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1 Introduction

Neutrino oscillation experiments in the past two decades have revealed that neutrinos

are actually massive particles and lepton flavors are significantly mixed [1]. In order to

accommodate tiny neutrino masses, one can go beyond the minimal Standard Model (SM)

and introduce three right-handed neutrinos NiR (for i = 1, 2, 3), which are singlets under

the SU(2)L×U(1)Y gauge group of the SM. The most general gauge-invariant Lagrangian

relevant for lepton masses and flavor mixing can be written as

− Lm = `LYlHER + `LYνH̃NR +
1

2
N c

RMRNR + h.c. , (1.1)

where `L and H̃ ≡ iσ2H
∗ denote the left-handed lepton and Higgs doublets, respectively,

while ER the right-handed charged-lepton singlets. In addition, Yl and Yν stand respectively

for the Yukawa coupling matrices of charged leptons and neutrinos, and MR is the Majorana

mass matrix for right-handed neutrino singlets. After the Higgs field acquires its vacuum

expectation value 〈H〉 = v ≈ 174 GeV and the gauge symmetry is spontaneously broken

down, the charged-lepton mass matrix is given by Ml = Ylv, while the Dirac neutrino mass

matrix is MD = Yνv. Since the Majorana mass term for right-handed neutrino singlets is

not subject to the electroweak gauge symmetry breaking, the absolute scale of MR could

be much higher than the electroweak energy scale ΛEW ∼ 100 GeV. Therefore, in the low-

energy effective theory with heavy Majorana neutrinos integrated out, the mass matrix of

three light neutrinos is given by the famous seesaw formula Mν ≈ −MDM
−1
R MT

D . Given

O(MD) ∼ ΛEW, one can obtain neutrino masses at the sub-eV level if O(MR) ∼ 1014 GeV

is close to the scale of grand unified theories ΛGUT ∼ 1016 GeV. In this canonical seesaw

model [2–6], the lightness of ordinary neutrinos can be ascribed to the heaviness of right-

handed Majorana neutrinos. Moreover, the mismatch between the diagonalization of Ml

and Mν leads to lepton flavor mixing.
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In the basis where both the charged-lepton mass matrix Ml = diag{me,mµ,mτ} and

the mass matrix of heavy Majorana neutrinos MR = diag{M1,M2,M3} ≡ M̂R are di-

agonal, the neutrino mass spectrum and lepton flavor mixing are determined by the ef-

fective neutrino mass matrix Mν = −MDM̂
−1
R MT

D , which can be diagonalized as Mν =

U · diag{m1,m2,m3} · UT with U being the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

mixing matrix [7–9]. Therefore, in order to obtain any predictions for the low-energy ob-

servables, one has to know the flavor structure of MD, which is completely unconstrained

in the generic seesaw model. Generally speaking, there are two different guiding principles

towards seeking a solution to this problem, namely, flavor symmetry and minimality:

• In the first approach, discrete or continuous flavor symmetries are imposed on the

generic Lagrangian in eq. (1.1), and all the SM fields are assigned into proper rep-

resentations of the symmetry groups. Due to the required symmetries, the Yukawa

coupling matrices are not arbitrary any more. It has been demonstrated that dis-

crete flavor symmetries can be implemented to successfully predict interesting lepton

flavor mixing patterns, which are well compatible with the latest neutrino oscillation

data. For recent reviews on this topic, see refs. [10–12]. Although this scenario is

very attractive in the first place, it actually suffers from the involvement of many

new scalar fields that are needed in order to achieve the desired flavor structures

of Yukawa coupling matrices. As a consequence, it is generally difficult to verify or

disprove a flavor-symmetry model experimentally.

• In the second approach, the number of model parameters is intentionally reduced to

a level, beyond which the model would immediately run into contradictions with cur-

rent experimental observations. The minimality of a model, in the sense of minimal

number of free parameters, can be regarded as an Occam’s razor [13, 14]. One prac-

tical way of reducing free parameters is to simply take some Yukawa matrix elements

to be zero. The physical essence of texture zeros actually reflects that some elements

in a Yukawa coupling matrix are highly suppressed when compared to the other ele-

ments, or they are irrelevant to fermion mass spectra and flavor mixing. For instance,

the texture zeros turn out to be very useful to establish a relationship between small

flavor mixing angles and strong mass hierarchy in the quark sector [15–17]. As shown

by Weinberg in ref. [15], the texture zeros in two-generation quark mass matrices lead

to a successful prediction for the Cabbibo angle θC =
√
md/ms ≈ 0.22, where the

running mass of down quark md = 2.82 MeV and strange quark ms = 57 MeV are

evaluated at MZ = 91.2 GeV [18, 19]. In the same spirit, more than ten years ago,

Frampton, Glashow and Yanagida proposed a minimal scenario of seesaw models, in

which only two right-handed neutrinos are introduced and two elements of the Dirac

neutrino mass matrix MD are assumed to be vanishing [20]. In this case, MD becomes

a 3× 2 matrix, and can be explicitly written as

MD =


0 a

a′ 0

b′ b

 , (1.2)
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where a, b, a′ and b′ are in general complex. There are totally fifteen possible pat-

terns of MD with two texture zeros in different positions, and we shall examine all

of them in the following section. The number of texture zeros in MD cannot be

further increased, otherwise the model will be in conflict with three nonzero flavor

mixing angles, as measured in neutrino oscillation experiments [20–23]. On the other

hand, the seesaw model with just one heavy right-handed neutrino does not work,

since there will be two massless ordinary neutrinos that have already been excluded.

Hence, the scenario of two heavy right-handed neutrinos together with the Frampton-

Glashow-Yanagida (FGY) ansatz like that in eq. (1.2) is the minimal version of type-I

seesaw model, which will be called the FGY model hereafter. One can immediately

verify that neutrino mass spectrum and leptonic CP-violating phases are calcula-

ble from the observed three neutrino mixing angles and two neutrino mass-squared

differences [23], implying a complete testability of the model in future neutrino ex-

periments. It is worthwhile to stress that this minimal scenario emerges when one

right-handed Majornana neutrino is much heavier than the other two and decouples

from the theory, or its Yukawa couplings to lepton and Higgs doublets are vanishingly

small [13].

Another salient feature of the canonical seesaw model is to account for the baryon number

asymmetry in our Universe via the leptogenesis mechanism [24]. In the early Universe,

the temperature is high enough to thermally produce heavy Majorana neutrinos Ni. As

the Universe cools down, the out-of-equilibrium and CP-violating decays of Ni generate

lepton number asymmetries, which will further be converted into the baryon asymmetry

via nonperturbative sphaleron processes [25, 26]. Excellent reviews on leptogenesis can be

found in refs. [27–29].

In light of recent progress in neutrino oscillation experiments, we reconsider the FGY

model and carry out a complete study with a focus on the currently unresolved problems,

such as neutrino mass ordering, leptonic CP violation and the Majorana nature of neutri-

nos. The main motivation for such an investigation is two-fold. First, due to a minimal set

of free parameters, the FGY model is quite predictive, so it is interesting to confront it with

the latest global-fit results of neutrino oscillation data. A similar analysis has actually been

done in ref. [13]. Different from that work, we take into account the renormalization-group

(RG) running effects of lepton flavor mixing parameters from the seesaw scale ΛSS, usually

characterized by the lightest heavy Majorana neutrino mass M1, to the electroweak scale

ΛEW. Second, in the previous work, a strong mass hierarchy M2 �M1 is always assumed,

and a narrow range of heavy neutrino masses M1 ∼ 5 × 1013 GeV is derived by requiring

a successful leptogenesis mechanism to explain the cosmological matter-antimatter asym-

metry. But such a large mass scale in the theory causes the naturalness or fine-tuning

problem on the one hand [30–34], and the gravitino overproduction problem if the model

is supersymmetrized on the other hand [35]. Therefore, we are motivated to go beyond the

hierarchical limit, and consider both mild mass hierarchy and a nearly-degenerate mass

spectrum of heavy Majorana neutrinos. Only with careful studies of RG running effects

and general mass spectra of heavy Majorana neutrinos can we really test the FGY model.

– 3 –
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The remaining part of our paper is organized as follows. In section 2, phenomeno-

logical implications of the FGY model are explored and confronted with current neutrino

oscillation data. We also consider the RG running effects of neutrino mixing parameters,

and specify the allowed regions of the parameter space at the low-energy scale. Only four

out of fifteen patterns of the Dirac neutrino Yukawa coupling matrices are found to be

compatible with neutrino oscillation data, and only the inverted neutrino mass ordering is

allowed. Section 3 is devoted to the generation of baryon number asymmetry via leptoge-

nesis, where we also discuss the impact of lepton flavor effects and non-hierarchical mass

spectrum of heavy Majorana neutrinos. The flavor structure of four viable patterns leads

to a non-vanishing CP asymmetry in one specific lepton flavor. We point out that a nearly-

degenerate mass spectrum of heavy Majorana neutrinos is required to explain the baryon

number asymmetry, and simultaneously avoid huge radiative corrections to the light Higgs

boson mass. Finally, we summarize our main conclusions in section 4.

2 Neutrino masses and flavor mixing

We start with neutrino mass spectrum and flavor mixing parameters in the type-I seesaw

model with only two right-handed heavy Majorana neutrinos. After some general remarks,

we proceed to introduce the FGY ansatz and explore its phenomenological implications.

The RG evolution of neutrino masses and mixing parameters is considered when we confront

the FGY ansatz with low-energy neutrino oscillation data. Finally, the model parameters

relevant for leptogenesis at the high-energy scale are determined.

2.1 General remarks

In the basis where both the charged-lepton mass matrix Ml and the heavy Majorana

neutrino mass matrix MR are diagonal, the diagonalization of the light neutrino mass

matrix Mν = −MDM̂
−1
R MT

D via Mν = UM̂νU
T gives us neutrino mass eigenvalues M̂ν =

diag{m1,m2,m3} and the PMNS matrix U . Since only two right-handed neutrinos are

introduced and their mass matrix M̂R is of rank two, it is straightforward to verify that the

rank of effective neutrino mass matrix Mν is two. As a consequence, the lightest neutrino

must be massless. In the case of normal mass ordering (NO) with m1 = 0, we get m2 =√
∆m2

21 and m3 =
√

∆m2
31. In the case of inverted mass ordering (IO) with m3 = 0, we

have m1 =
√
|∆m2

32| −∆m2
21 and m2 =

√
|∆m2

32|. The neutrino mass-squared differences

∆m2
21 ≡ m2

2−m2
1 and ∆m2

31 ≡ m2
3−m2

1 (or ∆m2
32 ≡ m2

3−m2
2) can be measured in neutrino

oscillation experiments in the case of NO (or IO). At present, however, it is unclear whether

neutrino mass ordering is NO or IO. The ongoing long-baseline accelerator experiments

T2K [36] and NOνA [37], the forthcoming medium-baseline reactor experiments JUNO [38]

and RENO-50 [39], and the future huge atmospheric neutrino experiment PINGU [40] will

provide a definitive answer to this question.

Furthermore, the PMNS matrix in this minimal model can be parametrized via three

mixing angles {θ12, θ13, θ23}, one Dirac-type CP-violating phase δ and one Majorana-type
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Parameter Best fit 1σ range 2σ range 3σ range

Normal neutrino mass ordering (m1 < m2 < m3)

θ12/
◦ 33.48 32.73 — 34.26 31.98 — 35.04 31.29 — 35.91

θ13/
◦ 8.50 8.29 — 8.70 8.08 — 8.90 7.85 — 9.10

θ23/
◦ 42.3 40.7 — 45.3 39.1 — 48.3 38.2 — 53.3

δ/◦ 306 236 — 345 0 — 24 ⊕ 166 — 360 0 — 360

∆m2
21/[10−5 eV2] 7.50 7.33 — 7.69 7.16 — 7.88 7.02 — 8.09

∆m2
31/[10−3 eV2] +2.457 +2.410 — +2.504 +2.363 — +2.551 +2.317 — +2.607

Inverted neutrino mass ordering (m3 < m1 < m2)

θ12/
◦ 33.48 32.73 — 34.26 31.98 — 35.04 31.29 — 35.91

θ13/
◦ 8.51 8.30 — 8.71 8.09 — 8.91 7.87 — 9.11

θ23/
◦ 49.5 47.3 — 51.0 45.1 — 52.5 38.6 — 53.3

δ/◦ 254 192 — 317 0 — 20 ⊕ 130 — 360 0 — 360

∆m2
21/[10−5 eV2] 7.50 7.33 — 7.69 7.16 — 7.88 7.02 — 8.09

∆m2
32/[10−3 eV2] −2.449 −2.496 — −2.401 −2.543 — −2.355 −2.590 — −2.307

Table 1. The best-fit values, together with the 1σ, 2σ and 3σ intervals, for three neutrino mixing

angles {θ12, θ13, θ23}, two mass-squared differences {∆m2
21,∆m

2
31 or ∆m2

32} and the Dirac CP-

violating phase δ from a global analysis of current experimental data [41]. Two independent global-

fit analyses can be found in refs. [42, 43], which are in perfect agreement with the results presented

here at the 3σ level.

CP-violating phase σ, namely

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ +c12c23 − s12s13s23e

iδ c13s23

+s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23




1 0 0

0 eiσ 0

0 0 1

 , (2.1)

where cij ≡ cos θij and sij ≡ sin θij have been defined for ij = 12, 13, 23. While three mixing

angles have been determined with reasonably good precision from oscillation experiments,

there is still no significant evidence for a nontrivial Dirac CP-violating phase. In table 1,

the latest global-fit analysis of neutrino oscillation parameters has been presented. One

can observe that the best-fit value of Dirac CP-violating phase is δ = 306◦ for NO and

δ = 254◦ for IO, but it becomes arbitrary at the 3σ level. The proposed neutrino super-

beam experiments and neutrino factories are able to probe δ down to a few degrees [44].

Since there is one massless neutrino, we have only one Majorana CP-violating phase

σ. The observation of neutrinoless double-beta decays is the unique and feasible way to

establish that neutrinos are Majorana particles, i.e., they are their own antiparticles [45].

The decay rate depends on the effective neutrino mass defined as mββ ≡ |U2
e1m1 +U2

e2m2 +

U2
e3m3|, where Uei for i = 1, 2, 3 denote the elements in the first row of the PMNS matrix

– 5 –
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U . More explicitly,

mββ=


√

∆m2
31 cos2 θ13

[
ξ2 sin4 θ12+tan4 θ13+2ξ sin2 θ12 tan2 θ13 cos 2(σ+δ)

]1/2
for NO;√

|∆m2
32| cos2 θ13 cos2 θ12

[
ζ2+tan4 θ12+2ζ tan2 θ12 cos 2σ

]1/2
for IO,

(2.2)

where ξ ≡ m2/m3 and ζ ≡ m1/m2. Now that neutrino masses are completely fixed

by two mass-squared differences, we can get ξ =
√

∆m2
21/
√

∆m2
31 ≈ 0.175 and ζ =√

1−∆m2
21/|∆m2

32| ≈ 0.985 by using the best-fit values of neutrino mass-squared differ-

ences in table 1. Notice that the relation ξ2 ≈ 1 − ζ2 ≈
√

2 sin2 θ13 ≈ 0.03 holds as an

excellent approximation. The exact value of mββ depends on the Majorana CP-violating

phase σ in the IO case, and a combination of two unknown CP-violating phases σ and δ in

the NO case. However, it is straightforward to find out the lower and upper limits [46–48].

For NO, we get√
∆m2

31 cos2 θ13

(
ξ sin2 θ12 − tan2 θ13

)
≤ mββ ≤

√
∆m2

31 cos2 θ13

(
ξ sin2 θ12 + tan2 θ13

)
,

(2.3)

leading to mββ ∈ [1.5, 3.7] meV with the help of the best-fit values in table 1. For IO, we

arrive at√
|∆m2

32| cos2 θ13 cos2 θ12

(
ζ − tan2 θ12

)
≤ mββ ≤

√
|∆m2

32| cos2 θ13 cos2 θ12

(
ζ + tan2 θ12

)
,

(2.4)

implying mββ ∈ [18, 48] meV with the best-fit values as inputs. As the future neutrinoless

double-beta decay experiments are able to reach a sensitivity of about 20 meV [45], the IO

case seems to be more encouraging and phenomenologically interesting. Moreover, in this

minimal seesaw model, the observation of neutrinoless double-beta decays may also pin

down the unique Majorana CP-violating phase σ via eq. (2.2), as long as the other mixing

parameters can be well measured in neutrino oscillation experiments.

2.2 The Frampton-Glashow-Yanagida ansatz

Although neutrino mass spectrum can be fixed by the observed neutrino mass-squared

differences in the minimal seesaw model, three mixing angles and two CP-violating phases

are in general arbitrary. Further restrictions on the flavor structure can induce testable

correlations among low-energy observables. In the full theory above the seesaw scale ΛSS,

relevant parameters are the Dirac neutrino Yukawa coupling matrix Yν and heavy Majorana

neutrino masses {M1,M2}. If two elements of Yν are vanishing [20], there are fifteen

logically possible patterns, which can be categorized into three classes:

• Case A — Two texture zeros are located in the same row, namely, (Yν)αi = (Yν)αj =

0 with i 6= j. There are only three patterns:

A1 :


0 0

× ×

× ×

 , A2 :


× ×

0 0

× ×

 , A3 :


× ×

× ×

0 0

 , (2.5)

where the cross ‘×’ denotes a nonzero matrix element.

– 6 –
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• Case B — Two texture zeros are located in different columns and rows, namely,

(Yν)αi = (Yν)βj = 0 with α 6= β and i 6= j. There are six patterns:

B1 :


0 ×

× 0

× ×

 , B2 :


0 ×

× ×

× 0

 , B3 :


× ×

0 ×

× 0

 ,

B4 :


× 0

0 ×

× ×

 , B5 :


× 0

× ×

0 ×

 , B6 :


× ×

× 0

0 ×

 ,

(2.6)

where the patterns B4,5,6 are derived from B1,2,3 by exchanging two columns.

• Case C — Two texture zeros are located in the same column, namely, (Yν)αi =

(Yν)βi = 0 with α 6= β. There are six patterns:

C1 :


0 ×

0 ×

× ×

 , C2 :


0 ×

× ×

0 ×

 , C3 :


× ×

0 ×

0 ×

 ,

C4 :


× 0

× 0

× ×

 , C5 :


× 0

× ×

× 0

 , C6 :


× ×

× 0

× 0

 ,

(2.7)

where the patterns C4,5,6 can be obtained from C1,2,3 by exchanging two columns.

It is worth pointing out that the patterns in each class can be related by the elementary

transformations, i.e., the 3 × 3 elementary matrices Pij (for ij = 12, 23, 13) and the 2 × 2

elementary matrix Q. The action of Pij from left (or right) induces an exchange between

i-th and j-th rows (or columns), and likewise for Q. With the help of Pij and Q, one

can change the positions of texture zeros. For instance, we have Yν(A2) = P12Yν(A1) and

Yν(A3) = P13Yν(A1). In a similar way, one can prove that all the patterns in Case B can

be obtained from Yν(B1) by using the elementary transformations. To be explicit, we list

the relevant relations

Yν(B2) = P23Yν(B1) , Yν(B3) = P12P23Yν(B1) , Yν(Bi+3) = Yν(Bi)Q , (2.8)

where the index i = 1, 2, 3 in the last equality is implied. The same transformations apply

to the patterns in eq. (2.7). As we will show later in this section, the above observations

will be useful to analyze the texture zeros in the effective neutrino mass matrix Mν . Note

that the elementary transformations are implemented to examine the location of texture

zeros, so the nonzero elements in both Yν and the corresponding Mν are not necessarily

identical for each pattern.

– 7 –
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Below the seesaw scale, one can integrate out heavy Majorana neutrinos and obtain

the unique Weinberg operator O5 = (κ/2) (`LH̃) · (H̃T`cL) of dimension five [49] with

κ = −YνM̂−1
R Y T

ν . After the spontaneous gauge symmetry breaking, neutrinos acquire

tiny Majorana masses from the Weinberg operator and their mass matrix is Mν = κv2,

which is just the seesaw formula in the language of effective theories. Now it is clear that

Yν is given at a superhigh-energy scale µ = M1, but neutrino oscillation parameters are

measured at low energies. In order to study whether the flavor structure of Yν in Case A,

B and C is viable, we have to examine the RG evolution of κ from the seesaw scale ΛSS

to the electroweak scale ΛEW, and compare the predictions from κ(ΛEW) with neutrino

oscillation data.

Given Yν in eqs. (2.5)–(2.7), we are ready to check if κ inherits some texture zeros from

Yν . Since all the patterns in each class are related by Pij and Q matrices, it is sufficient

to consider the first pattern and perform the corresponding elementary transformations to

derive the results for the others. More explicitly, we have κ(M1) at the seesaw scale

κA1
:


0 0 0

0 × ×

0 × ×

 , κB1
:


× 0 ×

0 × ×

× × ×

 , κC1
:


× × ×

× × ×

× × ×

 , (2.9)

where one can observe that the patterns Ci (for i = 1, 2, · · · , 6) do not lead to any texture

zeros in κ. For Case A in eq. (2.5), it is easy to derive κAj
= P1jκA1

P1j for i = 2, 3, so κ

in this case has a nonzero 2 × 2 block submatrix. For Case B in eq. (2.6), with the help

of eq. (2.8), we arrive at the following identities

κB2
= P23κB1

P23 , κB3
= P12P23κB1

P23P12 , κBi+3
= κBi , (2.10)

where the last identity indicates that one texture zero is located in the same position in κ

for Bi+3 and Bi for i = 1, 2, 3.

2.3 Renormalization-group running effects

As we have mentioned, neutrino masses at the sub-eV level indicate that the seesaw scale is

extremely high ΛSS ∼ 1014 GeV, if the Dirac neutrino Yukawa couplings are of order O(1).

In the full theory above the seesaw scale, two heavy Majorana neutrinos are added into

the SM particle content, and they interact with the SM particles only through the Yukawa

interaction, which is governed by the coupling matrix Yν . After taking into account radia-

tive corrections and renormalizing the model in the scheme of dimensional regularization

and modified minimal subtraction, we are left with coupling and mass parameters that

depend on the renormalization scale µ. The evolution of model parameters with respect

to µ is described by their RG equations. For µ < ΛSS, the decoupling of heavy Majorana

neutrinos is treated by explicitly integrating them out, and the low-energy effective theory

turns out to be just the SM plus a dimension-five operator, which is responsible for neu-

trino masses. At the one-loop level, the RG running effects of neutrino masses and flavor

– 8 –
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mixing parameters can be studied by solving the RG equation of κ [50–52]

16π2 dκ

dt
= ακκ+ Cκ

[(
YlY

†
l

)
κ+ κ

(
YlY

†
l

)T
]
, (2.11)

with t ≡ ln(µ/ΛEW). In the SM, the relevant coefficients in eq. (2.11) are Cκ = −3/2 and

ακ ≈ −3g2
2 + 6y2

t + λ, where g2 stands for the SU(2)L gauge coupling, yt the top-quark

Yukawa coupling, and λ the Higgs self-coupling constant. If the dimension-five Weinberg

operator is derived in the minimal supersymmetric standard model (MSSM), we have

Mν = κ(v sinβ)2 with tan β being the ratio of vacuum expectation values of two MSSM

Higgs doublets. In this framework, the RG equation of κ is still given by eq. (2.11) but with

Cκ = 1 and ακ ≈ −6g2
1/5 − 6g2

2 + 6y2
t . Note that only the top-quark Yukawa coupling is

retained in ακ, as the Yukawa couplings of other fermions are much smaller and have safely

been neglected. The RG evolution of neutrino masses and lepton flavor mixing parameters

has been extensively studied in the literature [19, 53–57]. See, e.g., ref. [58], for a recent

review on this topic.

Working in the basis where the charged-lepton Yukawa coupling matrix Yl = diag{ye,
yµ, yτ} is diagonal, we can solve eq. (2.11) and obtain

κ(ΛEW) = I0


Ie 0 0

0 Iµ 0

0 0 Iτ

κ(M1)


Ie 0 0

0 Iµ 0

0 0 Iτ

 , (2.12)

where the evolution functions read

I0 = exp

[
− 1

16π2

∫ ln(M1/ΛEW)

0
ακ(t) dt

]
, (2.13)

Iα = exp

[
− Cκ

16π2

∫ ln(M1/ΛEW)

0
y2
α(t) dt

]
, (2.14)

for α = e, µ, τ . From eq. (2.12), it is now evident how the low-energy observables residing

in Mν = κ(ΛEW)v2 are related to the model parameters in κ(M1) at a high-energy scale. In

the following, we show that it is already possible to exclude most patterns in eqs. (2.5)–(2.7)

based on the solution in eq. (2.12).

1. An important observation from eq. (2.12) is that texture zeros in κ are rather stable

against the RG running. On the other hand, eq. (2.9) tells us that κ(M1) for the

patterns Ai possesses five vanishing elements, appearing in the i-th row and i-th

column. Therefore, κ(ΛEW) in Case A inherits the same structure of κ(M1), leading

to just one nontrivial mixing angle, which has already been excluded by current

neutrino oscillation data. Thus, all three patterns in eq. (2.5) are ruled out.

2. Then we turn to the patterns B1,2,3, and the same conclusions should also be appli-

cable to B4,5,6, since the texture zero in Mν is located in the same position. For this
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class, there is only one texture zero in κ(ΛEW) or Mν = κ(ΛEW)v2 in the off-diagonal

position, namely,

(Mν)αβ =
∑
i

miUαiUβi = 0 , (2.15)

for (α, β) = (e, µ), (e, τ) and (µ, τ). When the RG running effects are considered,

eq. (2.12) indicates that the texture zero remains in the effective neutrino mass matrix

Mν . The constraints on neutrino masses and mixing matrix elements in eq. (2.15)

can be expressed as

Uα2Uβ2m2 + Uα3Uβ3m3 = 0 for NO ,

Uα1Uβ1m1 + Uα2Uβ2m2 = 0 for IO ,
(2.16)

which have been investigated in ref. [13], where the latest neutrino oscillation data

are implemented but the RG running effects are entirely ignored. In the NO case,

it has been found that all the patterns in eq. (2.6) are ruled out mainly due to the

observed θ13 [59–62]. In the IO case, (Mν)µτ = 0 is shown to be strongly disfavored,

so the patterns B3 and B6 are excluded. Hence, according to ref. [13], only B1,2 and

B4,5 in the IO case are compatible with the latest neutrino oscillation data.

3. Since the patterns in eq. (2.7) do not imply any zero elements in κ(M1), the analysis

of Case C in ref. [13] seems to be not applicable. Thus it is expected the predictions

at a superhigh-energy scale will be significantly changed at the low-energy scale.

However, as we demonstrate below, a characteristic relationship among the elements

in κ is maintained at the low-energy scale and validates the conclusions in ref. [13].

Let us take the pattern C1 for example, and specify its matrix elements:

C1 :


0 a

0 b

a′ b′

 , κ(M1) =
1

M1


0 0 0

0 0 0

0 0 a′2

+
1

M2


a2 ab ab′

ab b2 bb′

ab′ bb′ b′
2

 , (2.17)

where the corresponding κ(M1) has been given as well. Combining eq. (2.12) and

eq. (2.17), one can verify that the relation

(Mν)ee
(Mν)µe

=
(Mν)eµ
(Mν)µµ

=
(Mν)eτ
(Mν)µτ

(2.18)

holds both for µ = ΛEW and for µ = M1. Therefore, it is adequate to inspect if

the relationship in eq. (2.18) is satisfied by current neutrino oscillation data. More

explicitly, the first identity in eq. (2.18) gives rise to Ue3Uµ2 = Ue2Uµ3 for NO, and

Ue2Uµ1 = Ue1Uµ2 for IO, while the second identity is fulfilled automatically. The

constraints for the other patterns can be found in a similar way. Those relations

among the PMNS matrix elements have also been derived in ref. [13], although in a

different manner, and used to exclude all the patterns in eq. (2.7) in both NO and

IO cases.
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In summary, we have proved that texture zeros or proportionality relations in κ(M1)

are not spoiled by the RG running effects, so they also exist in κ(ΛEW) at the low-energy

scale. Consequently, neutrino oscillation data can be directly implemented to rule out most

patterns of Yν with two texture zeros. It turns out that only B1,2 and B4,5 in eq. (2.6)

in the case of IO are consistent with experimental data, which generalizes the conclusions

reached in ref. [13] to the situation including radiative corrections.

2.4 Viable patterns

Now we are left with just four viable patterns, namely B1,2 and B4,5 in eq. (2.6), and

only the IO case is allowed. The latter indicates a sizable value of mββ , around 50 meV,

and thus is quite encouraging for future experiments to search for neutrinoless double-beta

decays. Although the RG running effects are unable to revive any patterns in the NO case,

they do have significant impact on the allowed regions of model parameters, particularly in

the MSSM with a large tan β. Hence, in this subsection, we examine four viable patterns

in more detail, and explore the favored parameter space.

As we have shown in the previous subsections, the effective neutrino mass matrix Mν

at the low-energy scale in this case contains one texture zero, which sets two constraining

relations on neutrino masses and mixing angles. Since neutrino mass spectrum is com-

pletely fixed by the observed neutrino mass-squared differences, one can determine two

CP-violating phases in terms of neutrino masses and three mixing angles. According to

eq. (2.10), the two patterns in each pair of {B1,B4} and {B2,B5} are related by an ex-

change between two columns, so the location of texture zero in Mν is identical, indicating

the same low-energy predictions. However, the model parameters in the full theory at the

seesaw scale are different, as we shall show later. Using the second identity in eq. (2.16)

for the case of (α, β) = (e, µ), we obtain

m1c12(c23s12 + c12s23s13e
iδ)−m2s12(c12c23 − s12s23s13e

iδ)e2iσ = 0 , (2.19)

whose real and imaginary parts allow us to determine δ and σ via

cos δ =
s2

12c
2
12c

2
23(1− ζ2) + s2

23s
2
13(s4

12 − ζ2c4
12)

2s12c12s23c23s13(s2
12 + ζ2c2

12)
, (2.20)

cos 2σ =
s2

12c
2
12c

2
23(1 + ζ2)− s2

23s
2
13(s4

12 + ζ2c4
12)

2ζs2
12c

2
12(c2

23 + s2
23s

2
13)

, (2.21)

up to a sign ambiguity. Since 1 − ζ2 ≈
√

2s2
13 ≈ 0.03 holds as an excellent approximation,

one can expand the right-hand sides of eqs. (2.20) and (2.21) in terms of 1−ζ2 and s2
13, and

ignore the higher-order terms of O(s3
13). After a straightforward calculation, we arrive at

cos δ ≈ sin 2θ12

4 tan θ23 sin θ13

(1− ζ2)− tan θ23

tan 2θ12

sin θ13 ,

cos 2σ ≈ 1− tan2 θ23 sin2 θ13

2 sin2 θ12 cos2 θ12

, (2.22)

implying that δ ≈ 90◦ or 270◦ and σ ≈ 0◦. The deviation of δ from the maximum 90◦ or

270◦, and that of σ from zero, are on the order of θ13 in the leading-order approximation.
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For the pattern B2, one needs to consider eq. (2.16) with (α, β) = (e, τ). It is easy to verify

that eqs. (2.20)–(2.22) become applicable to this case after replacing δ with δ + π, as well

as θ23 with π/2 − θ23, namely, flipping the octant of θ23. This observation indicates that

the determination of the octant of θ23 and the measurement of CP-violating phases δ in

future neutrino oscillation experiments can be used to distinguish between the patterns B1

and B2 for the Dirac neutrino Yukawa coupling matrix.

There are five real parameters in MD, since two matrix elements are zero and three

arbitrary phases can be absorbed by redefining the charged-lepton fields. Moreover, the

heavy Majorana neutrino masses M1 and M2 are free parameters. It is convenient to

introduce the Casas-Ibarra parametrization [63]

MD = U

√
M̂νO

√
M̂R = U


√
m1 0 0

0
√
m2 0

0 0 0




cos z − sin z

sin z cos z

0 0



√
M1 0

0
√
M2

 , (2.23)

where U is the PMNS matrix given in eq. (2.1), and O is a 3× 2 orthogonal matrix with z

being a complex parameter, satisfying OTO = OOT = 1. Note that we have concentrated

on the IO case, which is the only allowed possibility in the FGY model. All the mixing

angles, CP-violating phases, and neutrino masses in eq. (2.23) should take values at the

seesaw scale, which are in general distinct from those extracted from neutrino oscillation

experiments at the low-energy scale (e.g., at the Fermi scale MZ = 91.2 GeV). Because of

the texture zeros in MD, the CP-violating phases δ and σ can be determined in terms of

neutrino masses and mixing angles as in eqs. (2.20) and (2.21), but now with their values

at the seesaw scale. In addition, the complex parameter z can be determined by

tan z = −Ue1
Ue2

√
m1

m2

= −
√
ζ

tan θ12

e−iσ , (2.24)

for B1 and B2. Since B4 and B5 are related to B1 and B2 by exchanging two columns,

respectively, the parameter z in the former two cases can be calculated first from eq. (2.24),

and then followed by a shift of z → z+π/2. Now it is evident that the complex parameter

z is actually determined by the neutrino mass ratio ζ = m1/m2, the mixing angle θ12 and

the Majorana CP-violating phase σ. However, the RG running effects on these parameters,

in particular θ12 and σ, could be significant.

Taking Pattern B1 for example, we proceed to explore the possible parameter space

at the low-energy scale by using the global-fit results in table 1, and that at the high-

energy scale by numerically solving the complete set of one-loop RG equations. In view

of minimality of the FGY ansatz, we shall consider the minimal SM. In the SM, the

largest charged-lepton Yukawa coupling yτ is as small as 10−2. According to eq. (2.14), the

evolution function running from the electroweak scale to the seesaw scale ΛSS = 1013 GeV

is approximately given by Iτ ≈ exp(−25 × 10−6) ≈ 1. Therefore, we have Ie ≈ Iµ ≈ Iτ ≈
1, and the form of κ remains unchanged during the RG running, resulting in negligible

modifications on the mixing angles, CP-violating phases, and the ratio of neutrino masses.
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Figure 1. Illustration for the RG running effects on neutrino mixing angles {θ12, θ13, θ23}, leptonic

CP-violating phases {δ, σ} and neutrino masses {m1,m2} for Pattern B1 in the MSSM, where

the black points denote the parameters at MZ = 91.2 GeV, while the dark- and light-gray points

represent the parameters at the seesaw scale ΛSS = 1013 GeV for tan β = 30 and tan β = 50,

respectively. Note that δ and σ also have another branch of solutions with their signs inverted

simultaneously, and the mass scale of sparticles is taken to be MSUSY = 1 TeV.

This means that the predictions of FGY ansatz are essentially valid at high-energy scales

in the minimal SM.

In the MSSM, the running effects are expected to be significant, since yτ can be

enhanced by large values of tan β. We first input the neutrino mixing angles and two

neutrino mass-squared differences within their 3σ ranges at MZ . Two stages of RG running

are then performed, namely, one from MZ to the sparticle mass scale MSUSY with the SM

RG equations, and the other one from MSUSY to ΛSS = 1013 GeV by adopting the MSSM

RG equations. Taking MSUSY = 1 TeV, we have calculated the running effects on neutrino

mixing parameters, and the numerical results are presented in figure 1. We have also tried

to vary this intermediate sparticle mass scale MSUSY from 1 TeV to 10 TeV, however, only

minor changes (. 5%) are found on the mixing parameters.

In figure 1, the allowed regions of three neutrino mixing angles {θ12, θ13, θ23}, two

leptonic CP-violating phases {δ, σ} and two nonzero neutrino masses {m1,m2} are shown

in the MSSM with tan β = 30 and tan β = 50. The allowed parameter space at the low-

energy scale is denoted by black points, and one can observe that δ and σ are restricted

to a small area around δ = 90◦ and σ = 10◦. This observation can be easily understood

with the help of eq. (2.22), which indicates that the deviations of (δ, σ) from (90◦, 0◦) are

measured by the neutrino mass-squared difference ∆m2
21 = (1 − ζ2)m2

2 and the small but

nonzero mixing angle θ13. At the high-energy seesaw scale ΛSS = 1013 GeV, the parameter
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space in the MSSM with tan β = 30 and tan β = 50 has been represented by dark- and

light-gray points, respectively. One can see that the RG running effects on θ13 and θ23 are

insignificant, whereas the running effects on θ12, δ and σ are indeed remarkable. Therefore,

it is necessary to include the running effects on those parameters when we consider the

generation of baryon number asymmetry in our Universe, which takes place at a superhigh-

energy scale.

From eq. (2.24), we can figure out the real and imaginary parts of z in terms of neutrino

mixing parameters. More explicitly, we have

Re z ≈ −1

2

[
arctan

(
sinσ + cot θ12

cosσ

)
− arctan

(
sinσ − cot θ12

cosσ

)]
,

Im z ≈ −1

4
ln

(
1− 2 sinσ cot θ12 + cot2 θ12

1 + 2 sinσ cot θ12 + cot2 θ12

)
, (2.25)

where ζ ≈ 1 is assumed. For a small tan β, the RG running effects are negligible, so the

mixing parameters can be identified with those extracted from oscillation experiments. In

this case, one can expand eq. (2.25) in terms of the Majorana CP-violating phase σ, which

is constrained to be small. At the leading order, we get |z| ≈ π/2 − θ12 and arg z ≈
σ sin 2θ12/(2θ12 − π). In the other extreme case, where the RG running is significant for a

large tan β, we can expand eq. (2.25) in terms of θ12 and obtain |z| ≈ π/2 − cosσ tan θ12

and arg z = 2 sinσ tan θ12/π. In both cases, arg z is found to be close to the real axis, i.e.,

around 5◦. In general, both σ and θ12 are not small angles, and the above approximations

are invalid.

However, one can compute the complex parameter z by inputting the low-energy values

of neutrino mixing parameters and solving the RG equations. The numerical results of |z|
and arg z are given in figure 2, where both small and large values of tan β are considered.

Furthermore, the 3σ ranges of mixing parameters and a seesaw scale within [108, 1013] GeV

are taken into account. One can see from the right panel of figure 2 that a small phase

of z is obtained in all cases, implying the suppression of CP violation at the high-energy

scale. The latter observation becomes clearer when we calculate the CP asymmetries in

the decays of heavy Majorana neutrinos.

3 Baryon number asymmetry

One salient feature of the canonical seesaw model is to simultaneously explain tiny neutrino

masses and the observed baryon number asymmetry in our Universe, which is usually

measured by the baryon to photon density ratio [64]

η0
B ≡

nB

nγ
= (6.065± 0.090)× 10−10 , (3.1)

where nB and nγ stand for today’s baryon and photon number density, respectively. In

the very early Universe, when the reheating temperature after inflation is so high that

heavy Majorana neutrinos Ni can be produced in thermal equilibrium. As the Universe

cools down, the CP-violating decays of Ni will go out of thermal equilibrium if the decay
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Figure 2. The absolute value |z| and the phase arg z of the complex parameter z are given in units

of degrees in the left and right panels, respectively. For a given value of tan β, |z| and arg z are

calculated by varying the low-energy parameters in their 3σ ranges and the high-energy scales from

108 GeV to 1013 GeV. Note that z is almost real in all cases as indicated in the right panel.

rate becomes smaller than the expansion rate of the Universe. The CP asymmetries in the

decays of Ni into leptons of different flavors are defined as [27–29]

εiα ≡
Γ(Ni → lαH)− Γ(Ni → lαH)

Γ(Ni → lαH) + Γ(Ni → lαH)
, (3.2)

where Γ(Ni → lαH) and Γ(Ni → lαH) for α = e, µ, τ denote the decay rates of Ni into

leptons lα and anti-leptons lα, respectively. It is the interference between the tree-level

and one-loop decay amplitudes that gives rise to CP asymmetries, which receive both

contributions from the one-loop self-energy and vertex corrections. More explicitly, we

obtain

εiα =
1

8π(Y †ν Yν)ii
Im
∑
k 6=i

(Y ∗ν )αi(Yν)αk

[
(Y †ν Yν)ikf(xki) + (Y †ν Yν)∗ikg(xki)

]
, (3.3)

where xki ≡M2
k/M

2
i and the loop functions are defined as follows

f(xki) =
√
xki

[
1− xki

(1− xki)2 + r2
ki

+ 1− (1 + xki) ln
1 + xki
xki

]
,

g(xki) =
1− xki

(1− xki)2 + r2
ki

. (3.4)

If the mass spectrum of heavy Majorana neutrinos is strongly hierarchical, rki can be ne-

glected in the denominators in eq. (3.4). However, it serves as an important regulator to

avoid any singularity in the limit of mass degeneracy M2
k = M2

i or equivalently xki = 1.

In the resonant regime, the true form of rki is still controversial at present [65], and three

distinct expressions have been derived: (i) rki = xkiΓk/Mk by a quantum field-theoretic

approach [66, 67]; (ii) rki = Γi/Mi − xkiΓk/Mk by a modified version [68, 69] of the ap-

proach introduced in ref. [66]; (iii) rki = Γi/Mi+xkiΓk/Mk by an effective Kadanoff-Baym

approach with a specific quasi-particle ansatz [70, 71]. As we numerically demonstrate in

the FGY model, three different expressions of rki lead to the same result if a successful

leptogenesis is realized.
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The produced lepton-number asymmetries in the Ni decays will partly be washed out

by the inverse decays and lepton-number-violating scattering, if these processes proceed

efficiently. In order to describe the washout effects, we introduce the decay parameters

Ki ≡ Γi/H(Mi), where Γi = (Y †ν Yν)iiMi/8π is the total decay width of Ni and H(Mi)

is the Hubble parameter at temperature T = Mi. In the radiation-dominated epoch,

the Hubble parameter is given as a function of temperature H(T ) = 1.66
√
g∗(T )T 2/Mpl,

where Mpl = 1.2 × 1019 GeV is the Planck mass and g∗(T ) is the number of relativistic

degrees of freedom at T . The lepton number asymmetries will be converted into the

baryon number asymmetry through the (B+L)-violating and (B−L)-conserving sphaleron

processes [25, 26], which are in thermal equilibrium between T = 200 GeV and 1012 GeV.

The final baryon number asymmetry is then given by [27]

ηB ≈ −0.96× 10−2
∑
i

∑
α

εiακiα (3.5)

where the efficiency factors κiα can be determined by solving the Boltzmann equations of

heavy Majorana neutrino and lepton number densities. Roughly speaking, they are gov-

erned by the flavor-dependent decay parameters Kiα≡PiαKi, where Piα= |(Yν)αi|2/(Y
†
ν Yν)ii

stands for the projection probability of the final lepton state in Ni decays onto a specific

lepton-flavor state.

So far, we have focused on leptogenesis in the SM. In the MSSM, the CP asymmetries in

the decays of both Ni and its superpartner are twice larger, since the number of particles

running in the loops are doubled. However, in the strong washout regime, the inverse

decay rates are also doubly efficient, reducing the lepton asymmetries by a factor of two.

In addition, the particle content is twice much in the MSSM, so we have the number of

relativistic degrees of freedom g∗ = 228.75 in the MSSM, while g∗ = 106.75 in the SM.

Altogether, the baryon number asymmetry in either strong or weak washout regime in

the supersymmetric case is not much changed with respect to the non-supersymmetric

case [29].

In the vanilla scenario of leptogenesis, the mass spectrum of heavy Majorana neutrinos

is taken to be hierarchical, and only the lightest Majorana neutrino N1 and the one-flavor

approximation are considered. This is actually done for the FGY model in the previous

papers [13, 20–22], where a narrow mass range of the lightest heavy Majorana neutrino

M1 ∼ 5 × 1013 GeV has been found in the IO case. In the following, we calculate the

baryon asymmetry via a flavor-dependent leptogenesis by taking into account the lepton

flavor effects and non-hierarchical mass spectra of heavy Majorana neutrinos.

3.1 Lepton flavor effects

The interaction rates associated with charged-lepton Yukawa couplings become larger than

the expansion rate of the Universe at different temperatures, and thus affect the washout

effects on lepton number asymmetries [72–76]. For Mi & 1012 GeV, the leptogenesis mech-

anism works at the temperature T ∼Mi, where all the charged-lepton Yukawa interactions

are negligible compared to the expansion rate. Therefore, the lepton state produced in

the decays also participates in the inverse decays and lepton-number-violating scattering.
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In this case, it is valid to treat leptons as a single flavor in both generation and washout

of lepton number asymmetries. The relevant quantities are just the total CP asymmetry

εi =
∑

α εiα and the efficiency factor κi, which is determined by the decay parameter Ki.

For 1012 GeV & Mi & 109 GeV, the τ charged-lepton Yukawa interaction is in thermal

equilibrium and able to single out the τ lepton flavor in the thermal bath. Therefore, one

has to deal with two lepton flavors, namely the τ flavor and a combination of e and µ

flavors. The relevant parameters are the CP asymmetries εiτ and εi2 ≡ εie + εiµ, and the

efficiency factors κiτ and κi2, which are calculable by using Kiτ and Ki2 ≡ Kie +Kiµ. For

M1 . 109 GeV, both τ and µ charged-lepton Yukawa interactions are efficient enough to

recognize τ and µ flavors in the system, implying that a three-flavor treatment is necessary.

First, we compute the CP asymmetries in the FGY model. Since the Dirac neutrino

Yukawa coupling matrix is given in eq. (2.23), it is straightforward to figure out εiα in

eq. (3.3). In the hierarchical limit of M1 � M2, we need to just focus on ε1α and assume

that the lepton asymmetries generated from the decays of N2 have been washed out by the

N1-related lepton-number-violating processes. For Pattern B1 with (Yν)e1 = (Yν)µ2 = 0,

we obtain ε1e = ε1µ = 0, and

ε1τ = ε1 ≈ −
3

16π

M1

v2

∆m2
21 Im[c2

z]

m1|cz|2 +m2|sz|2
, (3.6)

where the second equality has also been found in ref. [13]. The CP asymmetry is suppressed

by the tiny neutrino mass-squared difference ∆m2
21 ≈ 7.5× 10−5 eV2. Furthermore, as we

have shown in the previous section, the complex parameter z is very close to the real axis,

implying that | Im[c2
z]| ≈ |z| sin(2|z|) arg(z) should also be small. The numerical values of

| Im[c2
z]| have been presented in figure 3 for a wide range of model parameters, where one

can observe that | Im[c2
z]| is actually small and varies between 0.03 and 0.09. In the present

work, we shall concentrate on Pattern B1, but one can calculate the CP asymmetries for

the other three viable patterns in a similar way. The important results for all four viable

patterns have been summarized in table 2.

Second, instead of solving the complete set of Boltzmann equations, we apply the ana-

lytical formulas obtained in ref. [77] to estimate the efficiency factors. If the initial thermal

abundance of heavy Majorana neutrinos is assumed, the efficiency factor is approximately

given by [77]

κiα ≈
2

KiαzB(Kiα)

[
1− exp

(
−
KiαzB(Kiα)

2

)]
, (3.7)

where zB(Kiα) = 2 + 4K0.13
iα exp(−2.5/Kiα). Hence the efficiency factors are completely

fixed by the decay parameters Kiα, which are in turn determined by the flavor structure

of Yν . For Pattern B1, we get the total decay parameter

K1 =
M2

1 v
2(m1|cz|2 +m2|sz|2)

8πH(M1)
≈ 50 , (3.8)

where Im z � 1 and m2 ≈ m1 ≈ 0.05 eV have been used in the last step. The projection

probability is determined by

P1τ

1− P1τ

=
|(Yν)τ1|2

|(Yν)µ1|2
=
|Uτ1
√
m1cz + Uτ2

√
m2sz|2

|Uµ1

√
m1cz + Uµ2

√
m2sz|2

= tan θ23 , (3.9)
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Figure 3. Numerical results of Im[c2z] are calculated by solving the RG equations with the low-

energy parameters in their 3σ ranges as inputs. The high-energy scale has been chosen to be 108 GeV

(red stars), 1010 GeV (green dots), and 1013 GeV (blue triangles) for a given tan β in the MSSM.

where the identity tan z = −Ue1
√
m1/(Ue2

√
m2) has been implemented to significantly

simplify the result. Given θ23 ≈ 45◦, we arrive at P1τ ≈ 0.5 and K1τ ≈ 25. For comparison,

we can also figure out P1τ for Pattern B4 with (Yν)e2 = (Yν)µ1 = 0. With the constraint

tan z = −Uµ1
√
m1/(Uµ2

√
m2), we have

P1τ

1− P1τ

=
|(Yν)τ1|2

|(Yν)e1|2
=
|Uτ1
√
m1cz + Uτ2

√
m2sz|2

|Ue1
√
m1cz + Ue2

√
m2sz|2

≈ tan2 θ13

cos θ23

, (3.10)

and thus P1τ ≈ 0.05 and K1τ = 2.5, which are one order of magnitude smaller than the

result in the previous case. Since P1τ in eq. (3.9) or eq. (3.10) depends mainly on θ23 and

θ13, its value should be quite stable against the RG running.

With both the CP asymmetries and decay parameters, we are ready to find out the effi-

ciency factors, and then baryon number asymmetry. The numerical results are summarized

as follows:

• If M1 & 1012 GeV, we can treat leptons as a single flavor, and the relevant quantities

are the CP asymmetry ε1 ≈ −2 × 10−6 (M1/1013 GeV), which is identical to ε1τ as

shown in eq. (3.6), and the efficiency factor κ1 ≈ 5 × 10−3 by inserting K1 = 50

into the analytical formula in eq. (3.7). Putting all together, we obtain the baryon

number asymmetry

ηB ≈ −0.96× 10−2ε1κ1 = 1.0× 10−10

(
M1

1013 GeV

)
, (3.11)

which is in agreement with the result in ref. [13]. Therefore, heavy Majorana neutrinos

should be as heavy as 6×1013 GeV to generate the correct baryon number asymmetry.

Note that | Im[c2
z]| = 0.05 has been assumed in the above calculation, but it is evident

from figure 3 that the RG running effects on mixing parameters can enhance or reduce

this value by a factor of two, depending on tan β.

• If M1 < 1012 GeV, the CP asymmetry is given by the same formula ε1τ ≈ −2 ×
10−7 (M1/1012 GeV), which will be at least one order of magnitude smaller compared
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to the previous case. Since the flavor structure of Yν under consideration indicates

ε1e = ε1µ = 0, there is no contribution from other lepton flavors to the lepton number

asymmetries. The washout of lepton number asymmetries is now determined by

K1τ = P1τK1 = 25, leading to an efficiency factor κ1τ ≈ 0.01. Although there is an

enhancement by a factor of two, the mass of the heavy Majorana neutrino is too small

to provide a large enough CP asymmetry. If we turn to the case of Pattern B4, the

CP asymmetry remains the same and the efficiency factor is κ1τ ≈ 0.2, so we have

the final baryon number asymmetry

ηB ≈ −0.96× 10−2ε1τκ1τ = 3.8× 10−10

(
M1

1012 GeV

)
, (3.12)

which is on the right order of magnitude even for M1 = 1012 GeV. However, it is

worthwhile to point out that M1 = 1012 GeV is on the edge of two-flavor approxi-

mation, when the coherence of lepton state in N1 decays may be destroyed by the

τ Yukawa interaction. In this case, the classical Boltzmann equations are not accu-

rate enough to give the correct answer, and the fully quantum Boltzmann equations

should be applied [65, 70, 71]. Hence the flavor effects may open a possibility to

realize a successful leptogenesis even for a smaller M1.

For even smaller masses M1 � 1012 GeV, the CP asymmetries are significantly suppressed.

It is impossible to explain the observed baryon number asymmetry in the FGY model,

although the flavor effects tend to protect lepton number asymmetry from washout.

3.2 Beyond hierarchical limit

The high mass scale of heavy Majorana neutrinos causes the so-called naturalness or fine-

tuning problem for the light Higgs boson mass [30–34], and the gravitino overproduction

problem if the model is supersymmetrized [35]. In ref. [34], a detailed analysis of the

naturalness problem in the type-I seesaw model yields an upper bound on the heavy Ma-

jorana neutrino masses, namely, M1 < 4 × 107 GeV and M2 < 7 × 107 GeV. These upper

bounds have been derived by requiring that the radiative corrections induced by heavy

Majorana neutrinos to the Higgs boson mass should be around the TeV scale. Obviously,

this bound is in contradiction with the requirement of M1 ∼ 1013 GeV for explaining the

baryon number asymmetry in the FGY model. Therefore, it is well motivated to go beyond

the hierarchical limit and consider both mild mass hierarchy and a nearly-degenerate mass

spectrum.

In the mild hierarchy case, we take M2 to be a few times M1. For the later convenience

of quantifying the level of mass degeneracy, we introduce a dimensionless parameter

∆ ≡ M2 −M1

M2

, (3.13)

which is zero in the limit of exact mass degeneracy M1 = M2 and approaches one for

M2 �M1, which is the case discussed in the previous subsection.

Because of a mild hierarchy between M1 and M2, both N1 and N2 participate in the

production and washout processes of lepton number asymmetries. The evolution of these
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asymmetries therefore involves solving the Boltzmann equations with both N1 and N2,

and the previously used analytic formula for estimating the efficient factor is no longer

applicable. To obtain a rough estimation of the baryon number asymmetry in this mild

hierarchy case, we next consider a simplified set of Boltzmann equations, where only the

inverse-decay processes are included in the washout term. First, the evolution equations

of N1 and N2 number densities are [77]

dnNi
dz

= −Di(nNi − n
eq
Ni

), (3.14)

where z = M1/T , and nNi is the number density for Ni normalized by its density in ultra-

relativistic thermal equilibrium (i.e., T �Mi). Here neq
Ni

= z2
iK2(zi)/2 with zi ≡Mi/T =

zMi/M1 is the density in thermal equilibrium, and K2(z) is the modified Bessel function

of the second kind. The decay factor Di is defined to be

Di ≡
Γi(z)

H(z)z
= Kiz

M2
i

M2
1

〈
1

γi

〉
, (3.15)

where Ki has the same form as the previously defined total washout factor, and 〈1/γi〉 =

K1(zi)/K2(zi) is the thermally averaged dilation factor. Second, we also have the evolution

equations for the lepton asymmetries, namely,

dn∆α

dz
= −

∑
i

εiαDi(nNi − n
eq
Ni

)− n∆α

∑
i

PiαW
ID
i , (3.16)

where n∆α
is the B−L asymmetry density for the flavor α, which has also been normalized

by the density of Ni in the ultra-relativistic thermal equilibrium, and the total B−L asym-

metry density nB−L is then given by nB−L =
∑

α n∆α
. In addition, Piα is the projection

probability defined previously, and the inverse-decay washout term W ID
i is as follows

W ID
i =

1

4
Ki

Mi

M1
K1(zi)z

3
i . (3.17)

Given the above set of Boltzmann equations, we then solve them numerically. The

initial conditions are obtained by setting the thermal abundance of nNi
, and vanishing

B − L asymmetries. In figure 4, we present the allowed parameter space for M1 and ∆ in

the case of Pattern B1. The black solid curve represents a contour of ηB = 6.065× 10−10,

for which the observational uncertainty is so small that it will be hidden by the line width in

the figure. The mass regions, which are represented by the shading areas, are characterized

by the charged-lepton flavor effects.

In the highly degenerate case, we calculate ηB in two ways: solving the simplified set

of Boltzmann equations introduced eqs. (3.14) and (3.16), and applying the approximate

analytical formulas. In [78], it was argued that in the degenerate limit, the N1 and N2

washout contributions add up, resulting in

ηB = −0.96× 10−2
∑
α

(ε1α + ε2α)κ(K1α +K2α), (3.18)
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Figure 4. Illustration for the dependence of baryon number asymmetry on the lightest heavy

Majorana neutrino mass M1 and the mass degeneracy parameter ∆. The black and solid curve

corresponds to the allowed regions of model parameters, for which the observed baryon number

asymmetry ηB ≈ 6.065× 10−10 can be naturally explained. The dashed lines indicate a few typical

values of the mass ratio M2/M1.

where the efficiency factor κ is still calculated via eq. (3.7). The summation over α depends

on the region of the lepton flavor effects. We focus on Pattern B1 with (Yν)e1 = (Yν)µ2 = 0,

and the other cases can be analyzed in a similar way.

In figure 4, we show the allowed parameter space for M1 and ∆ for a variety of masses,

in the single-flavor, two-flavor and three-flavor regions. We have demonstrated that the

two approaches with simplified Boltzmann equations and approximate formulas lead to the

same result. In the mild hierarchy case, we observe from figure 4 that M1 still sits around

5× 1013 GeV. This can be easily understood, as we know that ε2 is at most as large as ε1.

To see this point clearly, we first calculate ε1/ε2 by using eq. (3.2), and find it divergent

when ε2 = 0, corresponding to M2/M1 ≈ 2.36. When M2/M1 < 2.36, ε1 and ε2 have

the same sign, while the opposite situation happens when M2/M1 > 2.36. In addition,

|ε1| > |ε2| holds for all ratios of M2/M1. Therefore, including the contributions from N2

cannot significantly enhance the amount of CP asymmetry, and one then still needs to raise

the mass scale of M1 so as to reach the required value of ηB. In the nearly-degenerate case,

we see that a mass degeneracy at the level of ∆ = 10−7 is required to meet the naturalness

bound M1 < 4 × 107 GeV and account for the baryon number asymmetry via resonant

leptogenesis [66, 67, 79]. In our calculations, the formulas of CP asymmetries with different

regulators rik lead to the same result in the FGY model. Although it seems unnatural to

require such a high mass degeneracy, it can actually be achieved by implementing a flavor

symmetry and its soft breaking at a superhigh-energy scale [67], or by the RG running
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effects [80, 81]. As one can see, there is a kink around M1 = 1012 GeV. The reason is

simply that we use different Boltzmann equations for the two cases of below and above

1012 GeV. The kink should disappear if the fully quantum Boltzmann equations with

coherent flavor effects are used [65]. The curve is continuous around M1 = 109 GeV, since

the flavor structure enforces only one nonzero CP asymmetry ε1τ .

4 Summary

In light of the latest neutrino oscillation data, we have performed a further study of the

FGY model, in which only two right-handed heavy Majorana neutrinos are introduced and

two texture zeros appear in the Dirac neutrino Yukawa coupling matrix, by taking into

account the RG running of neutrino mixing parameters and flavor effects in leptogenesis.

Such an investigation is well motivated in two aspects.

First, the FGY model is very interesting and predictive, and can be readily confronted

with the latest neutrino oscillation data. Since the lightest neutrino is massless, the neu-

trino mass spectrum is fixed by the neutrino mass-squared differences, which are precisely

measured in neutrino oscillation experiments. There are one Dirac and one Majorana CP-

violating phases, which are actually determined by neutrino mixing angles and masses. The

neutrino mass ordering is inverted, implying that the effective neutrino mass mββ = 50 meV

is well within the reach of next-generation neutrinoless double-beta decay experiments.

Second, either the renormalization-group running effects of neutrino mixing parame-

ters or the lepton flavor effects in leptogenesis has been ignored in the previous studies.

Moreover, in order to stabilize the Higgs boson mass, the lightest heavy Majorana neutrino

mass should be light enough M1 < 4 × 107 GeV, which contradicts with the requirement

M1 ∼ 1013 GeV for a successful leptogenesis. It is interesting to revisit this economical

model by considering RG running effects, lepton flavor effects in leptogenesis and a non-

hierarchical mass spectrum of heavy Majorana neutrinos.

In this work, taking account of the RG running effects on neutrino mixing parameters,

we have consolidated the conclusions reached in ref. [13] and demonstrated that only four

patterns B1, B2, B4, and B5 in eq. (2.6) in the IO case are allowed by current neutrino

oscillation data. This generalization is important for the MSSM with a large value of tan β,

where the RG running effects are significant. It has been found that the determination of

neutrino mass ordering and the observation of neutrinoless double-beta decays will provide

critical evidences to verify or disprove these four patterns. Furthermore, the octant of θ23

and the CP-violating phase δ will be measured in future long-baseline neutrino oscillation

experiments, and then can be used to further distinguish between B1 (or B4) and B2

(or B5). If the baryon number asymmetry is interpreted via leptogenesis mechanism, the

relative sign of low-energy CP violation (i.e., the Jarlskog invariant J ∝ sin δ) to the high-

energy CP violation (i.e., the CP asymmetry ε1 in N1 decays) serves as a discriminator

for B1 (B2) and B4 (B5). The most important formulas for four viable patterns are

collected in table 2. If the naturalness criterion is applied to the FGY model, only the

nearly-degenerate mass spectrum of heavy Majorana neutrinos with a mass degeneracy of
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∆ ∼ 10−7 is allowed, and resonant leptogenesis becomes responsible for the baryon number

asymmetry.

The FGY model actually exemplifies the idea of Occam’s razor, which cuts away un-

necessary free parameters and renders the model to be most economical and testable. If

one of four viable patterns of the flavor structure is singled out by future neutrino exper-

iments, we should go further to identify the underlying symmetries and explore the true

dynamics for neutrino masses and lepton flavor mixing.
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