.
Let f be a continuous hereditarily rational function on Z(K ) that is regular at all K -
points of Z(K )\W (K ). Then f extends to a continuous hereditarily rational function
F on X (K ) that is regular at all K -points of X (K )\W (K ).

Remark 10.3 The corresponding theorem for differentiable hereditarily rational func-
tions remains an open problem as yet (cf. Remark 13.9 and the discussion afterward).

Sketch of the Proof We shall keep the notation from the paper [27]. The main mod-
ification of the proof in comparison with that paper is the definition of the functions
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G and F2n which improve the rational function P/Q. Now we need the following
corrections:

G := P

Q
· Qd

G2(Q, H)

and

Fdn := G · Qdn

G2(Qn, H)
= P

Q
· Qd

G2(Q, H)
· Qdn

G2(Qn, H)
,

where the positive integer d and the polynomial G2 are taken from Lemma 10.1. It
is clear that the restriction of Fdn to Z\W equals f2, and thus Theorem 10.2 will be
proven once we show that the rational function Fdn restricts to a continuous function
�dn on X (K ) for n � 1. �	

We work on the variety π : X1(K ) −→ X (K ) obtained by blowing up the ideal
(P Qd−1, G2(Q, H)); let E := π−1(W ) be its exceptional divisor. Equivalently,
X1(K ) is the Zariski closure of the graph of G in X (K ) × P

1(K ). Two open charts
are considered:

• a Zariski open neighborhood U∗ of the closure (in the K -topology) Z∗ of
π−1(Z(K )\W (K ));

• an open (in the K -topology) set V ∗ := X1(K )\Z∗, which is anL-definable subset
of X1(K ).

Via the descent property (Corollary 3.6), it suffices to show that the rational function
Fdn ◦ π (with n � 1) extends to a continuous function on X1(K ) that vanishes on
E(K ).

The subtlest analysis is on the latter chart, on which Fdn ◦ π can be written in the
form

Fdn ◦ π = (P ◦ π) ·
(

Qdn−1

Hd
◦ π

)

·
(

Qd

G2(Q, H)
◦ π

)

·
(

Hd

G2(Qn, H)
◦ π

)

.

Note that on V ∗ the function H ◦ π vanishes only along E(K ) and Q ◦ π vanishes
along E(K ) too. Therefore, we can apply Proposition 9.2 (Łojasiewicz inequality) to
the numerator and denominator of the first factor, which are regular functions on the
chart V ∗, to immediately deduce that the first factor extends to a continuous rational
function on V ∗ that vanishes along E(K ) ∩ V ∗ for n � 1.

What still remains to prove (cf. [27]) is that the factors

Qdn

G2(Qn, H)
,

Qd

G2(Q, H)
and

Hd

G2(Qn, H)

are regular functions off W (K ) whose valuations are bounded from below. But this
follows immediately from an auxiliary lemma:
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Lemma 10.4 Let g be the polynomial from the proof of Lemma 10.1. Then the set of
values

v

(
td

g(t)

)

∈ �, t ∈ K ,

is bounded from below.

In order to prove this lemma, observe that

v

(
td

g(t)

)

= v
(
1 + a1

t
+ · · · + ad

td

)

for t ∈ K , t �= 0. Hence the values under study are zero if iv(t) < v(ai ) for all
i = 1, . . . , d. Therefore, we are reduced to analyzing the case where

v(t) ≥ k := min

{
v(ai )

i
: i = 1, . . . , d

}

.

Denote by� the value group of v. Thuswemust show that the set of values v(g(t)) ∈ �

when v(t) ≥ k is bounded from above.
Take elements a, b ∈ R, a, b �= 0, such that aai ∈ R for all i = 1, . . . , d, and

bt ∈ R whenever v(t) ≥ k. Then

h(abt) := (ab)d g(t)

= (abt)d + aba1(abt)d−1 + (ab)2a2(abt)d−2 + · · · + (ab)dad

is a monic polynomial with coefficients from R which has no roots in K . Clearly, it
is sufficient to show that the set of values v(h(t)) ∈ � when t ∈ R is bounded from
above.

Consider a splitting field K̃ = K (u1, . . . , ud) of the polynomial h, where
u1, . . . , ud are the roots of h. Let ṽ be a (unique) extension to K̃ of the valuation
v, R̃ be its valuation ring and �̃ ⊃ � its value group (see, e.g., [46, Chap. VI, Sect. 11]
for valuations of algebraic field extensions). Then

u1, . . . , ud ∈ R̃\R and h(t) =
d∏

i=1

(t − ui ).

Since R is a closed subring of R̃ by Lemma 5.1, there exists an l ∈ �̃ such that
ṽ(t − ui ) ≤ l for all i = 1, . . . , d and t ∈ R. Hence v(h(t)) ≤ dl for all t ∈ R, and
thus the lemma follows.

In this fashion, we have demonstrated how to adapt the proof of Proposition 11
from [27] to the case of Henselian rank one valued fields of equicharacteristic zero.
Note that the proofs of all remaining results from that paper work over general topo-
logical fields with a density property introduced in [27, Sect. 3] and recalled below.
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A topological field K satisfies the density property if one of the following equivalent
conditions holds:

(1) If X is a smooth, irreducible K -variety and ∅ �= U ⊂ X is a Zariski open subset,
then U (K ) is dense in X (K ) in the K -topology.

(2) If C is a smooth, irreducible K -curve and ∅ �= C0 ⊂ C is a Zariski open subset,
then C0(K ) is dense in C(K ) in the K -topology.

(3) If C is a smooth, irreducible K -curve, then C(K ) has no isolated points.

The examples of such fields are, in particular, all Henselian rank one valued fields.

11 Regulous functions and sets

In these last three sections, we shall carry the theory of regulous functions over the
real ground field R, developed by Fichou–Huisman–Mangolte–Monnier [16], over
to non-archimedean algebraic geometry over Henselian rank one valued fields K of
equicharacteristic zero. We assume that the ground field K is not algebraically closed.
(Otherwise, the notion of a regulous function on a normal variety coincides with that
of a regular function and, in general, the study of continuous rational functions leads
to the concept of seminormality and seminormalization; cf. [1,2] or [26, Sect. 10.2]
for a recent treatment.) Every such field enjoys the density property. The K -points
X (K ) of any algebraic K -variety X inherit from K a topology, called the K -topology.

In this section, we deal with the ground fields K with the density property. Observe
first that if f is a rational function on an affine K -variety X which is regular on a
Zariski open subset U , then there exist two regular functions p, q on X such that

f = p

q
and q(x) �= 0 for all x ∈ U (K ).

When X ⊂ KA
n , then p, q can be polynomial functions. For every rational function

f on X , there is a largest Zariski open subset of X on which f is regular, called
the regular locus of f and denoted by dom ( f ). Further, assume that Z is a closed
subvariety of a K -variety X . Then every rational function f on Z that is regular on
Z(K ) extends to a rational function F on X that is regular on X (K ). Both the results
can be deduced via Lemma 10.1 (cf. [27], the proof of Lemma 15 on extending regular
functions).

Suppose now that X is a smooth affine K -variety or, at least, an affine K -variety
that is smooth at all K -points X (K ). We say that a function f on X (K ) is k-regulous,
k ∈ N ∪ {∞}, if it is of class Ck and there is a Zariski dense open subset U of X such
that the restriction of f to U (K ) is a regular function. A function f on X (K ) is called
regulous if it is 0-regulous. Denote byRk(X (K )) the ring of k-regulous functions on
X (K ). The ring R∞(X (K )) of ∞-regulous functions on X (K ) coincides with the
ring O(X (K )) of regular functions on X (K ). This follows easily from the faithful
flatness of the formal power series ring K [[x1, . . . , xn]] over the local ring of regular
function germs at 0 ∈ K n . Therefore, we shall restrict ourselves to the case k ∈ N.
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When K is a Henselian rank one valued field of equicharacteristic zero, transforma-
tion to a normal crossing by blowing up along smooth centers and the descent property
(Corollary 3.6) enable the following characterization:

Given a smooth algebraic K -variety X , a function

f : X (K ) → K

is regulous iff there exists a finite composite σ : X̃ → X of blowups with smooth
centers such that the pullback f σ := f ◦ σ is a regular function on X̃(K ).

We say that a subset V of K n is k-regulous closed if it is the zero set of a family
E ⊂ Rk(Kn) of k-regulous functions:

V = Z(E) := {x ∈ K n : f (x) = 0 for all f ∈ E}.

A subset U of K n is called k-regulous open if its complement Kn\U is k-regulous
closed. The family of k-regulous open subsets of K n is a topology on K n , called the
k-regulous topology on K n .

If f �= 0 is a k-regulous function on K n with regular locus

U = dom ( f ) ⊂ K n,

then

f = p

q
where p, q ∈ K [x1, . . . , xn], Z(q) = K n\U (K ),

and p, q are coprime polynomials. Clearly, Z(q) ⊂ Z(p) and it follows, by passage
to the algebraic closure of K , that the zero set Z(q) is of codimension ≥ 2 in K n .
Thus the complement K n\dom ( f ) is of codimension≥ 2 in K n . Consequently, every
k-regulous function on K is regular and every k-regulous function on K 2 is regular at
all but finitely many points.

We now recall some results about algebraic varieties over arbitrary fields F . Let V
be an affine F-variety. We are interested in the set V (F) of its F-points. Therefore,
from now on, we shall (and may) assume that V (F) is Zariski dense in V . Then the
regular locus Reg (V ) of V is a non-empty, Zariski open subset of V and, moreover, its
trace on the set V (F) is non-empty; cf. [32], Chap. VI, Corollary 1.17 to the Jacobian
criterion for regular local rings and the remark preceding it. If the ground field F is
not algebraically closed, then the trace Reg (V )∩ V (F) is smooth and affine, because
it follows immediately from Lemma 10.1 that every algebraic subset of Fn is the zero
set of one polynomial. Summing up, we see that, for every affine F-subvariety V of
FA

n , the set V (F) ⊂ Fn of its F-points is a finite (disjoint) union of smooth, affine,
Zariski locally closed subsets of Fn of pure dimension.

We call a subset E of K n constructible if it is a (finite) Boolean combination of
Zariski closed subsets of K n . Every such set E is, of course, a finite union of Zariski
locally closed subsets. Further, in view of the foregoing discussion, E is a finite union
of smooth, affine, Zariski locally closed subsets of pure dimension with irreducible
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Zariski closure. Thus it follows immediately from the density property that every
closed (in the K -topology) constructible subset E of K n is a finite union of a unique
irredundant family �(E) of constructible subsets each of which is the regular locus
Reg (V )∩K n of an irreducible affine K -subvarietyV of KA

n ; obviously,Reg (V )∩K n

is a smooth, Zariski locally closed subset of pure dimension dim V .
Below we introduce the constructible topology on K n . We shall see in the next

section that the k-regulous topology coincides with the constructible topology for all
k ∈ N.

Proposition 11.1 If K is a topological field with the density property, then the family
of all closed (in the K -topology) constructible subsets of K n is the family of closed sets
for a topology, called the constructible topology on K n. Furthermore, this topology
is noetherian, i.e., every descending sequence of closed constructible subsets of K n

stabilizes.

Proof Clearly, it suffices to prove only the last assertion.We shall follow the reasoning
from our paper [37] which showed that the quasi-analytic topology is noetherian. For
any closed (in the K -topology) constructible subset E of K n , letμi (E) be the number
of elements from the family�(E), constructed above, of dimension i , i = 0, 1, . . . , n,
and put

μ(E) = (μn(E), μn−1(E), . . . , μ0(E)) ∈ N
n+1.

Consider now a descending sequence of closed constructible subsets

K n ⊃ E1 ⊃ E2 ⊃ E3 ⊃ . . . .

It is easy to check that for any two closed (in the K -topology) constructible subsets
D ⊂ E , we have μ(D) ≤ μ(E) and, furthermore, D = E iff μ(D) = μ(E). Hence
we get the decreasing (in the lexicographic order) sequence of multi-indices

μ(E1) ≥ μ(E2) ≥ μ(E3) ≥ . . . ,

which must stabilize for some N ∈ N:

μ(EN ) = μ(EN+1) = μ(EN+2) = . . .

Then

EN = EN+1 = EN+2 = . . . ,

as desired. �	
Corollary 11.2 Suppose K is a field with the density property. Then there is a one-
to-one correspondence between the irreducible closed constructible subsets E of K n

and the irreducible Zariski closed subsets V of K n:

α : E �−→ E
Z

and β : V �−→ Reg (V )
c
,
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where E
Z

stands for the Zariski closure of E and A
c

for the closure of A in the
constructible topology.

Proof We have α ◦ β = Id, because Reg (V )
Z = V for every irreducible Zariski

closed subset V of K n . In view of the foregoing discussion, the assignment β is
surjective. Therefore, every irreducible closed constructible subset E of K n is of the
form E = β(V ) = Reg (V )

c
for an irreducible Zariski closed subset V of K n . Hence

(β ◦ α)(E) = (β ◦ α)(β(V )) = (β ◦ α ◦ β)(V ) = (β ◦ Id)(V ) = β(V ) = E,

and thus β ◦ α = Id, which finishes the proof. �	
Below we recall Proposition 8 from [27] which holds over any topological fields

with the density property.

Proposition 11.3 Let X be an algebraic K -variety and f a rational function on
X that is regular on X0 ⊂ X. Assume that f |X0(K ) has a continuous extension
f c : X (K ) → K . Let Z ⊂ X be an irreducible subvariety that is not contained in
the singular locus of X. Then there is a Zariski dense open subset Z0 ⊂ Z such that
f c|Z0(K ) is a regular function.

We immediately obtain two corollaries:

Corollary 11.4 Let X be an algebraic K -variety that is smooth at all K -points X (K )

and f a rational function on X that is regular on X0 ⊂ X. Assume that f |X0(K )

has a continuous extension f c : X (K ) → K . Then there is a sequence of closed
subvarieties

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X

such that for i = 0, . . . , n the restriction of f to Xi (K )\Xi−1(K ) is regular. Moreover,
we can require that each set Xi\Xi−1 be smooth of pure dimension i .

Corollary 11.5 If f is a regulous function on K n, then there is a sequence of Zariski
closed subsets

∅ = E−1 ⊂ E0 ⊂ · · · ⊂ En = K n

such that for i = 0, . . . , n the restriction of f to Ei\Ei−1 is regular. Moreover, we
can require that each set Ei\Ei−1 be smooth of pure dimension i .

Remark 11.6 Given a finite number of regulous functions f1, . . . , f p, there is a filtra-
tion

∅ = E−1 ⊂ E0 ⊂ · · · ⊂ En = K n

as in the above corollary such that for i = 0, . . . , n the restriction of each function f j ,
j = 1, . . . , p, to Ei\Ei−1 is regular.
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Now, three further consequences of the above corollary will be drawn. We say that
a map

f = ( f1, . . . , f p) : K n → K p

is k-regulous if all its components f1, . . . , f p are k-regulous functions on K n .

Corollary 11.7 If two maps

g : K m → K n and f : K n → K p

are k-regulous, so is its composition f ◦ g.

Proof Indeed, let U be the common regular locus of the components g1, . . . , gn of
the map g:

U := dom (g1) ∩ . . . ∩ dom (gn) ⊂ R
m .

Take a filtration

∅ = E−1 ⊂ E0 ⊂ · · · ⊂ En = K n

for the functions f1, . . . , f p described in Remark 11.6. Then U is the following union
of Zariski locally closed subsets

U =
n⋃

i=0

(
U ∩ g−1(Ei\Ei−1)

)
.

Clearly, one of these sets, sayU ∩g−1(Ei0\Ei0−1)must be a Zariski dense open subset
of U and of K m too. Hence f ◦ g is a regular function on U ∩ g−1(Ei0\Ei0−1), which
is the required result. �	
Corollary 11.8 The zero set Z( f ) of a regulous function f on K n is a closed (in the
K -topology) constructible subset of K n.

Corollary 11.9 The zero set Z( f1, . . . , f p) of finitely many regulous functions
f1, . . . , f p on K n is a closed (in the K -topology) constructible subset of K n.

Proof This follows directly from Corollary 11.8 and Lemma 10.1. �	
Hence and by Proposition 11.1, we immediately obtain

Proposition 11.10 The k-regulous topology on K n is noetherian.

Corollary 11.11 Every k-regulous closed subset of K n is the zero set Z ( f ) of a k-
regulous function f on K n and thus is a closed (in the K -topology) constructible
subset of K n. Hence every k-regulous open subset of K n is of the form

D ( f ) := K n\Z ( f ) = {x ∈ K n : f (x) �= 0}
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for a k-regulous function f on K n.

Corollaries 11.11 and 11.7 yield the following

Corollary 11.12 Every k-regulous map f : K n → K m is continuous in the k-
regulous topology.

12 Regulous Nullstellensatz

We further assume that the ground field K is a Henselian rank one valued field of
equicharacteristic zero and that K is not algebraically closed. Throughout this section,
k will be a nonnegative integer. We begin with the following consequence of the
Łojasiewicz inequality (Proposition 9.2).

Proposition 12.1 Let f, g be rational functions on KA
n such that f extends to a

continuous function on K n and g extends to a continuous function on the set D ( f ).
Then the function f s g extends, for s � 0, by zero through the setZ ( f ) to a continuous
rational function on K n.

Proof We can find a finite composite σ : M → KA
n of blowups along smooth centers

such that the pullbacks

f σ := f ◦ σ and gσ := g ◦ σ

are regular functions at all K -points on

M(K ) and M(K )\σ−1(Z ( f )),

respectively. Then there are regular functions p, q on M such that

gσ = p

q
and Z (q) := {y ∈ M(K ) : q(y) = 0} ⊂ Z ( f σ ).

It follows immediately from Proposition 9.2 that the rational function

( f σ )s

q
, for s � 0,

extends by zero through the set Z ( f σ ) to a continuous function on M(K ), whence
so does the rational function ( f σ )s · gσ . By the descent property (Corollary 3.6), the
continuous function ( f σ )s · gσ descends to a continuous function on K n that vanishes
on Z ( f ). This is the required result. �	

The two corollaries stated below are counterparts of Lemmata 5.1 and 5.2 from [16],
established over the real ground field R.
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Corollary 12.2 Let f be a k-regulous function on K n and g a k-regulous function on
the open subset D ( f ). Then the function f s g, for s � 0, extends by zero through the
zero set Z ( f ) to a k-regulous function on K n. Hence the ring of k-regulous functions
on D ( f ) is the localization Rk(K n) f .

Proof The case k = 0 is just Proposition 12.1. Now take s large enough so that the
partial derivatives

f s · ∂ |α|g
∂xα

for α ∈ N
n, |α| = 0, 1, . . . , k,

extend to continuous functions on K n vanishing on Z ( f ). Then, by Leibniz’s rule,
f s+k g is a k-regulous function on K n and k-flat on Z ( f ), as desired. �	
Corollary 12.3 Let U be a k-regulous open subset of K n, f a k-regulous function on
U and g a k-regulous function on the open subset D ( f ) ⊂ U. Then the function f s g
extends, for s � 0, by zero through the zero set Z ( f ) ⊂ U to a k-regulous function
on U.

Proof By Corollary 11.11, U = D(h) for a k-regulous function on K n . From the
above corollary, we get

f hs ∈ Rk(K n) for s � 0.

Hence

g ∈ Rk(K n) f hs

for integers s large enough, and thus the conclusion follows. �	
Nowwe can readily pass to a regulous version of Nullstellensatz, whose proof relies

on Corollary 12.2 and the fact that the k-regulous topology is noetherian.

Theorem 12.4 If I is an ideal in the ring Rk(K n) of k-regulous functions on K n,
then

Rad (I ) = I (Z (I )),

where

I (E) := { f ∈ Rk(K n) : f (x) = 0 for all x ∈ E}

for a subset E of K n.

Proof The inclusion Rad (I ) ⊂ I (Z (I )) is obvious. For the converse one, apply
Corollary 11.11 which says that there is a function g ∈ I such that Z (I ) = Z (g).
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Then Z (g) ⊂ Z ( f ) for any f ∈ I (Z (I )), and thus the function 1/g is k-regulous
on the set D ( f ). By Corollary 12.2, we get

f s

g
∈ Rk(K n)

for s � 0 large enough. Hence

f s ∈ g · Rk(K n) ⊂ I,

concluding the proof. �	

Corollary 12.5 There is a one-to-one correspondence between the radical ideals of
the ring Rk(K n) and the k-regulous closed subsets of K n. Consequently, the prime
ideals of Rk(K n) correspond to the irreducible k-regulous closed subsets of K n, and
the maximal ideals m of Rk(K n) correspond to the points x of K n so that we get the
bijection

K n � x −→ mx := { f ∈ Rk(K n) : f (x) = 0} ∈ Max
(
Rk(K n)

)
.

The resulting embedding

ι : K n � x −→ mx ∈ Spec
(
Rk(K n)

)

is continuous in the k-regulous and Zariski topologies. Furthermore, ι induces a canon-
ical one-to-one correspondence between the k-regulous closed subsets of K n and
the Zariski closed subsets of Spec

(Rk(K n)
)
. More precisely, for every k-regulous

closed subset V of K n there is a unique Zariski closed subset Ṽ of Rk(K n) such that
V = ι−1(Ṽ ); actually Ṽ is the Zariski closure of the image ι(V ).

Proof The embedding ι is continuous by the very definition of the Zariski topology.
The last assertion follows immediately from the Nullstellensatz and the fact that the
closed subsets of Spec

(Rk(K n)
)
are precisely of the form

{p ∈ Spec
(
Rk(K n)

)
: p ⊃ I },

where I runs over all radical ideals of Spec
(Rk(K n)

)
. �	

The above corollary alongwith Proposition 11.10 andCorollary 11.11 yields imme-
diately

Corollary 12.6 With the above notation, the space Spec
(Rk(K n)

)
with the Zariski

topology is noetherian, and the embedding ι induces a one-to-one correspondence
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between the k-regulous open subsets of K n and the subsets of Spec
(Rk(K n)

)
open in

the Zariski topology. In particular, every open subset of Spec
(Rk(K n)

)
is of the form

U( f ) := {p ∈ Spec
(
Rk(K n)

)
: f /∈ p}, f ∈ Rk(K n),

corresponding to the subset D( f ) of K n.

Remark 12.7 As demonstrated in [16] (see also [33, Ex. 6.11]), the ring Rk(K n) is
not noetherian for all k, n ∈ N, n ≥ 2.

From Theorem 12.4 and Corollary 11.11, we immediately obtain

Corollary 12.8 Every radical ideal of Rk(K n) is the radical of a principal ideal of
Rk(K n).

Finally, we return to the comparison of the regulous and constructible topologies.
Below we state the non-archimedean version of [16, Theorem 6.4] by Fichou–
Huisman–Mangolte–Monnier, which says that those topologies coincide in the real
algebraic geometry. The proof relies on their Lemmata 5.1 and 5.2, and it can be
repeated verbatim in the case of the ground fields K studied in our paper by means of
Corollaries 12.2 and 12.3.

Proposition 12.9 The k-regulous closed subsets of K n are precisely the closed (in the
K -topology) constructible subsets of K n.

The above theorem along with Corollary 11.2 and Corollary 12.5 yields the fol-
lowing

Corollary 12.10 There are one-to-one correspondences between the prime ideals of
the ringRk(K n), the irreducible closed constructible subsets of K n and the irreducible
Zariski closed subsets of K n.

Corollary 12.11 The dimension of the topological space K n with the regulous topol-
ogy and the Krull dimension of the ring Rk(K n) is n.

13 Quasi-coherent regulous sheaves

The concepts of quasi-coherent k-regulous sheaves on K n and k-regulous affine vari-
eties, k ∈ N∪{∞}, can be introduced over valued fields studied in this paper, similarly
as by Fichou–Huisman–Mangolte–Monnier [16] over the real ground fieldR. Also, the
majority of their results concerning these concepts carry over to the non-archimedean
geometry with similar proofs. For the sake of completeness, we provide an exposi-
tion of the theory of quasi-coherent regulous sheaves. Here we shall deal only with
k-regulous functions with a nonnegative integer k, because for k = ∞ we encounter
the classical case of regular functions and quasi-coherent algebraic sheaves.

Consider an affine scheme Y = Spec (A) with structure sheaf OY . Any A-module
M determines a quasi-coherent sheaf M̃ on Y (cf. [21, Chap. II]). The functor M �−→
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M̃ gives an equivalence of categories between the category of A-modules and the
category of quasi-coherent OY -modules. Its inverse is the global sections functor

F �−→ H0(Y,F)

(cf. [21, Chap. II, Corollary 5.5]).
Denote by R̃k the structure sheaf of the affine scheme Spec

(Rk(K n)
)
and by

Rk the sheaf of k-regulous function germs (in the k-regulous topology equal to the
constructible topology) on K n . It follows directly from Corollaries 12.5 and 12.2 that
the restriction ι−1R̃k of R̃k to K n coincides with the sheaf Rk ; conversely, ι∗ Rk =
R̃k .

By a k-regulous sheaf F we mean a sheaf ofRk-modules. Again, it follows imme-
diately from Corollaries 12.5 and 12.6 that the functor ι−1 of restriction to K n gives
an equivalence of categories between R̃k-modules andRk-modules. Its inverse is the
direct image functor ι∗.

We say that F is a quasi-coherent k-regulous sheaf on K n if it is the restriction
to K n of a quasi-coherent R̃k-module. Thus the functor ι−1 induces an equivalence
of categories between quasi-coherent R̃k-modules and quasi-coherent Rk-modules,
whose inverse is the direct image functor ι∗. For any Rk(K n)-module M , we shall
denote by M̃ both the associated sheaf on Spec

(Rk(K n)
)
and its restriction to K n .

This abuse of notation does not lead to confusion.We thus obtain the following version
of Cartan’s theorem A:

Theorem 13.1 The functor M �−→ M̃ gives an equivalence of categories between
the category of Rk(K n)-modules and the category of quasi-coherent Rk-modules. Its
inverse is the global sections functor

F �−→ H0(K n,F).

In particular, every quasi-coherent sheaf F is generated by its global sections
H0(K n,F).

The regulous version of Cartan’s theorem B, stated below, follows directly from
the version for affine (not necessarily noetherian in view of Remark 12.7) schemes
(cf. [20, Theorem 1.3.1]) via the discussed equivalence of categories (being the functor
ι−1 of restriction to K n).

Theorem 13.2 If F is a quasi-coherent k-regulous sheaf on K n, then

Hi (K n,F) = 0 for all i > 0.

Corollary 13.3 The global sections functor

F �−→ H0(K n,F)

on the category of quasi-coherent k-regulous sheaves on K n is exact.
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Let V be a k-regulous closed subset of K n and I(V ) the sheaf of those k-regulous
function germs on K n that vanish on V . It is a quasi-coherent sheaf of ideals of Rk ,
the sheaf Rk/I(V ) has support V and is generated by its global sections (Theorem
A); moreover

H0
(

K n,Rk/I(V )
)

= H0
(

K n,Rk
)

/H0 (K n,I(V )
)

(Theorem B). The subset V inherits the k-regulous topology from K n and constitutes,
together with the restrictionRk

V of the sheafRk/I(V ) to V , a locally ringed space of
K -algebras, called an affine k-regulous subvariety of K n . More generally, by an affine
k-regulous variety we mean any locally ringed space of K -algebras that is isomorphic
to an affine k-regulous subvariety of K n for some n ∈ N.

We can define in the ordinary fashion the category of quasi-coherentRk
V -modules.

Each such module extends trivially by zero to a quasi-coherent Rk-module on K n .
The sectionsRk

V (V ) of the structure sheafRk
V are called k-regulous functions on V . It

follows from Cartan’s theorem B that each k-regulous function on V is the restriction
to V of a k-regulous function on K n . Hence we immediately obtain the following two
results.

Proposition 13.4 Let W and V be two affine k-regulous subvarieties of K m and K n,
respectively. Then the following three conditions are equivalent:

1) f : W → V is a morphism of locally ringed spaces;
2) f = ( f1, . . . , fn) : W → K n where f1, . . . , fn are k-regulous functions on W

such that f (W ) ⊂ V ;
3) f extends to a k-regulous map K m → K n.

We then call f : W → V a k-regulous map.

Corollary 13.5 Let W , V and X be affine k-regulous subvarieties of K m, K n and
K p, respectively. If two maps

g : W → V and f : V → X

are k-regulous, so is its composition f ◦ g.

It is clear that Cartan’s theorems remain valid for quasi-coherent k-regulous sheaves
on affine k-regulous varieties V .

Corollary 13.6 The functor M �−→ M̃ gives an equivalence of categories between
the category of Rk

V (V )-modules and the category of quasi-coherent Rk
V -modules. Its

inverse is the global sections functor

F �−→ H0(V,F).

In particular, every quasi-coherent sheaf F is generated by its global sections
H0(V,F).
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Corollary 13.7 If F is a quasi-coherent k-regulous sheaf on V , then

Hi (V,F) = 0 for all i > 0.

Corollary 13.8 The global sections functor

F �−→ H0(V,F)

on the category of quasi-coherent k-regulous sheaves on V is exact.

Note that every non-empty k-regulous open subset U of K n is an affine k-regulous
variety. Indeed, if U = D ( f ) for a k-regulous function f on K n (Corollary 11.11),
then U is isomorphic to the affine k-regulous subvariety

V := Z (y f (x) − 1) ⊂ K n
x × Ky .

Remark 13.9 Consider a smooth algebraic subvariety X of the affine space KA
n . We

may look at the set V := X (K ) of its K -points both as an algebraic variety X (K ) and
as a k-regulous subvariety V of K n . Every function f : V → K that is k-regulous
on V in the second sense remains, of course, k-regulous on X (K ) in the sense of the
definition from the beginning of Sect. 11.

Open problem. The problem whether the converse implication is true for k > 0 is
unsolved as yet.

For k = 0 the answer is in the affirmative and follows immediately from Theo-
rem 10.2. Indeed, every continuous hereditarily rational function f on X (K ) extends
to a continuous rational function on K n , whence f is regulous on V . This theorem
was proven for real and p-adic varieties in [27].

Finally, we wish to give a criterion for a continuous function to be regulous. It relies
on Theorem 10.2 on extending continuous hereditarily rational functions on algebraic
K -varieties.

Proposition 13.10 Let V be an affine regulous subvariety of K n and f : V → K a
function continuous in the K -topology. Then a necessary and sufficient condition for
f to be a regulous function is the following:

(*) For every Zariski closed subset Z of K n, there exist a Zariski dense open subset
U of the Zariski closure of V ∩ Z in K n and a regular function g on U such that

f (x) = g(x) for all x ∈ V ∩ Z ∩ U.

Proof By Corollary 11.5, the necessary condition is clear, because f is the restriction
to V of a regulous function on K n (Corollary 13.3 to Cartan’s theorem B).

In order to prove the sufficient condition, we proceed with induction with respect
to the dimension d of the set V which is a closed (in the K -topology) constructible
subset of K n . The case d = 0 is trivial. Assuming the assertion to hold for dimensions
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less than d, we shall prove it for d. So suppose V is of dimension d. By Corollary 11.2,
the Zariski closure W of V in K n is of dimension d and we have

W 0 := {x ∈ W : W is smooth of dimension d at x} ⊂ V .

Obviously, W ∗ := W\W 0 is a Zariski closed subset of K n of dimension less than d.
Therefore, Y := V ∩ W ∗ is a regulous closed subset of V of dimension less than d
and

W = W 0 ∪ W ∗ ⊂ V ∪ W ∗ ⊂ W.

Since the restriction f |Y satisfies condition (*), it is a regulous function on Y by the
induction hypothesis. It is thus the restriction to Y of a regulous function F on K n

(Corollary 13.3 to Cartan’s theorem B).
Further, the function f and the restriction F |W ∗ can be glued to a function

g : W = V ∪ W ∗ → K , g(x) =
{

f (x) : x ∈ V
F(x) : x ∈ W ∗

which satisfies condition (*) as well. Now, it follows fromTheorem 10.2 that g extends
to a regulous function G on K n . Since f is the restriction to V of the function G which
is regulous, so is f , as required. �	
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