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Abstract 

Background: Melting point (MP) is an important property in regards to the solubility of chemical compounds. Its 
prediction from chemical structure remains a highly challenging task for quantitative structure–activity relationship 
studies. Success in this area of research critically depends on the availability of high quality MP data as well as accurate 
chemical structure representations in order to develop models. Currently, available datasets for MP predictions have 
been limited to around 50k molecules while lots more data are routinely generated following the synthesis of novel 
materials. Significant amounts of MP data are freely available within the patent literature and, if it were available in the 
appropriate form, could potentially be used to develop predictive models.

Results: We have developed a pipeline for the automated extraction and annotation of chemical data from pub-
lished PATENTS. Almost 300,000 data points have been collected and used to develop models to predict melting 
and pyrolysis (decomposition) points using tools available on the OCHEM modeling platform (http://ochem.eu). A 
number of technical challenges were simultaneously solved to develop models based on these data. These included 
the handing of sparse data matrices with >200,000,000,000 entries and parallel calculations using 32 × 6 cores per 
task using 13 descriptor sets totaling more than 700,000 descriptors. We showed that models developed using data 
collected from PATENTS had similar or better prediction accuracy compared to the highly curated data used in previ-
ous publications. The separation of data for chemicals that decomposed rather than melting, from compounds that 
did undergo a normal melting transition, was performed and models for both pyrolysis and MPs were developed. 
The accuracy of the consensus MP models for molecules from the drug-like region of chemical space was similar to 
their estimated experimental accuracy, 32 °C. Last but not least, important structural features related to the pyrolysis 
of chemicals were identified, and a model to predict whether a compound will decompose instead of melting was 
developed.

Conclusions: We have shown that automated tools for the analysis of chemical information have reached a mature 
stage allowing for the extraction and collection of high quality data to enable the development of structure–activity 
relationship models. The developed models and data are publicly available at http://ochem.eu/article/99826.
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Background
The prediction of physicochemical properties is impor-
tant in the pharmaceutical industry for structure design 
and for the purpose of optimizing ADME properties. 
Physicochemical parameters such as logP, pKa, logD, 
aqueous solubility and many others impact not only 
drug-related properties but also environmental chemi-
cals such as surfactants, wetting agents and so on [1, 2]. 
The modeling of these properties is best facilitated by 
obtaining large, structurally diverse, high-quality data-
sets. The aggregation and curation of such datasets can 
be very exacting in terms of extraction of the data from 
the literature. Redrawing of chemical compounds can be 
difficult and in many cases they are not available as struc-
ture depictions but only in the form of chemical names. 
Validating the measured property in any meaningful way 
is difficult but manual inspection can highlight obvious 
errors with the parameters as captured (vide infra).

Text-mining for the identification and extraction of 
properties may offer an opportunity to assemble rather 
large databases of properties harvested from the appro-
priate corpora. One of the authors (D.L.) has extensive 
experience with the extraction of chemistry-related 
information from PATENTS and previous investigations 
have examined the extraction of chemical reactions [3]. 
Initial investigations of chemical property measurements 
contained within the USPTO patent collection indicated 
the presence of a large number (>100,000) of melting 
points (MPs), typically within semi-structured experi-
mental sections.

The theme of this memorial issue is focused on the 
contributions of Jean-Claude Bradley to Open Science 
and Dr. Bradley had a particular interest in the quality 
of MP data and he invested significant efforts in investi-
gating this property. His interests were in regards to the 
value of MP to help in predicting temperature-dependent 
solubility for solvent selection [4] as well as assembling 
measured experimental properties as part of an Open 
Notebook Challenge [5]. He was particularly interested in 
the quality of experimental MPs reported in the literature 

and those reported by chemical vendors [6]. He had also 
worked tirelessly to make a large data collection of over 
20,000 MPs available as Open Data [7]. In collaboration 
with Dr. Andrew Lang, one of the editors for this memo-
rial issue, he made available MP web services [8] provid-
ing access to open models for prediction [9] and, prior to 
his passing, published an open dataset of 28,645 meas-
urements for the community to use to develop models 
[10].

The prediction of MP remains an important task for 
cheminformatics studies for a number of reasons [2, 
11–17]. It specifically has relevance in the prediction of 
toxicity but has been observed to correlate with other 
physical properties such as boiling point, vapor pressure 
and water solubility [1, 18]. As a result the MP has been 
used as a descriptor in some of the estimation methods 
used to predict these properties [1, 19] and therefore the 
use of reliable MP data, or accurate estimates obtained 
from high-performing models, can improve the accu-
racy from such methods. With this in mind we decided 
to investigate the data mining of property data from 
an openly available patent corpus, with a focus on the 
extraction, curation and modeling of MP data.

Datasets utilized in this work
Data extracted by mining patent literature
The workflow for extracting compound/MP associa-
tions is summarized in Fig.  1. All United States Patent 
and Trademark Office (USPTO) PATENTS available as 
structured text were downloaded from ReedTech [20] 
for the period 1976–2014. Patent grants were available 
for the entirety of this period, while patent applications 
were available only from 2001 onwards. Complicating 
data extraction, the format used by the USPTO has var-
ied over time with four significantly different formats 
being employed (one textual, one SGML and two XML 
formats). To simplify further handling, the textual and 
SGML formats were converted to an equivalent XML 
representation using a LeadMine [21] library func-
tion. From these heterogeneous XML representations, 

Fig. 1 Workflow for extraction of melting point data
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headings and paragraphs were extracted from the 
description section of each patent. The paragraphs are 
associated with the paragraph number noted in the XML, 
hence simplifying relating extracted data back to its loca-
tions in the original patent. From this point the work-
flow is the same for all formats of patent. The headings 
and paragraphs were grouped into experimental sections 
using the methodology described by Lowe [3]. LeadMine 
was then used to identify chemical entities and MPs.

The association of MPs that are in close proximity to 
a chemical entity (e.g. in a bracket after the chemical), 
was achieved using a customized version of Chemi-
calTagger [22]. This customization consisted of adding 
support for tokens containing spaces (such that a MP 
measurement could be treated as a single token) and 
the integration of LeadMine to identify chemical enti-
ties and MPs. ChemicalTagger associates properties 
with chemical entities using a grammar that describes 
the syntax of a chemical entity with associated chemical 
properties. In many experimental sections the associa-
tion of the MP with the synthesized compound is only 
implicit from the context, i.e. the MP appears at the end 
of the experimental section along with any other char-
acterization data. In these cases the assumption is made 
that the MP applies to the compound being synthesized 
in that paragraph (Fig. 2).

Melting point recognition
Melting points are efficiently identified by LeadMine 
using a finite state machine compiled from a formal 
grammar. The same grammar is also used to generate a 
parser for identifying the different parts of a MP declara-
tion. The grammar can be summarized as:

FromLiterature? MeltingPoint Qualifier? 
(Value|Range|MeasurementError) OutcomeQualifier?

Where:

Term Examples of text matched

FromLiterature “lit.”

MeltingPoint “mpt”, “melting point”, “m.p.”

Qualifier “>”; “approximately”

Value “75 °C”, “200 °F”, “one hundred 
degrees Celsius”

Range “184–186”, “191.5–192.4 °C”

MeasurementError “50 ± 1 °C”

OutcomeQualifier “decomp.”, “with decomposition”, 
“subl.”

As the grammar accepts numbers both as numerals 
and decimals, and qualifiers both as symbols and words, 
the different lexical ways of representing a MP are col-
lapsed into a normalized form that is used for further 
processing. Values expressed as measurement errors 
were converted to ranges and all temperatures were con-
verted to degrees Celsius. The original text was retained 
for reference.

Extracted data
The associations between molecules and melting/decom-
position/sublimation points were serialized to SDF for-
mat [23] (Fig. 3).

Suspicious value detection
Melting points that could be automatically detected as 
being likely to be incorrect were flagged in the SDF. This 
flag was set for cases where:

  • Value was >500 °C;
  • Value was a range wider than 50 °C;
  • Value was a range where the second temperature was 

lower than the first temperature.

Fig. 2 Example of typical experimental section with entities machine-annotated. The entities to associate are shown above
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These heuristics aimed to detect cases where the patent 
text was likely to be in error e.g. typo, missing decimal 
point, missing hyphen etc.

Data filtering
In total 498,985 associations were found in patent grants 
and 172,886 associations were found in the patent appli-
cations. 1498 and 426 associations, respectively, were 
excluded from the two sets by checking for the aforemen-
tioned suspicious value flag. Additionally all compounds 
that were mixtures i.e. contained more than one con-
nected component, were excluded.

A large number of MP measurements were duplicated 
across different PATENTS. To avoid duplicates we elimi-
nated records with ΔT ≤ 1 °C differences in reported MP 

values, which were considered as full duplicates. This pro-
cedure eliminated N  =  366,532 associations. All other 
values were considered as multiple measurement values 
for the same molecule. For each molecule we selected 
one record, which had MP near to the median experi-
mental value for it. This allowed us to preserve the link 
to the originating patent, which could then be revisited 
in case of a problem with each particular record. We also 
excluded all molecules, which failed with the descrip-
tor calculation programs. The final number of records is 
shown in Table 1.

Experimental accuracy of data
The duplicated measurements N =  18,058 were used to 
estimate the experimental accuracy of MP measurements, 

Fig. 3 Example of two entries from the resultant SDF

Table 1 The number of  compounds and  average properties of  molecules of  the analyzed datasets and  their drug-like 
subsets

MW molecular weight, NA number of non-hydrogen atoms

Dataset Type Whole set Drug-like set, % 
of the total set

N Average

T (°C) MW NA

PATENTS Training 241,958 159 357 25 89

 Decomposing Training 13,785 209 358 25 76

 Non-decomposing Training 228,173 155 357 25 93

Bergström Validation 277 151 295 20.8 92

Bradley Validation 2878 59 174 11.4 53

OCHEM Validation 21,832 117 249 16.7 73

Enamine Validation 22,449 143 223 14.9 91

COMBINED Validation, merge of four sets 47,436 126 233 15.6 81
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which was estimated to be σ = 38 °C. Considering that the 
procedure to eliminate duplicated records eliminated also 
molecules having ΔT ≤ 1 °C measured in different experi-
ments, we corrected the observed distribution of values 
for ΔT = 0 and 1 by using the same number of counts as 
observed for ΔT = [2, 3] °C interval. This procedure pro-
vided σ = 35 °C, which can be used as an average estima-
tion of the experimental accuracy of MP measurements 
across multiple experiments. This value incorporated the 
uncertainties due to polymorphism of chemical com-
pounds, uncertainty and difficulties with experimental 
measurements as well as possible text-mining errors. For 
example, the distribution of MP values from PATENTS 
literature had peaks at 250 and 350 °C thus indicating that 
measurements were either stopped at these temperatures 
and threshold values were reported or simply that at these 
temperatures an estimated value within a fairly broad 
range was entered (i.e. an accurate MP was not required 
per se, see Fig. 4). All of these uncertainties decreased the 
accuracy of MP measurements.

It is interesting that the experimental accuracy 
depended on the MP value. A binned plot of the accuracy 
as a function of the MP temperature indicates that meas-
urements with higher and lower temperatures were less 
reproducible (Fig. 5). The measurements in the drug-like 
region of [50, 250] °C were estimated to have an experi-
mental measurement error of σ = 32 °C.

Validation datasets
Four other MP data sets were used to validate the models 
developed in this work. These datasets were taken from 
our previously published study [11]. The “Bergström” 
dataset contained drug-like molecules [17]. The “Brad-
ley” dataset [24] contains doubly curated data collected 

by Open Notebook science community members. The 
OCHEM and Enamine datasets [11] comprised MP 
values collected from datasets available via the Online 
Chemical Modeling Environment (http://ochem.eu) and 
provided by Enamine Ltd. These datasets did not have 
any common overlapping compounds. The compounds 
overlapping with any of these four sets were removed 
from the PATENTS set. We also used a combined data-
set (COMBINED) composed of the OCHEM, Enamine, 
Bradley and Bergström sets to simplify analysis of perfor-
mances for several studies.

Drug-like subsets
In our previous study we showed that compounds with 
MP in the range 50–250  °C contributed the majority of 
compounds in drug-like collections [11]. Table  1 and 
Fig.  4 confirm this observation and indicate that about 
90  % of compounds from the PATENTS, Enamine and 
Bergström data sets are covered by this temperature 
interval. Indeed, it is unlikely to find in a drugs dataset 
compounds with MPs below room temperature (i.e. liq-
uids) or with very high MPs, e.g. >500  °C. The former 
may have low affinity and specificity while the latter are 
likely to be non-soluble. Therefore, the pharma industry 
is mainly working with compounds from the “drug-like” 
region of chemical space and the accuracy of prediction 
for compounds from this region is the most important 
for drug discovery.

The statistics of all datasets is provided in Table  1. 
There is a correlation between the average molecular 
weight (MW) and average MP of compounds. This result 
is in agreement with the known problem of decreas-
ing solubility of compounds in drug discovery for large 
molecules. The compounds with MP from the PATENTS 
dataset contributed molecules with the largest MW and 
thus MP. The compounds from the Bergström dataset 
had the second largest MPs. The Bradley dataset, which 
was composed of many general chemical industry com-
pounds, had the smallest average MW and MP values.

Methods
The consensus modeling approach, which was also 
applied in our previous studies [11, 25, 26], was used to 
develop models. The descriptors were calculated using 
13 descriptor packages, which cover different represen-
tations of chemical structures from simple fingerprints 
and a count of chemical groups, to packages offering a 
wide variety of descriptors types, such as Dragon [27] 
and Adriana [28]. All of these descriptor types are imple-
mented within the OCHEM platform [29]. Below we 
briefly overview the used descriptors (see also Table  2). 
The detailed information about each set of descriptors 
can be found on the OCHEM [30].

Fig. 4 Data distribution in the analyzed sets. The dashed lines indicate 
a defined drug-like region, which covers the MP of >90 % of drugs 
(Bergström) and chemical provider (Enamine) set as well as 87 % of 
the compounds from the PATENTS set

http://ochem.eu
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E-state [31] refers to electro-topological state indices 
that are based on chemical graph theory. E-state indices 
are 2D descriptors that combine the electronic charac-
ter and topological environment of each skeletal atom 
and bond. The environment of atoms and bonds deter-
mine their type. In this study after a preliminary analy-
sis we found that E-state indices and just counts of atom 
and bond types defining E-state indices produced similar 
results. Since development of models with E-state counts 
was faster, the counts were used.

In silico design and data analysis (ISIDA) fragments
These 2D descriptors are calculated with the help of the 
ISIDA fragmenter tool [32]. Compounds are split into 
substructural molecular fragments (SMF) of (in our case) 
lengths 2–4. Each fragment type comprises a descriptor, 
with the number of occurrences of the fragment type as 
the respective descriptor value. In this study, we used the 
sequence fragments composed of atoms and bonds.

GSFragments
GSFrag and GSFrag-L [33] are used to calculate 2D 
descriptors representing fragments of length k = 2 . . . 10 
or k = 2 . . . 7, respectively. Similar to ISIDA, descriptor 
values are the occurrences of specific fragments. GSFrag-
L is an extension of GSFrag: it considers labeled vertices 
in order to take heteroatoms of otherwise identical frag-
ments into account.

CDK v. 1.4.11 (3D)
The Chemistry Development Kit (CDK) [34] is an 
open source Java library for structural chemo- and 

bio-informatics. It provides the descriptor engine, 
which calculates 246 descriptors containing topologi-
cal, geometric, electronic, molecular, and constitutional 
descriptors.

Dragon v. 5.5 (3D)
Dragon is a software package from Talete [27] that cal-
culates 3190 molecular descriptors. They cover 0D–3D 
space and are subdivided into 29 different logical blocks. 
Detailed information on the descriptors can be found on 
the Talete website (http://www.talete.mi.it/).

ChemAxon (v. 5.10.4) descriptors (3D)
The ChemAxon [35] Calculator Plugin produces a variety 
of properties. The properties encoded by numerical or 
Boolean values were used as descriptors [29]. They were 
subdivided into seven groups, ranging from 0D to 3D: 
elemental analysis, charge, geometry, partitioning, proto-
nation, isomers, and others.

Adriana.Code v.2.2.6 [28] (3D), developed by Molecular 
Networks GmbH, calculates a variety of physicochemical 
properties of a molecule. The 211 resulting descriptors 
range from 0D descriptors (such as MW, or atom num-
bers) to 1D, 2D, and various 3D descriptors.

Mera/Mersy (3D) developed by chemosophia [36] 
included geometrical, energy characteristics, molecular 
symmetry and chirality and physicochemical descriptors 
[37].

QNPR descriptors
Quantitative Name Property Relationship (QNPR) are 1D 
descriptors, which are directly based on IUPAC names 

Table 2 Analyzed sets of descriptors

a The dominating type of descriptors within the corresponding package
b Average number of zero entries per one non-zero value of the descriptor matrix

Package  
name

Type of  
descriptorsa

Number of  
descriptors

Matrix size,  
billions

Number of  
descriptors after filtering

Non-zero values, 
millions

Sparsenessb

EFG Binary 595 0.18 347 3.1 33

QNPR Integer 1502 0.45 1040 6.3 49

MolPrint Binary 688,634 205 197,367 8.1 7200

E-state count Float 631 0.19 487 10 14

Inductive Float 54 0.02 39 11 1

ECFP4 Binary 1024 0.31 1021 12 25

ISIDA Integer 5886 1.75 2275 18 37

ChemAxon Float 498 0.15 114 23 1.5

GSFrag Integer 1138 0.34 469 24 5.7

CDK Float 239 0.07 182 27 2

Adriana Float 200 0.06 139 32 1.3

Mera, Mersy Float 571 0.17 235 61 1.1

Dragon Float 1647 0.49 911 183 1.5

http://www.talete.mi.it/
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or SMILES text string representation of molecules. The 
descriptors are calculated by splitting the respective 
string of all possible continuous substrings of a fixed 
length. In our study the substrings of length one to three 
characters calculated by splitting SMILES structures 
were used. The minimum frequency of an occurrence of 
each substring within the dataset was five.

ToxAlert [38] extended functional groups (EFG) [39] 
included 583 groups covering different functional fea-
tures of molecules. The groups are based on classifica-
tions provided by the CheckMol software [40], which was 
extended to cover new groups, in particular heterocycles 
[39].

ECFP4 descriptor circular fingerprints [41] were calcu-
lated using ChemAxon software v. 5.10.4. These descrip-
tors are widely used as part of the Pipeline Pilot software 
[42].

MolPrint descriptors [43] are circular fingerprints 
which employ Sybyl MOL2 atom types. They are based 
on counts of MOL2 atom types around each heavy atom 
of the molecule and enumerate all atom environments 
present in a molecule.

Machine learning methods
In our previous work [11] we found that ASNN [44] and 
SVM [45] methods provided significantly higher accu-
racy of MP predictions compared to other tested meth-
ods while the accuracy of models developed with both 
methods was similar.

The same two approaches were initially used in this 
study. However, the training of large datasets requires 
significant computational resources and can take a long 
time. The LibSVM supports parallelization, which can be 
easily enabled by editing a few lines of code and linking 
the code with appropriate libraries. This feature was used 
for LibSVM and all calculations were performed on serv-
ers with up to 32 cores simultaneously. Considering that 
all models were validated using a fivefold cross validation 
approach, we were using up to 6 ×  32 =  192 cores per 
one task simultaneously thus allowing fast processing of 
the data. The implementation of ASNN did not offer this 
feature. Therefore, after initial analysis LibSVM was used 
to develop all models using radial basis function (RBF) 
kernel. The most recent version LibSVM v. 3.20 was used 
[46].

Optimization of LibSVM parameters
The application of the SVM method required an optimi-
zation of three parameters, C, γ and ε. The LibSVM man-
ual proposes to use a grid search based on an internal 
cross-validation (CV) procedure to optimize them. This 
grid optimization procedure is implemented as part of 
OCHEM. The full run includes 1693 individual LibSVM 

calculations using different combinations of three ana-
lyzed parameters. This step requires a significant com-
putational time. Moreover, it is also parameterized: the 
user should indicate which fraction of data should be 
used for the optimization to speed up the search. When 
using 1  % of a randomly selected training data set we 
found that, surprisingly, the same parameters (C =  64, 
γ = 1, ε = 0.00391) were optimal for 10 out of 13 descrip-
tor sets. However, parameters selected with such a small 
data subset could be suboptimal for the whole dataset. 
Considering that the selection of optimal parameters 
for this dataset practically did not depend on the used 
descriptors, we decided to perform the optimization 
using 50  % of the training set for only one descriptors 
set. The EFG were selected as the set having the smallest 
number of non-zero values (Table  2). The optimization 
required about 15,000 core-hours (>600 days of calcula-
tions on a single-core computer) and identified another 
set of parameters (C =  256, γ =  1, ε =  16), which was 
used for the final analysis. This second set of parameters 
provided on average smaller training and validation set 
errors and calculated models with the smaller number of 
support vectors. For example, models based on Dragon 
descriptors were 316 and 219 Mb (in a zipped file format) 
when developed with the first and the second set of SVM 
parameters, respectively.

Unsupervised descriptors selection
Before the development of models, descriptors, which 
had two or fewer non-zero values for the whole training 
set were eliminated. Moreover, descriptors which were 
inter-correlated with a linear correlation coefficient of 
R2  >  0.95 were grouped together and only one descrip-
tor from the group was selected for model development. 
This unsupervised filtering does not use any informa-
tion about the target property and thus does not intro-
duce selection bias [47], which could provide chance 
correlations.

Validation of models
The models developed using the PATENTS dataset were 
validated using fivefold CV as described in details else-
where [48]. In this approach each model is built using 
4/5 of the compounds from the initial training set. The 
remaining 20 % of compounds are predicted and are used 
to estimate the accuracy of the models. By repeating the 
model building five times one can calculate predictions 
for all molecules from the initial dataset. These predic-
tions are used to estimate the CV accuracy of the model. 
The final model is built using all training set data.

For classification of molecules that melt and decom-
pose we used bagging validation [49]. Since the number 
of decomposing molecules was ca. 6 % of the dataset and 
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thus much smaller compared to non-decomposing ones, 
a specific implementation, so called stratified bagging 
learning, was selected [50]. It is one of the most success-
ful methods to work with an imbalanced dataset. In the 
stratified bagging approach the molecules of the small-
est class are selected using sampling with replacement 
to form a set of the same size as the class is. The same 
procedure is also used for the larger class but the number 
of selected samples is limited to that of the smaller class. 
The resulting training set used is thus double the size of 
the number of samples in the smaller class. The selection 
of samples is repeated for each developed model used in 
the bagging protocol. The predictions are calculated for 
samples which were not included in the respective train-
ing sets and are averaged over all calculated models. The 
bagging models were developed using N = 64 models.

Consensus modeling
Consensus modeling was shown to be an essential 
approach to calculate high prediction accuracy for the 
previous study [11]. A simple average of models

where n is the total number of models and yi is an indi-
vidual prediction was used to develop the consensus 
model in that study. In this study the individual models 
were developed each with 1 of 13 sets of descriptors, 
which are described above. This approach contributed 
highly predictive models, as reported in the previous 
studies [11, 25, 26, 51–53], including Rank-I submission 
models [52, 53] for the ToxCast challenges organized by 
EPA and NIH.

In this study two other additional methods were also 
analyzed. The first approach was averaging by model 
accuracy

where RMSE was the root mean squared error of the 
model. In the second approach a consensus model was 
developed using the predictions of individual mod-
els as descriptors for a multiple linear regression model 
(MLRA).

Handling of intervals and ranges
A majority of MP values were reported as intervals or 
ranges. We used the average or threshold value for the 
development of the LibSVM models.

Reproducibility of models
The OCHEM web site was developed with the idea of 
delivering full reproducibility of modeling efforts. Thus, 

(1)ȳ =
1

n

∑

yi

(2)ȳ =
∑ wiyi

√

∑

(wi)2
; wi = 1/RMSE

each model has details of the configuration which was 
used to create it. The configuration includes options for 
data standardization, descriptor calculation and pre-
processing as well as the parameters for the configura-
tion of the machine learning methods, e.g. LibSVM in 
this study. The configuration can be exported in an XML 
human-readable format using the “Export configuration 
XML” link available on the model profile. If a user wishes 
to exactly reproduce the model the exported configura-
tion can be uploaded to the model development web 
page (OCHEM menu: “Models”/“Create a model”) using 
“Import an XML model template” or just use the config-
uration of the previous model (“Use another model as a 
template”). Once one of these options is used the model 
can be submitted to perform calculations without a need 
to specify any other parameters and will use exactly the 
same workflow as the original model. The only excep-
tion is the Consensus model which will require repeat-
ing the steps used for the model development manually 
(the options from XML configuration will be automati-
cally pre-set), due to the technical differences in the 
implementation of this model. It should be noted that 
the calculation of large models requires significant CPU 
resources. Users are therefore allowed to submit tasks 
with a maximum number of molecules which is propor-
tional to the number of bonus points they have collected 
(i.e. during the process of registering, uploading data, 
developing and publishing models and participating in 
data moderation). The limitation on the number of mole-
cules per task is also useful to prevent possible challenges 
from inexperienced users who can initiate very large cal-
culations by mistake. As an example, a non-registered 
and validated registered user can submit models with up 
to 1000 and 10,000 molecules per task, respectively. It is 
always possible to contact the web administrator (first 
author of the manuscript) to increase this limit for some 
specific projects. A detailed protocol used for the devel-
opment of the consensus MP model for the PATENTS 
dataset is provided as Additional file 1.

Automatic filtering of outliers
OCHEM provides tools for the automated recognition 
and filtering of errors. It assumes that the distribution of 
errors, i.e. differences between predicted and experimen-
tal values, is governed by a Gaussian distribution N(0, σ) 
with a dispersion which equals the σ = RMSE. Molecules 
with large errors between the predicted and calculated 
MP values are unlikely to be produced with a Gaussian 
distribution and are considered to be outliers. The prob-
ability of finding a molecule with an error between the 
predicted and measured values of larger than two σ is 
p  <  0.05. For the dataset with N =  229k molecules one 
can expect to have 22.9 ≈ 23 molecules for p = 0.0001. 
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For the model with RMSE  =  40  °C this value corre-
sponds to errors which are larger than about 3.8σ and 
thus 150  °C between predicted and calculated values. If 
instead of N = 23 we detect e.g. l N = 163 molecules with 
such large errors, we can assume that the vast majority 
of outliers are either experimental errors or there are 
some problems with the data or with the model itself. If 
the outliers are indeed errors then their exclusion can 
improve the quality of the models. Of course, by remov-
ing the outliers we will also remove a number of “good” 
data points (in this case N = 23), which could have large 
errors due to the statistical properties of the dataset. 
Contrary to the removal of outlying data, the removal of 
“good” molecules will decrease the data set size and thus 
will decrease the quality of the model. The ratio of iden-
tified outliers to that expected by chance corresponds to 
the signal-to-noise ratio (SNR). For the considered exam-
ple the SNR is 163/23  ≈  7 i.e. out of seven molecules 
identified for this p-value, only one can be explained by 
statistical properties of the data. Thus, for this SNR the 
removal of seven outlying points will also remove one 
“good” data point.

SetCompare
This utility uses a hyper-geometric distribution to iden-
tify the probability that observed the ratios of a particular 
feature (e.g. alert) in two analyzed sets could happen by 
chance [25].

Results
The modeling of large datasets represents many chal-
lenges with respect to the required computational time, 
storage of descriptors and the calculated model as well 
as the selection of appropriate machine learning algo-
rithms, which can handle such data. The descriptor pack-
ages analyzed in this study calculated different numbers 
of descriptors (see Table 2). The largest matrix was con-
tributed by MolPrint descriptors. It had an initial size 
of 688, 634 ×  197, 367–200 ×  109 (0.2 trillion points) 
which decreased to 60 billion after the unsupervised fil-
tering. The training of a model with hundred thousand 

descriptors is infeasible with computational algorithms, 
which operate with the full matrix. Examples of such 
algorithms include neural networks, multiple linear 
regression analysis and partial least squares.

However, the matrix produced by MolPrint descrip-
tors is a very sparse one: only one out of more than 7000 
descriptor entries was non-zero (Table  2). This matrix 
had the third smallest number of non-zero descriptors 
after the EFG and QNPR. Such sparse data can be ana-
lyzed using kernel-based methods. These approaches 
deal with the pairwise similarity of molecules and thus 
can efficiently work with sparse data by performing cal-
culations using non-zero entries only. The support of a 
sparse data format is efficiently realized in LibSVM mak-
ing this method easily applicable to this type of data. 
OCHEM software also supports a sparse data format 
thus making it possible to fully utilize the power of the 
LibSVM method.

The EFG, despite their high dimensionality, had only 3.1 
million non-zero values, and provided the fastest calcula-
tions. The calculation of one model for these descriptors 
(without optimization of LibSVM parameters) required 
about 120 core-hours. The Dragon descriptors contained the 
largest number >183 million non-zero values, and required 
the longest calculation time of more than 1000 core hours.

Comparison of the accuracy of models developed using 
PATENTS dataset with previous models
As in our previous study [11] the model developed using 
E-state indices calculated the lowest RMSE for the train-
ing set and provided one of the best results for the four 
validation sets (see Additional file  2: Table S1, Table  3). 
The largest errors of models were calculated using 
ECFP4, MolPrint and Inductive descriptors, which had a 
cross-validation RMSE of >50 °C for the training set.

A consensus model was built as a simple average 
of all models with an exception of the three afore-
mentioned models, which had CV RMSE >50  °C. It 
decreased the RMSE for CV and test set predictions in 
the range of 1–2  °C compared to the results based on 
E-state descriptors. This model in its design (a simple 

Table 3 RMSE of models for prediction of different sets

a Values in parentheses are calculated for compounds with experimental MP values in [50; 250]  °C “drug like” interval. They had the same or lower confidence 
intervals, which are not indicated

Method PATENTS set Bergström Bradley OCHEM Enamine COMBINED

PATENTS E-state 38.3 ± 0.1 (36.1)a 34 ± 1 (31) 62 ± 1 (33.7) 48.5 ± 0.4 (36.2) 40.8 ± 0.3 (35.2) 45.9 (35.6)

PATENTS Consensus all ten models 37.8 ± 0.1 (34.1) 34 ± 1 (31) 78 ± 1 (32.2) 54.2 ± 0.4 (34.1) 40.4 ± 0.3 (33.9) 50.5 (33.9)

PATENTS Consensus five best models 37.0 ± 0.1 (33.7) 33 ± 1 (31) 71 ± 1 (31.3) 50.1 ± 0.4 (33.8) 39.4 ± 0.3 (33.5) 46.9 (33.6)

OCHEM consensus – 34 ± 1 (31) 33.9 ± 0.6 (33.1) – 40.1 ± 0.3 (34.6) –

Enamine consensus – 36 ± 2 (33) 73 ± 1 (33.9) 51.9 ± 0.4 (36.6) – –
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consensus average of ten individual models) was the 
best match to the model developed in our previous 
study thus allowing their straightforward compari-
son. The new model provided similar or lower errors 
for the drug-like subsets compared to the consensus 
models developed with individual OCHEM or Enam-
ine sets. For example, a consensus model developed 
with the OCHEM dataset predicted drug-like subsets 
of the Bradley and Enamine set with RMSEs of 33.1 and 
34.6  °C, respectively. The model developed with the 
PATENTS dataset predicted them with RMSEs of 32.2 
and 33.9  °C, respectively. For the Enamine dataset the 
absolute difference in model errors RMSE =  0.7  °C is 
significant (p  <  0.05) due to the large number of mol-
ecules in this set.

The accuracy of the consensus model developed using 
the PATENTS dataset was low for the whole Bradley set 
despite it having a low RMSE for the drug-like subset of 
this set. This result was due to the absence of molecules 
with MP <0 °C in the PATENTS set. Indeed, there were 
only few molecules with an MP <0  °C in this set and, 
moreover, most (all) of these molecules were likely to 
be experimental errors (see below the section regard-
ing the filtering of outliers). Because of the insufficient 
coverage of this region of values the model was unable 
to predict molecules with low MP values, which con-
stituted about 25  % molecules of the Bradley set. The 
low accuracy of the model for Bradley set (RMSE = 78) 
is in agreement with the similar error (RMSE = 73) of 
a consensus model based on the Enamine dataset (see 
Table 3) [11]. The Enamine set also did not have com-
pounds with MP <0  °C and a model based on this set 
failed to predict the whole Bradley set despite the fact 
that it had excellent prediction ability for its “drug like” 
subset (Table 3).

There were about 5 and 6  % molecules with MP 
>250  °C in the PATENTS and COMBINED sets respec-
tively. The PATENTS consensus model calculated a large 
CV RMSE = 61 °C and an even higher RMSE = 74 °C for 
the PATENTS and COMBINED subsets respectively. The 
prediction of compounds from this temperature range 
therefore remains a challenging task.

This analysis demonstrates that models developed 
using text-mined MP data from PATENTS provide an 
excellent prediction performance, similar or even signifi-
cantly better than the results based on manually curated 
data used in previous studies. Since the patent corpus 
continues to grow quickly we can envisage that if the 
workflow and data processing pipeline is applied on an 
ongoing basis then the dataset will continue to grow and 
it will be at a much faster rate than manual extraction 
and curation will allow. While this procedure has only 
been reported for MP extraction and modeling in this 

work we can imagine utilizing the same procedure for 
other physicochemical properties such as multi-solvent 
solubilities, logP and other available parameters. The suc-
cess for these parameters is yet to be proven.

Analysis of different methods to perform consensus 
averaging
A simple consensus averaging is often used by many 
researchers, including ourselves, to improve the qual-
ity of models by agglomerating predictions of individual 
models [11, 48, 54]. Is it possible to achieve even better 
results by using more sophisticated averaging methods? 
We analyzed three approaches described in the methods 
section by applying them to n-best models, which were 
ranked in order of decreasing CV RMSE. The accuracy of 
predictions of the various models was estimated for the 
drug-like subset of the PATENTS and COMBINED set.

The average of five models based on E-state, Fragmen-
tor, CDK, ChemAxon and QNPR descriptors calculated 
the lowest RMSE of 33.7  °C for drug-like subsets of the 
PATENTS and COMBINED datasets and thus pro-
vided an improvement of 0.4 °C compared to the results 
obtained when averaging ten models.

The models calculated using the weighted average had 
exactly the same performance for all subsets up to the 
average of five models. Indeed, since the accuracies of 
individual models were very similar and their weighted 
combination did not improve results compared to the 
simple average. For combinations of a large number 
of models, the weighted average sometimes provided 
smaller RMSEs of about 0.01 log units, which was not 
significantly different compared to the simple average.

The application of MLRA regression on the predicted 
values did not improve this result and the same RMSE 
was calculated for the drug-like subset of the COM-
BINED set. Thus, both studied strategies did not provide 
an improvement compared to the use of a simple arith-
metic average of models.

The important result of this analysis was that the aver-
aging of few models with the highest prediction ability 
could improve results compared to the averaging of all 
models.

Analysis of compounds, which decompose during melting
A number of data points (see Table  1) from the PAT-
ENTS collection contained annotation about the thermal 
decomposition (pyrolysis) of chemical structures. The 
MW and number of non-hydrogen atoms of decompos-
ing structural were practically identical to other mol-
ecules. The CV RMSE for a subset of molecules that 
decomposed was 47.7  °C, i.e. significantly larger com-
pared to the 36.5  °C calculated for the subset of mol-
ecules without the decomposition. The median MP for 
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decomposing compounds was 210  °C as compared to 
155  °C for the whole dataset (Table  1). Thus, the lower 
prediction accuracy for these compounds could partially 
be due to the higher average MP, which is more difficult 
to predict.

The SetCompare tool identified that molecules con-
taining acids (carboxylic, phosphonic and α-amino 
acids), primary amines, tetrazoles, and a number of 
other groups, were overrepresented in the group of com-
pounds, which decomposed with the heating. The iden-
tified overrepresented groups are available for review 
online at http://ochem.eu/article/99826. Phosphonic 
acids and α-amino acids were among the most overrep-
resented groups in the set of decomposing compounds. 
They were present in only 0.4 % compounds (0.1 % phos-
phonic and 0.3 % α-amino acids) in the whole set but con-
tributed about 4 % of all compounds in the decomposing 
set. Thus, the presence of one of these groups increased 
the probability of a compound to decompose by more 
than ten times. Compounds with a nitroso group were 
also about 9 times overrepresented in the decomposing 
set. The propensity of these three groups to decompose 
is well known. Already Dunn and Brophy [55] studied 
the decomposition of the amino acids and their contri-
bution to the uncertainty associated with determination 
of their MPs. The decomposition of phosphonic acid and 
its esters has been actively studied in toxicological chem-
istry since it results in the release of highly toxic phos-
phine, PH3 [56]. Compounds with nitroso groups are 
well known for their ability to decompose with a release 
of high energy, which makes them very important for the 
development of explosives (including dynamite).

The propensity of a compound to decompose versus 
melt is different properties. We therefore expect that 
better models should be calculated by considering each 
property independently.

Modeling to predict compound decomposition
A model to predict the decomposition point of molecules 
was developed using the same protocol and SVM param-
eters selected for the whole PATENTS set. As with the 
analysis of the whole set of compounds the best accuracy 

of the individual model was calculated using E-state 
descriptors (RMSE  =  43.2  °C). A consensus model 
based on the average of five models calculated the low-
est RMSE =  42.3  °C. This error was lower than the CV 
RMSE calculated for the molecules within the whole 
PATENTS set (Table  4). Indeed, this dataset was more 
internally consistent thus contributing a better predic-
tion ability of the models. However, the higher CV errors 
calculated for the decomposition point indicated that this 
property is even more difficult to predict than MP. This 
model calculated a higher RMSE for prediction of mol-
ecules from both the COMBINED and non-decomposing 
PATENTS set. This result was expected since both prop-
erties describe different physical effects.

Prediction of MP of compounds cleaned 
from decomposing molecules
The models calculated for the MP set with excluded 
decomposing molecules calculated a lower CV RMSE 
and also a lower RMSE for predictions of the COM-
BINED set molecules. The increase in the accuracy of 
0.1–0.3 log units for both sets was not statistically signifi-
cant. Of course, it calculated higher RMSE for the predic-
tion of decomposing molecules.

These results indicate the separation of molecules into 
two classes, i.e. those that decompose and those that do 
not decompose allowed for the development of better 
predictive models for each property. Unfortunately, such 
information is generally unknown for new molecules. 
A classification of compounds into those that decom-
pose and do not decompose during melting could help 
to identify both classes of compounds. Moreover, such 
information can also be useful for the handling of chemi-
cal compounds.

Classification model to predict decomposing compounds
A model was developed using the same sets of descrip-
tors for all molecules from the PATENTS database, 
which were classified on non-decomposing and decom-
posing classes. We used stratified undersampling bagging 
[50] since the decomposing molecules corresponded only 
to 5.5 % and thus the dataset was highly imbalanced. This 

Table 4 RMSE of the consensus models developed with different subsets of the PATENTS set

a Values in parentheses are calculated for compounds with experimental MP values in the [50; 250] °C “drug like” interval

PATENTS subset used to train model PATENTS subsets COMBINED

Decomposing Non-decomposing

Non-decomposing + decomposing 47.7 (40.5)a 36.5 (33.4) 46.9 (33.6)

Decomposing 42.3 (38.9) 64.3 (62.9) 94.9 (70.4)

Non-decomposing 51 (43.1) 36.3 (33.3) 46.5 (33.3)

http://ochem.eu/article/99826
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approach has demonstrated its high prediction power 
also for analysis of large chemical datasets [25, 56, 57]. 
Since the training datasets contained just double the 
number of decomposing molecules the SVM calcula-
tions were fast. Three descriptor sets (E-state, CDK and 
Fragmentor) had balanced accuracy above 75.5  % with 
the best one, E-state, having 78.1  %. The use of WEKA 
[58] implementation of decision trees (J48) improved 
balanced accuracy for Fragmentor descriptors from 
75.8 to 77.6  %. A consensus model based on this deci-
sion tree and two SVM models achieved an accuracy of 
79.6 ± 0.2 % for the whole set. The E-state model or the 
consensus model can be used to predict the fate of the 
molecules.

Detection of outlying molecules
The automated data extraction from PATENTS resulted 
in a number of systematic errors in the data, which 
needed to be cleaned and filtered. As mentioned in the 
methods section a lot of efforts were devoted to clean-
ing up the data set during extraction from the literature. 
Data modeling was very useful during this step. Follow-
ing data upload to OCHEM we performed modeling and 
reviewed outlier molecules. After finding and correct-
ing a common pattern, which was leading to errors, data 
extraction was repeated.

For example, many records in PATENTS had a MP 
reported as “235-2360” (i.e. the decimal point after 236 
was missed). This would be filtered out both due to the 
range being implausibly large and due to one of the val-
ues being implausibly high. Other “errors”, which could 
easily be corrected by a human, e.g. “159-62”, “160-2”, 
“82-82,5” (i.e. a comma instead of a dot) were addressed 
by introducing rules to handle these non-standard forms. 
Actually, the reporting of MP values as intervals, thus 
having two values instead of a single reported value, was 
beneficial to find and eliminate errors in the data.

Some of the problems with collected values were dif-
ficult to recognize and eliminate. They could originate 
from rare types of errors and/or simply be misprints. For 
example, one of the obvious erroneously reported values 
was “Mp. −383  °C”, which was a misprint of the minus 
sign. Another case included missing or incorrect deci-
mal points in the MP values, e.g. “Mp. 236” or “Mp. 236” 
instead of “Mp. 23.6” and “Mp. 236”, respectively, which 
contributed noise to the MP values in the high or low 
temperature region.

Table 3 indicates the performances of consensus mod-
els and individual sub-models calculated for the different 
number of excluded outlying molecules as described in 
the Methods section. The RMSEs for the PATENTS set 
were reported for the whole set, i.e. also including the 
outlying molecules, which were excluded for different 

p values. This was done to have a simpler comparison 
of results. Thus the results for the PATENTS set COM-
BINED prediction of molecules from the validation sets 
and prediction of the outlying molecules using the final 
models developed with the respective training set. The 
reported results and tendencies did not change if we used 
the PATENTS sets with molecules excluded for different 
p-values.

The filtering of outlying compounds for p in the range 
of 0.001–0.01 improved prediction accuracies of individ-
ual models for both the PATENTS and the COMBINED 
sets  (Table  5). The RMSE of most individual models 
decreased by about 0.1–1 °C log units for both sets. The 
degree of improvement depended on the descriptors 
used. Thus, the exclusion of outlying molecules, which 
distorted the training procedures, contributed models 
with higher prediction accuracies.

The improvement in model performance for the whole 
COMBINED set was larger compared to the results cal-
culated for the drug-like subsets. The distribution of the 
excluded outlying molecules filtered using, e.g. p = 0.001, 
indicated a bimodal distribution of their MPs with peaks 
at 60 and 280 °C, i.e. from the regions outside or on the 
border of the drug-like region. Thus, increasing the qual-
ity contributed to the higher prediction accuracy of mod-
els for these regions of chemical space.

It is interesting that similar to our previous study [11] 
the removal of outlying compounds practically did not 
affect the performance of the consensus models for the 
drug-like subsets. Thus, a combination of individual 
models cancelled the biases of individual models intro-
duced by noise in the experimental data. This result con-
firms that consensus averaging is a powerful method to 
increase the accuracy of individual models.

The consensus model provided an improvement, 
ΔRMSE = 1 °C, for the prediction of molecules outside of 
the drug-like space for the COMBINED set thus confirm-
ing the aforementioned conclusions about the influence 
of the outlier filtering on the data quality for molecules 
with this range of MP values.

The number of outlying molecules identified for 
p =  0.1 (N =  21,928) was less than expected for this p 
value, N  =  22,208 for Gaussian distribution. Thus, the 
majority of identified data for this threshold suggested 
that outliers could just appear due to the statistical prop-
erties of the data and their removal can lead to deteriora-
tion of the model quality. This can be observed by the fact 
that RMSEs calculated for the “drug-like” and the whole 
COMBINED set start to increase for this p-value.

The CV RMSE error for the PATENTS set, 36.3  °C, 
was in good agreement with the estimated experimental 
accuracy of σ = 35 °C. Moreover, for the drug-like region 
the estimated σ  =  33.3  °C, and calculated errors, CV 
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RMSE =  33  °C, were also very similar. Thus, the devel-
oped consensus model achieved the experimental accu-
racy of the MP data (Fig. 6). 

Analysis of the final model
The final models were developed by pooling data from 
all five datasets analyzed in this study. The outlying mol-
ecules were filtered using p =  0.01. The final consensus 
model was compared (Table 6) with the model developed 
using the COMBINED set in our previous publication 
[29].

The combination of PATENTS and COMBINED sets 
decreased the RMSE by 0.6 °C for the drug-like subset of 
the COMBINED set as well as also for the four individual 
subsets from the previous study. Thus enlargement of the 
training set increased prediction power of the models 
according to the CV protocol. The RMSE error calculated 
for the Bergström set is the lowest published value for 
this set and it is about 30 % smaller compared to 44.6 °C 
reported in the original study of Bergström et al. [17].

Figure  6 shows that the CV RMSE of the individual 
subsets as a function of temperature increases for all sets 
of high temperatures (MP >250 °C). This decrease in the 
accuracy of predictions for this region is qualitatively 
similar for all five analyzed datasets and is in agreement 
with the decrease of the experimental accuracy of MP 
data as estimated for the PATENTS set. Thus, the accu-
racy of prediction of MP for the high temperature region 
was limited by the accuracy of experimental data.

The experimental accuracy of data was also the limit-
ing factor for the prediction accuracy of the model for 

PATENTS set for MP <50  °C. The predictions of MP for 
the Bradley dataset were of higher accuracy in this region. 
This result can be explained by the different quality of data 
measurements for this data set. Indeed, Dr. Bradley col-
lected for this dataset only measurements that had highly 
reproducible published MP values: the values were only 
kept if there were multiple measurements and the range of 
values was between 0.01 and 5 °C inclusive. It is also inter-
esting that only a few compounds in this set had MP val-
ues of >250 °C, thus indicating the difficulties of identifying 
reproducible measurements for high MP values.

The developed consensus model estimates both the 
applicability domain [59] and the accuracy of the predic-
tion for new compounds based on the CONSENSUS-
STD distance to model [44, 59]. This distance to model 
corresponds to the disagreement (standard deviation) 
of the individual predictions of models in the consensus 
model [44]. It was found as the most reliable approach 
to estimate the accuracy of predictions in several bench-
marking studies [44, 60, 61].

Analysis of models based on few descriptors
The MP is used as a parameter for several models, e.g. 
solubility assessment [19] or as a parameter of multi-
ple solvent models to simulate the accumulation and 
degradation of chemicals in different solvents, based 
on a number of explicit mathematical models for the 
transfer and degradation of molecules [62, 63]. In the 
absence of the MP values a default value is frequently 
used, e.g. Syngenta [64] uses MP = 125 °C for their sol-
ubility model. In the PATENTS dataset the average MP 
value was 155  °C, which can be probably used as a bet-
ter estimation of MP for drug-like compounds. The use 
of this value as a model prediction for all compounds 
gave an RMSE = 65.7 °C, which can be used as the null 

Fig. 5 The experimental accuracy of the data as a function of the 
MP temperature. Each point averaged at least 50 measurements. The 
graph was built using N = 18,058 differences in the MP temperatures 
and was rescaled to match the average experimental accuracy of 
σ = 35 °C. Compounds with MP <0 °C, most of which were data 
processing errors, were excluded

Fig. 6 The CV RMSE for different subsets of the final model as a func-
tion of MP. Each point on the plot is an average of at least N = 100 
predictions with the exception of the Bergström set (N = 20)
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hypothesis for MP prediction. The MW and the num-
ber of carbon atoms (NC) had significant linear Pearson 
correlation coefficients, R = 0.172 and R = 0.136 respec-
tively, relative to MP. The MLRA model developed with 
both these descriptors MP = 117 + 0.142 × MW − 0.79 
× nC achieved an RMSE = 64.7 °C. This model, however, 
can hardly be considered as an improvement of the null 
hypothesis model for any practical application.

For another analysis we calculated the Pearson coef-
ficient of correlation between MP and descriptors. The 
highest negative R  =  −0.484 and positive correlation 
R  =  0.481 with MP were obtained for the of0ug and 
ef0ug 3D descriptors [65, 66] calculated using the Mera 
program [37]. The first descriptor corresponds to the 
number of electrons participating in the orbital overlap 
of the carbon atoms. The second one is its complement, 
which indicates the number of free electrons for the car-
bon atoms, which do not participate in the overlap. Thus, 
both of them measure the degree of hybridization of the 
molecules. The use of the single descriptor of0ug in the 
model MP  =  513–1260*of0ug produced an RMSE of 
57 °C. It can be proposed as a single descriptor model for 
the estimation of MP of compounds.

The nAtomP, which calculates the number of atoms in 
the largest π-chain, was found as the most highly corre-
lated descriptor, R = 0.371, provided by the CDK pack-
age [34]. The second descriptor of the same package, fMF, 
R = 0.357, characterizes the complexity of the molecules. 
This descriptor is calculated as the fraction of the size of 
the molecular Bemis and Murcko framework [67] ver-
sus the size of the whole molecule and was introduced 
to predict the promiscuity of chemical compounds [68]. 
This descriptor is defined in a [0, 1] interval and it is 
equal to 1 if a molecule does not have side chains.

The two best descriptors calculated by Adriana.CODE 
[28] 2DACorr_PiEN_3 and 2DACorr_PiEN_4 are 2D π 
electronegativity-weighted autocorrelation descriptors 
calculated for topological distances 3 and 4 [69]. Both of 
these descriptors had R = 0.359.

The number of rings and resonance counts (number of 
resonance structures of a molecule) were also two highly 
correlated descriptors (R  =  0.355 and R  =  0.354) cal-
culated using ChemAxon. Unsaturation and saturation 
indexes Ui (R = 0.349) and Uc (R = 0.325) were the two 
most highly correlated molecular property descriptors 
calculated by the Dragon software. The MP also corre-
lated with more simple descriptors, such as the number 
of nitrogen atoms (R = 0.322).

The analysis of the most correlated descriptors indi-
cates that many of them are strongly related to the 
π-system of electrons and thus had the possibility to 
interact through π-interactions. For example, the pres-
ence of side chains decreases fMF and thus the ability to 

perform such interactions and the formation of crystal 
structures. Possibly, the same effect contributes to for-
mation of agglomerates in solution thus leading to the 
promiscuity of chemical substances observed by Yang 
et al. [68] The same change decreases the number of rings 
as well as the number of atoms in the largest π-chain (rel-
ative to the overall size of the molecule) as well as other 
electronic parameters of the molecule.

However, the aforementioned effect is not the only 
one contributing to the MP of compounds. Indeed, we 
built a linear MLRA using the best 100 and ten descrip-
tors. The models RMSEs 48.1 ± 0.1 (100 descriptors) and 
53.6 ± 0.1 (ten descriptors) were more than 10 °C higher 
compared to those calculated using SVM methods. Thus, 
while analysis of the individual descriptors is important 
to understanding the major effects influencing the prop-
erty, their non-linear interactions, as captured by the 
machine learning methods, are important to derive the 
predictive models.

To some extent the comparison of results associated 
with the MLRA and SVM methods, and the conclu-
sion about the advantage of the latter approach could be 
biased due to the use of the different number of descrip-
tors used by both models. In order to better evaluate it 
we developed SVM models using the descriptors selected 
with MLRA for the PATENTS set for five descriptor sets 
contributing to the consensus model. The RMSEs of SVM 
models developed using exactly the same descriptors as 
those used in MLRA models were on average 7 ±  1  °C 
lower than the RMSEs of the MLRA models. Thus, the 
difference in the prediction performances of the SVM 
and MLRA models was mainly due to the ability of the 
SVM approach to better handle the non-linearity of data.

Models and data availability
The final models based on the E-state descriptors (the 
best single individual set of descriptors) and consensus 
models for decomposition and MPs are publicly available 
on the OCHEM web site. The patent-mined data from 
this study are publicly downloadable from the same web 
site as well as available from FigShare [70] under a CC-BY 
license [71]. Users of the data are however strongly 
encouraged to cite this article as well as the data utilized 
as this work describes the details of the extraction pro-
cess and data cleaning specifically.

Discussion and conclusion
We have collected from the literature a large number of 
MPs and decomposition points of compounds. A num-
ber of technical challenges were solved to curate the data 
and transform the information from the text to computer 
readable formats. Many of these challenges were related 
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to the ambiguous representation of information within 
chemical PATENTS.

As the abstraction used for text mining only requires a 
list of headings and paragraphs, application of the same 
methodology to other structured text such as journal 
articles and other properties would be a straightforward 
extension.

We have shown that models based on the data collected 
from the PATENTS provided similar or higher prediction 
ability, compared to the results from our previous study. 
This indicates the high quality of patent-mined data, 
which is similar to that of manually curated data from the 
literature.

The PATENTS data contained about 5.5  % of com-
pounds, which decompose during melting. The sepa-
ration of data into subsets of compounds, which 
decompose and do not decompose during melting 
increased the accuracy of the individual models for both 
properties. The use of SetCompare tools allowed for the 
identification of chemical features, which are important 
for the pyrolysis of chemical compounds. Moreover, a 
classification model, which can predict whether a com-
pound will decompose during MP measurement, was 
also developed.

In our previous study [11] we suggested that the 691 
outlying molecules could be enriched with decompos-
ing structures. The classification model predicted 28  % 
of these molecules as decomposing while only 21  % 
were predicted for the rest of the COMBINED set. 
Thus, indeed, the outlying structures contained a signifi-
cantly higher percentage of decomposing compounds. 
The model also predicted 22 and 14  % decomposing 
compounds for the set of 4.7k outliers (identified with 
p =  0.01, see Table  5) and the remaining compounds of 
the PATENTS set, respectively. The outlying compounds 
were therefore again enriched with decomposing com-
pounds. This result suggests that the PATENTS dataset 
may still contain decomposing compounds, which were 
not annotated in the PATENTS literature. The presence of 
decomposing compounds in the training set of the non-
decomposing subset for the development of the pyrolysis 
classification model could decrease its accuracy. The dif-
ference between the average numbers of predicted com-
pounds for COMBINED and PATENTS sets was about 
6  %, that is the percentage of decomposing compounds 
annotated in the PATENTS literature. Thus, the COM-
BINED set has about the same percentage of decom-
posing compounds as the PATENTS set. The pyrolysis 

Table 5 RMSE of models developed with filtering of outliers

a The numbers in parentheses indicate the number of molecules detected as outliers and filtered from the PATENTS set. The RMSE values for the PATENTS set are 
calculated for all molecules in this set (including the outliers)

No filtering 0.001 (N = 1414)a 0.01 (N = 4727) 0.1 (N = 21,928)

PATENTS

 CDK 38.9 (36.2) 38.9 (36.1) 38.8 (36.1) 38.9 (36.1)

 Isida Fragmentor 38.5 (35.5) 38.4 (35.4) 38.3 (35.2) 38.2 (35.2)

 ChemAxon 40.1 (37.1) 40 (37.1) 40.1 (37.1) 40.1 (37.2)

 QNPR 39.7 (36.6) 39.7 (36.3) 39.4 (36) 39.2 (35.9)

 E-state 38.3 (35.6) 38.1 (35.6) 38.1 (35.5) 38.0 (35.5)

 Consensus 36.3 (33.3) 36.2 (33.3) 36.3 (33.2) 36.4 (33.5)

COMBINED

 CDK 51.6 (35.6) 51.3 (35.5) 50.8 (35.5) 49.9 (35.4)

 Isida Fragmentor 47.6 (35.9) 47.5 (35.6) 47.2 (35.3) 47.3 (35.4)

 ChemAxon 49.7 (36.5) 49.6 (36.5) 49.5 (36.4) 49 (36.5)

 QNPR 50.2 (38.1) 50.5 (37.8) 49.9 (37.7) 49.5 (37.6)

 E-state 45.9 (35.4) 46.1 (35.4) 45.8 (35.3) 45.8 (35.2)

 Consensus 46.5 (33.4) 46.3 (33.4) 46.2 (33.3) 46.1 (33.4)

Table 6 RMSE of the final consensus models developed in this and in the previous study [29]

a The results of the prediction of the PATENTS set using the model developed in our previous study [29]

Method PATENTS set Bergström Bradley OCHEM Enamine COMBINED

PATENTS + COMBINED 36.5 ± 0.1 (33.7) 31 ± 1 (29) 32.2 ± 0.6 (32.2) 37.9 ± 0.3 (33) 36.3 ± 0.3 (31.1) 36.8 ± 0.3 (32)

COMBINED 44.6 ± 0.1 (40.9)a 34 ± 1 (31) 32.6 ± 0.6 (33.1) 38 ± 0.3 (33.7) 36.8 ± 0.3 (31.5) 37.1 ± 0.3 (32.6)
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compounds were excluded for development of the MP 
model but for better comparison with the previous model 
the analysis in Table 3 was performed without separation 
of both classes.

Using the repeated measurements in PATENTS we 
estimated the experimental error of MP measurements 
as σ = 35 °C for the PATENTS set. We showed that the 
estimated accuracy varied as a function of tempera-
ture and achieved the lowest error of σ = 32 °C for the 
drug-like region of the dataset. Problems such as diffi-
culties with experimental measurements for high tem-
peratures, errors with reporting these values (i.e. using 
threshold or typing errors), as well as polymorphism 
and the purity of analyzed chemical compounds likely 
contribute to the measurement error. The final consen-
sus model achieved a precision, which was similar to 
the estimated experimental accuracy. Thus contrary to 
previous studies, which indicated that the accuracy of 
models for physicochemical properties is limited by the 
insufficient descriptors [72, 73], we can conclude that 
our results were rather limited by the experimental data 
accuracy.

A comparison of MLRA and SVM results developed 
using exactly the same sets of descriptors indicated sig-
nificantly higher accuracy of the SVM models. This result 
suggests high non-linearity and interactions of descrip-
tors, which is better modeled by the SVM method.

Because of the limitation on the computational 
resources, the grid search to select SVM parameters 
was done using only one set of descriptors, EFG, which 
contained the smallest number of non zero values. Even 
these calculations required about 15,000 core-hours. It is 
possible that selection of SVM parameters for each set 
could contribute better models. Considering that the 
grid search does not always provide the optimal set of 
parameters [74], more sophisticated algorithms based on 
evolutionary programming can be used thus contribut-
ing even more accurate models. Such study, however, is 
beyond the scope of this article.

The final consensus model developed in this study 
provided the best published prediction accuracy for 
the Bergström subset, RMSE =  31  °C, which is a 3  °C 
improvement in the result from our previous study (see 
Table  6) [11] and this corresponds to an almost 15  °C 
improvement of results from the original study [17] and 
other earlier studies using this set [15, 73].

Further progress in the prediction of MPs can be 
advanced by improvement in the accuracy of experi-
mental measurements, as well as prediction of MP for 
different polymorphic and amorphic forms. This work, 
however, is unlikely to happen in the near future since it 
will require rather different approaches to the collection 
and handling of experimental MP data.

The prediction of MP itself has limited practical value. 
The main interest in this property is because of its possible 
use for the estimation of the solubility of chemical com-
pounds using the general solubility equation (GSE) [19]

where logS is the intrinsic molar solubility and logP is 
the octanol/water partition coefficient. According to this 
equation, the prediction of MP with RMSE of 30 °C con-
tributes 0.3 log unit to the error of the solubility predic-
tion. The estimation of logS with an error of <0.5 log units 
is on the level of the experimental measurement accuracy 
[75] and thus is very valuable for the pharma industry. 
Unfortunately, as indicated by the recent benchmarking 
study of 18 approaches contributed by leading academic 
groups and chemical software providers [76], the estima-
tion of logP is more challenging and can contribute about 
one log unit error. This can limit the application of GSE to 
new chemicals. However, if the applicability domain [59] 
of models is carefully addressed and extended with new 
measurements, the accuracy of logP predictions could be 
as low as 0.35 logP units for about 60 % out of 96k ana-
lyzed compounds [77]. Such an approach could enable a 
widespread use of the GSE equation to estimate the solu-
bility of chemical compounds.

As an illustrative example we applied the GSE to 
predict logS for N  =  1311 molecules from our previ-
ous study [78]. The logP values were obtained using 
ALOGPS 2.1 program [79], which is also available as 
part of the OCHEM descriptors. Equation  (3) gave a 
calculated RMSE of 0.84 ± 0.02. The same accuracy was 
calculated notwithstanding whether the consensus or 
model based on the E-state descriptors was used. While 
this error was higher than the RMSE of 0.62 calculated 
for the data in the original study the results obtained 
in this study did not use any information about the tar-
get property. The GSE water solubility model, which is 
based on E-state indices and thus requires lower com-
putational resources, was made publicly available on the 
OCHEM web site.

The development and public availability of computa-
tional models developed with an increasing volume of 
publicly available data mined from the published litera-
ture is important to the development of better QSAR/
QSPR models and their wider acceptance by academia, 
industry and chemical authorities [80].

(3)log S = 0.5− 0.01(MP-25)− log P

Additional files

Additional file 1. Protocols used to develop the melting point consensus 
model.

Additional file 2: Table S1. RMSE of LibSVM models calculated with 
different sets of descriptors.

http://dx.doi.org/10.1186/s13221-016-0113-2
http://dx.doi.org/10.1186/s13221-016-0113-2
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