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Abstract

Background: Advances in whole genome sequencing have enabled the investigation of rare variants, which could
explain some of the missing heritability that genome-wide association studies are unable to detect. Most methods
to detect associations with rare variants are developed for unrelated individuals; however, several methods exist
that utilize family studies and could have better power to detect such associations.

Methods: Using whole genome sequencing data and simulated phenotypes provided by the organizers of the
Genetic Analysis Workshop 19 (GAW19), we compared family-based methods that test for associations between rare
and common variants with a quantitative trait. This was done using 2 fairly novel methods: family-based association
test for rare variants (FBAT-RV), which is a transmission-based method that utilizes the transmission of genetic
information from parent to offspring; and Minimum p value Optimized Nuisance parameter Score Test Extended to
Relatives (MONSTER), which is a decorrelation method that instead attempts to adjust for relatedness using a
regression-based method. We also considered family-based association test linear combination (FBAT-LC) and FBAT-
Min P, which are slightly older methods that do not allow for the weighting of rare or common variants, but
contrast some of the limitations of FBAT-RV.

Results: MONSTER had much higher overall power than FBAT-RV and FBAT-Min P. Interestingly, FBAT-LC had similar
overall power as MONSTER. MONSTER had the highest power for a gene accounting for a larger percent of the
phenotypic variance, whereas MONSTER and FBAT-LC both had the highest power for a gene accounting for
moderate variance. FBAT-LC had the highest power for a gene accounting for the least variance.

Conclusions: Based on the simulated data from GAW19, MONSTER and FBAT-LC were the most powerful of the
methods assessed. However, there are limitations to each of these methods that should be carefully considered
when conducting an analysis of rare variants in related individuals. This emphasizes the need for methods that can
incorporate the advantages of each of these methods into 1 family-based association test for rare variants.
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Background
As sequencing technologies continue to improve, new
opportunities arise to detect rare variants in complex
human traits. Genome-wide association studies (GWAS)
have been able to detect thousands of markers associated
with various traits [1]. However, these markers generally
have common alleles (minor allele frequency >5 %) and
small effects. Advances in whole genome sequencing
(WGS) have enabled the investigation of rare variants,
which could potentially explain some of the missing herit-
ability that GWAS are unable to detect [2, 3].
Until recently, methods for the analysis of rare variants

typically focused on unrelated individuals. However,
family-based studies may be better powered to detect
rare variants because of their potential to be enriched
for rare variants [4]. Family-based studies are also advan-
tageous because they can be robust to population strati-
fication when calculating within family statistics,
facilitate the detection of sequencing errors, and allow
investigators to test complex hypotheses, such as parent-
of-origin effects [5].
Using WGS data and simulated phenotypes provided

for Genetic Analysis Workshop 19 (GAW19) [6], we
compared family-based methods that test for associa-
tions between rare and common variants with a quanti-
tative trait. This was done using the family-based
association test for rare variants (FBAT-RV), which is a
transmission-based method that utilizes the transmission
of genetic information from parent to offspring [7], and
Minimum p value Optimized Nuisance parameter Score
Test Extended to Relatives (MONSTER), which is a dec-
orrelation method that instead attempts to adjust for re-
latedness using a regression-based method [8]. We also
considered FBAT linear combination (FBAT-LC) [9] and
FBAT-Min P [10], which are slightly older methods that
do not allow for the weighting of rare or common vari-
ants, but which contrast some of the limitations of
FBAT-RV. Analyses were conducted with knowledge of
the simulation model.

Methods
Data description
The data sets provided consisted of family-based WGS
data and 200 replicates of simulated phenotypes. WGS
data were provided for 959 individuals, of which 464 in-
dividuals were sequenced, while the rest were imputed.
We removed 4 pedigrees where no individuals passed
quality control (QC) in the first phase of sequencing
(n = 146), leaving a total of 813 individuals in 16 families.
Of these 813 individuals, we used the 719 for whom simu-
lated phenotypic data existed.
The primary phenotypes of interest in this study were

diastolic blood pressure (DBP) and a quantitative vari-
able with a null association, Q1. DBP was simulated to
have an association with several variants and is used
here to assess power, while Q1 facilitates the assessment
of type 1 error. To allow for the most optimal associ-
ation results, in this analysis DBP was adjusted for anti-
hypertensive medication use, sex, age, and sex*age, while
Q1 was adjusted for sex and age, which is consistent
with how the data were simulated. Analyses were based
on the first time point and were replicated using the
provided 200 phenotypic simulation data sets. We
focused on 3 of the top genes that explained the most
variance in the simulated DBP variable: MAP4 (in
chromosome 3),TNN, and LEPR (both in chromosome 1).

Annotations and quality control
Gene-based annotations were performed using ANNO-
VAR (Annotate Variation) [11] and the human genome
RefSeq database based on hg19. Intergenic sites within 5
kbp of a gene were mapped to the closest gene. Those
that were further than 5 kbp from a gene were excluded,
as the simulation model selected causal variants that
were within this range. In addition to the QC measures
taken by the organizers of GAW before releasing the
data, further QC steps were taken using VCFtools ver-
sion 0.1.12a [12]. Sites with a call rate of less than 95 %
and sites that were out of Hardy-Weinberg equilibrium
within the 91 founders were removed. This resulted in
850 sites in MAP4, 493 in TNN, and 899 in LEPR.

Rare variant analysis methods
The transmission-based rare variant analyses were con-
ducted using FBAT-RV, FBAT-LC, and FBAT-Min P.
FBAT-RV extends the basic family-based association test
(FBAT) statistic, a covariance between the offspring
genotype and trait, by collapsing rare variants over a
specified region, resulting in a test statistic for that re-
gion [7]. FBAT-RV builds on the FBAT multi-marker
test, which is a gene-based test for family studies asses-
sing multiple variants in candidate genes [13]. We used
FBAT-RV’s weighted method, as a previous study found
that it is generally more powerful than the unweighted
method [14]. The weighted method allows for the inclu-
sion of both common and rare variants by up-weighting
rarer variants and down-weighting common variants

using the following weight, ws ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nps 1−psð Þp
� �−1

, where
n is the total number of nuclear families and ps is the al-
lele frequency for the sth variant estimated from the
sample. This weighting method is similar to that of
Madsen and Browning [15] and estimates allele frequen-
cies using the parents.
FBAT-LC and FBAT-Min P are both FBAT multi-

marker tests and use an empirical variance–covariance
matrix to estimate the covariance between the markers.
FBAT-LC uses non-informative families to estimate the
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optimal weights for the linear combination of the single-
marker test statistics [9]. FBAT-Min P uses the Monte
Carlo permutation to obtain a p value for the maximally
significant statistic out of the set of individual statistics
[10]. These 2 tests were chosen because they are able to
handle variants that have effects in the opposite direc-
tion, unlike FBAT-RV. However, these tests were not
designed for the analysis of rare variants and do not
allow for weighting based on allele frequency.
Because multiple families were in each pedigree, all 3

FBAT tests were computed using the empirical variance
option (–e) suggested in the FBAT documentation. The
2 outcomes, DBP and Q1, were adjusted for the afore-
mentioned covariates of interest by putting them into
linear regression models and using the resulting resid-
uals as the outcome in the FBAT models.
The decorrelation-based rare variant analysis was con-

ducted using MONSTER [7]. This test uses a hierarchical-
mixed effects model and is considered to be an extension
of SKAT-O and a convex combination of famSKAT and
famBT, either mimicking or improving the performance of
the 2 programs. MONSTER assumes that pedigree in-
formation is known and accounts for relatedness using
kinship coefficients for all possible pairs of individuals
within each family. Here, we estimated theoretical
pedigree-based kinships using the KinInCoef software
[16], although it is possible to use empirical kinships.
Each outcome was adjusted for covariates within
MONSTER by adding the variables to the model. Simi-
lar to FBAT-RV, variants were collapsed by gene and
weighted using the beta distribution density function
described in Wu et al with a1 = 1 and a2 = 25 [17].
Collapsing methods, using the gene plus 5 kbp on

either side as the collapsed region, were employed for
each of these approaches, as it has been found that
power is increased when the effects of multiple rare vari-
ants are combined [18]. Computation was performed on
a 64-bit Linux server cluster.
Table 1 Type I error rates (Q1 trait)

MONSTER FBAT

RV LC Min P

MAP4 0.04 0.03 0.04 0.01

TNN 0.065 0.04 0.06 0

LEPR 0.075 0.055 0.09 0.005

Average 0.06 0.04 0.07 0.005

Type I error rates at an alpha level of 0.05
Power and type 1 error
All 4 methods were tested with genes that had a known
association with DBP and a null association with Q1,
based on the GAW19 simulation model. Each method
was repeated using each of the simulated replicates,
resulting in 200 p values for each gene. Type 1 error was
defined as the proportion of p values under 0.05 for each
gene when tested with Q1, which was then averaged
across all genes to estimate the type 1 error rate of the
method. Power to detect an association between each
gene and DBP was defined as the proportion of p values
under a threshold that made type I error equal to exactly
0.05. This was similarly averaged across all genes to esti-
mate the overall power of the method.
Results
Type I error rates and power and for all 4 methods used
are described in Tables 1 and 2, respectively. Table 2 also
describes the percentage of variance explained by each
gene and the number of functional single nucleotide
polymorphisms (SNPs) in each based on the simulation
model, as described by Almasy et al [6]. Type I error
rates were lowest for FBAT-Min P and highest in FBAT-
LC. Holding type I error at 0.05, MONSTER had much
higher overall power than FBAT-RV and FBAT-Min P
(44 % compared to 24 % and 19 %, respectively). Interest-
ingly, FBAT-LC had similar overall power to MONSTER.
Results from MONSTER showed that each replicate

was able to detect an association between DBP and
MAP4 (power = 100 %), which was simulated to explain
the highest amount of variance in DBP. However, it did
not perform quite as well for TNN or LEPR, the latter of
which had particularly low power. FBAT-LC had similar
overall performance to MONSTER and outperformed
FBAT-RV for all 3 genes; FBAT-RV had moderate power
for MAP4, but poor power for LEPR and TNN. However,
FBAT-RV did have slightly lower type 1 error rates than
both MONSTER and FBAT-LC for each gene and over-
all. FBAT-Min P had the lowest overall power, but
performed similarly to FBAT-RV for TNN and LEPR. As
would be expected, Tables 1 and 2 show that for all tests,
as effect sizes decreased, the power to detect an associ-
ation decreased and, with the exception of FBAT-Min P,
the type 1 error rate increased. MONSTER appeared to
have the best performance for genes with larger effects,
while MONSTER and FBAT-LC both had the best per-
formance for genes with moderate effects. FBAT-LC had
the best performance for genes with smaller effects, but
even so, this power was fairly low. FBAT-RV had the
quickest computation time, followed by MONSTER and
FBAT-LC, with FBAT-Min P having the longest compu-
tation time (Table 2).

Discussion
Using family-based data provided by GAW19, we evalu-
ated the power of a decorrelation-based test and several
transmission-based tests to detect associations between
simulated quantitative phenotypes and rare and com-
mon variants in the MAP4, TNN, and LEPR genes. We



Table 2 Genetic variance and power (DBP)

# SNPs # Fn. SNPsa % Var. Explaineda % Var. of Largest
Fn. Varianta

MONSTER FBAT

RV LC Min P

MAP4 919 15 6.48 2.29 1.00 0.57 0.82 0.37

TNN 493 18 4.08 1.98 0.31 0.12 0.31 0.13

LEPR 899 8 2.50 2.19 0.03 0.05 0.16 0.08

Average 770.3 13.7 4.35 1.78 0.44 0.24 0.43 0.19

Computation time (min) 39 13 21 52

Fn functional, Var variance
Power is calculated using a type I error of 0.05
aData on the number of SNPs simulated to be functional and the percent of variance explained by these functional SNPs has been provided by Almasy et al. [23]
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found that MONSTER and FBAT-LC had superior per-
formance when compared to FBAT-RV and FBAT-Min
P. Although MONSTER and FBAT-LC had similar
overall power, when considering each gene separately,
they actually performed quite differently. Although
MONSTER had much higher power for the MAP4 gene,
which explained the highest percent of variance of the
genes assessed, FBAT-LC had higher power for the LEPR
gene, which explained the lowest percent of variance.
While FBAT-RV and MONSTER are 2 relatively novel
approaches designed for the analysis of rare genetic vari-
ants within families, FBAT-LC was not intended for the
analysis of rare variants. However, our results, along with
those of Zhou et al [19], indicate that FBAT-LC may be
useful in the detection of associations with rare variants.
Our results also consistently showed that as the percent-
age of variance explained by each gene decreased, power
to detect an association notably decreased. Although
more efficient approaches should be developed to in-
crease power, rare variants with small effect sizes will re-
main difficult to detect.
Computationally, we found benefits to both MON-

STER and FBAT. Although FBAT-RV does have a built-
in weighting method, MONSTER allows user-defined
weights, which can be desirable. Neither FBAT-LC nor
FBAT-Min P provides options for use of weights. A
practical advantage of MONSTER is that it allows the
user to enter multiple genes into a single run and then
collapses them accordingly, while FBAT-RV, FBAT-LC,
and FBAT-Min P require a separate run for each gene.
However, the computation time for FBAT-RV was not-
ably shorter than all other methods, with MONSTER
taking 3 times longer to run.
One limitation of MONSTER is that it adjusts for the

pedigree-based estimation of kinship, which is not ro-
bust against population stratification. This could explain
why the MONSTER results tended to have slightly ele-
vated false-positive rates [20]. However, MONSTER
could be extended to better adjust for population strati-
fication by using the empirical kinship correlation matrix
calculated from genome-wide SNP data. FBAT is robust
to population stratification, but does not consider
between-family information, which could explain why
the FBAT tests generally had lower power than
MONSTER. Recently, a new method was developed that
addresses both of these issues by integrating the QTDT
(quantitative transmission disequilibrium test) frame-
work [21] into the kernel based model, KMFAM [22].
Another possible explanation of the differences seen
between FBAT and MONSTER is that FBAT only con-
siders nuclear families, whereas MONSTER adjusts for
extended family members using a kinship coefficient.
This is a particularly important feature for the analysis
of rare variants, which will be shared by chance in about
half of all siblings in a family, but in a much lower
percent of extended family members, thus reducing
false-positive associations. For example, first cousins,
who share, on average, 12.5 % of their DNA, can be
more informative if they both have a rare variant that
increases the risk for a trait and the trait itself than sib-
lings, who share approximately 50 % of their DNA. In
siblings, the association may be lost in the vast number
of shared variants. An additional limitation of FBAT-RV
is that it cannot handle variants within the collapsed
unit that have effects in the opposite direction, unlike
MONSTER, FBAT-LC, and FBAT-Min P. Although the
top 55 variants in the GAW19 simulation model had ef-
fects in the same direction within a gene [23], some of
the variants with smaller effects may have been in the
opposite direction. This limitation should be taken into
consideration as it could occur in real data.
Saad and Wijsman recently reported that using allelic

dosages from imputation as opposed to genotypes leads
to higher power [24]. MONSTER can utilize data files
with allelic dosages, and a recent version of FBAT also
handles dosages (FBAT-dosage [25]). However, FBAT is
currently unable to handle both dosages and rare vari-
ants, and as a result, our analyses were based on geno-
types, which likely reduced the power to detect
associations for all the methods. We also were unable to
utilize the longitudinal data provided by GAW19 be-
cause of limitations of these 2 programs. MONSTER is
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not currently equipped to handle longitudinal traits but
FBAT has several approaches that allow for the analysis
of longitudinal data, one of which being FBAT-LC.
Because our results suggest that FBAT-LC may be an
appropriate method to detect associations with rare
variants, this test could potentially be used for the ana-
lysis of rare variants and longitudinal data.

Conclusions
Based on the simulated data from GAW19, MONSTER
and FBAT-LC were the most powerful of the methods
assessed. However, even these methods suffer from low
power as the amount of variance explained by genes
decreased. Furthermore, there are limitations to each of
these methods that should be carefully considered when
conducting an analysis of rare variants in related individ-
uals. This study emphasizes the need for more efficient
FBATs that can incorporate the advantages of each of
the tests assessed and increase the power to detect asso-
ciations for rare variants with moderate to low effects.
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