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Abstract

Background: RNA-binding proteins interact with specific RNA molecules to regulate important cellular processes. It
is therefore necessary to identify the RNA interaction partners in order to understand the precise functions of such
proteins. Protein-RNA interactions are typically characterized using in vivo and in vitro experiments but these may not
detect all binding partners. Therefore, computational methods that capture the protein-dependent nature of such
binding interactions could help to predict potential binding partners in silico.

Results: We have developed three methods to predict whether an RNA can interact with a particular RNA-binding
protein using support vector machines and different features based on the sequence (the Olimethod), the motif score
(the OliMomethod) and the secondary structure (the OliMoSSmethod). We applied these approaches to different
experimentally-derived datasets and compared the predictions with RNAcontext and RPISeq. Oli outperformed
OliMoSS and RPISeq, confirming our protein-specific predictions and suggesting that tetranucleotide frequencies are
appropriate discriminative features. Oli and RNAcontext were the most competitive methods in terms of the area
under curve. A precision-recall curve analysis achieved higher precision values for Oli. On a second experimental
dataset including real negative binding information, Oli outperformed RNAcontext with a precision of 0.73 vs. 0.59.

Conclusions: Our experiments showed that features based on primary sequence information are sufficiently
discriminating to predict specific RNA-protein interactions. Sequence motifs and secondary structure information
were not necessary to improve these predictions. Finally we confirmed that protein-specific experimental data
concerning RNA-protein interactions are valuable sources of information that can be used for the efficient training of
models for in silico predictions. The scripts are available upon request to the corresponding author.
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Background
The human genome encodes a large number of RNA-
binding proteins (RBPs) [1-3] which carry out diverse
functions and a range of biological processes. Some RBPs
are well characterized, and their molecular functions and
biological activities are partially known. RBPs are also
involved in post-transcriptional regulation, RNA splicing,
RNA stability and protein synthesis. This suggests that
RBPs must interact with specific mRNA targets. Each
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mRNA comprises a coding region flanked by 5’ and 3’
untranslated regions (UTRs). A number of specific RBP
target sites have been identified in the 3’-UTR [4]. Inter-
actions between RBPs and RNA are finely tuned and reg-
ulated, and the disruption of such interactions is therefore
implicated in a number of diseases [3,5]. Furthermore, the
identification of RNA targets is interesting from a bio-
logical perspective because they provide insight into the
precise functions of RBPs [2,6]. More accurate predictions
of binding sites and the molecular characteristics of such
interactions are therefore highly informative [7].
Over the last decade, several computational approaches

have been developed to predict RBP-RNA interactions.
One such approach relies on the use of machine learning
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techniques to predict individual amino acid residues on
the protein surface that potentially interact with ribonu-
cleotides, e.g. Neural Networks [8], Random Forest (RF)
[9], Naïve Bayes [10] and Support VectorMachines (SVM)
[11-13]. These methods are based on information about
binding extracted from three-dimensional binding com-
plexes and provide accurate predictions, but they do not
consider the RNA-binding partner and provide no infor-
mation about the RNA sequence that interacts with the
RBP. Only a few methods address this issue: (1) Pancaldi
and Bähler [14], by predicting RBP-RNA interactions in
yeast with SVM and RF; features are global RBP-RNA
relationships such as Gene Ontology terms, protein local-
ization information and mRNA properties; (2) catRAPID
[15], by predicting interactions with long non-coding
RNAs on a large-scale using physico-chemical properties
and predicted secondary structures; (3) RPISeq [16], by
predicting whether a given RNA sequence is bound by a
specific RBP using pure sequence-derived features com-
bined with the SVM and RF approach; and (4) Wang et al.
[17], also using sequence-based features (i.e. protein-RNA
interaction propensities) to predict interactions between
RBPs and non-coding RNAs on a large-scale by apply-
ing Naïve Bayes and Extended Naïve Bayes classifiers. A
more detailed description of these methods can be found
in a recently published review [18]. Other computational
approaches include motif-finding tools that search for
binding sites on RNA molecules [1]. These methods need
experimental data to extract significant sequence motifs
within the bound sequences [19] or to search for relevant
sequences and structural motifs by learning from data
about bound and non-bound sequences [20].
The interaction between RNA and RBPs is protein spe-

cific [21], but the interaction mechanism is not always
well described despite many experimental investigations
[5,7,22]. This may be due to different binding prefer-
ences: some RBPs bind specific target sequences on the
RNA strand [2], whereas others recognize their bind-
ing site within the RNA secondary structure [23,24]. The
binding recognition mechanism may differ even within
the same RBP family [22,25]. Currently, the detection of
RNA targets and the identification of specific binding
sites is only possible by carrying out in vitro and in vivo
experiments such as systematic evolution of ligands by
exponential enrichment (SELEX) [26] and the crosslink-
ing and immunoprecipitation (CLIP) techniques [27-29].
These methods are costly, time-consuming, are based on
assumptions and have limitations reflecting experimental
bias [27,30]. Furthermore the RBP-RNA interactions iden-
tified by such techniques tend to be species-dependent or
restricted to a particular cell type or set of experimen-
tal conditions, and only expressed sequences are detected,
which means many non-expressed but genuine interac-
tion partners may be overlooked. The same applies to

the non-binding sequence data: the transcriptome in a
particular sample does not include all the possible tran-
scripts even in the same species, resulting in the iden-
tification of only a subset of the potential binding and
non-binding sequences. Computational methods can help
to capture specific protein-dependent interactions. Large
genome-wide transcription datasets, generated by high-
throughput screening, contain valuable information about
validated RNA-protein interactions and this information
is a useful way to improve in silico predictions.
RNA-protein interactions can be predicted by using

motif-finding tools to detect RBP-binding sites in RNA
sequences, but such methods often fail to detect com-
plex binding mechanisms [30]. A single RNA molecule
can contain binding sites for more than one protein [31]
and the binding of an RBP can depend on the bind-
ing of another protein. Some RBPs may need more than
one binding site spread along the folded RNA sequence
[30]. These specific binding mechanisms cannot be pre-
dicted by motif-finding tools alone but might be caught by
features describing the general sequence composition.
We have developed an in silico binding prediction tool

based on the SVM approach that exploits experimental
human datasets. Because each RBP interacts with spe-
cific target RNAs [1], it is reasonable to train one SVM
per RBP in order to model its specific binding proper-
ties. Starting from experimental datasets, we represented
each RNA sequence initially by its tetranucleotide com-
position, followed by the inclusion of significant binding
patterns and secondary structure information as features.
The use of SVMs was motivated by the superior classifi-
cations achieved in previous studies [12,13]. To evaluate
the methods, we carried out 10-fold cross validations and
compared our results with RNAcontext [20] and RPISeq
[16].
Our novel RBP-dependent approach involves the indi-

vidual training of one model for each RBP and the
exploitation of experimental datasets. The models are
trained only on RNA features but also include secondary
structure information.

Methods
Approach
Our approach comprises the method Oli (based on
tetranucleotides as features) and two extensions: OliMo,
which adds protein-specific binding motifs, and OliMoSS,
which also adds secondary structure information. We
applied the proposed methods to experimental human
datasets downloaded from The Atlas of UTR Regula-
tory Activity (AURA) [32]. The well-studied human RBP
Pumilio-2 (PUM2), extracted from the Gene Expression
Omnibus (GEO) [33], was used to evaluate the influence
of true negative RNA sequences on the prediction capa-
bility of the models. Additionally, a PAR-CLIP dataset for
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the RBP Argonaute 2 (AGO2) [27] was downloaded from
GEO so that our approaches could be tested indepen-
dently.
Some RBPs can bind specific sub-sequences (called

motifs) but these patterns are not always available. Tools
have therefore been developed which search for signifi-
cant patterns in a group of RNA sequences that are known
to interact with the corresponding RBP. In our approach
we used MEME Suite [19] to detect binding motifs in
silico and to embed the binding site information in the
form of motif scores.
Other RBPs do not bind sequence motifs but instead

recognize secondary structures, which we also included
as features. The three-dimensional structure of the pro-
tein and the accessibility of the binding site influence the
RNA binding [6]. The accessible surface area can be deter-
mined by inspecting three-dimensional structures, but
there is no high-throughput approach to parse such three-
dimensional information. Therefore we introduced a sim-
ple accessibility feature: an RNA subsequence was defined
as accessible if at least four consecutive nucleotides were
single stranded, i.e. not paired with other nucleotides in
a stem. Double stranded ribonucleotides would be less
accessible to an RBP.
The entire experimental dataset (with bound and non-

bound RNA sequences) is available for PUM2, but this
does not apply to the remaining RBPs present in AURA.
Therefore we used 3000 human 3’-UTRs, randomly
downloaded from the Ensembl Genome Browser [34], as
negatives. It is possible that these negatives include tran-
scripts that were not detected in the experiment but are
potentially bound by the RBP, e.g. because they were not
bound under the given conditions or their expression level
was low. This fact makes the choice of negative train-
ing data challenging and it can also influence the results.
Therefore we calculated the confidence interval of the
obtained areas under the curves (AUCs) by exchanging
the 3000 human 3’-UTRs 10 times with other randomly-
selected transcripts from ENSEMBL.
The application of machine learning to biological data is

often affected by unbalanced datasets, because the num-
ber of negative examples is generally much higher than
the positive ones. We chose 3000 3’-UTRs as negatives,
because this is double the greatest number of sequences
used in the AURA_dataset, and small enough to train
models in a reasonable time. Several solutions have been
proposed to address the issue of unbalanced datasets
[35] and we decided to use an oversampling algorithm
called SMOTE [36], which creates new synthetic instances
within the positive data and forces the classifier to become
more general.
To study our methods we carried out two different eval-

uations. In Evaluation 1 we assessed the prediction of
Oli, OliMo and OliMoSS against 15 different RBPs using

randomly-selected 3’-UTRs as negatives. In Evaluation 2,
to assess the influence of experimentally-validated and
artificial negative data, we applied our methods to a pro-
tein with available experimentally-determined non-bound
sequences. The comparison of empirical negative data
and randomly-selected 3’-UTRs for PUM2 allowed us to
determine the value of using real negative training data.
In both evaluations we compared our approaches to

RPISeq [16] and RNAcontext [20]. RPISeq is directly com-
parable to our methods because it uses protein and RNA
sequences as inputs and predicts binding using SVM
(RPISeq-SVM) and Random Forest (RF) (RPISeq-RF).
Similarly, RPISeq applies the normalized tetranucleotide
frequency to describe the RNA sequences.
RNAcontext uses a different approach based on the

detection of sequence motifs and structures in a pool of
training sequences, and searches for them in a set of test
sequences before assigning a score.

Datasets
All the datasets were derived from experiments with
human cells.

AURA_dataset. The AURA_dataset comprises RBPs
and related RNA sequences downloaded from AURA
(release 2.4). AURA is an online database that con-
tains experimentally-derived human mRNA-RBP pairs.
For simplicity, ’RBP+’ refers to the set of RNA sequences
in AURA that are recognized by a specific RBP. For exam-
ple CPEB1+ comprises 182 RNA sequences recognized
by CPEB1 and PUM1+ comprises 420 RNA sequences
recognized by PUM1. An AURA_dataset with 15 RBP+
sets was obtained by focusing on proteins with more than
50 associated 3’-UTRs (enough positive examples to train
SVM) for which MEME Suite was able to detect binding
motifs in a reasonable time. In order to eliminate simi-
lar sequences we processed each RBP+ with USEARCH
[37] to cluster sequences with more than 80% (and 30%)
identity. We used one representative from each cluster as
the final sequence. By randomly choosing 3000 human
3’-UTRs from the Ensembl Genome Browser [34] we con-
structed an artificial negative dataset (hereafter called
3K-) to complement each RBP+ set. Thus for CPEB1 the
CPEB1+ set comprised 182 (positive) binding sequences
and 3K- was used as the negative data to train the SVM.

PUM2_dataset. The PUM2 data originates from a pho-
toactivatable ribonucleoside-enhanced CLIP experiment
on human embryonic kidney (HEK293) cells and was
downloaded from GEO (GSM545210). In the experi-
ment [28], 7523 clusters of about 3000 transcripts were
identified and 93% were found within the 3’-UTRs. We
extracted all 3’-UTRs in such way that each cluster
appeared only once, creating the PUM2+ dataset which
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contains 2151 positive 3’-UTRs recognized by PUM2. The
results of an RNA-Seq experiment [27] involving the same
HEK293 cells under the same conditions were used as
the negative results. Two replicates are available on GEO:
GSM714678 and GSM714679. To avoid the loss of data we
merged these results and downloaded the sequences from
the Ensembl Genome Browser (NCBI36/hg18 release 54,
May 2009). Hence the PUM2- dataset comprises 3000 of
the 12329 negative 3’-UTRs that did not bind to PUM2.

iAGO2_dataset. The independent AGO2 (iAGO2)
dataset is not present in AURA and was downloaded
from GEO as replicates of the PAR-CLIP experiment [27]:
GSM714644 and GSM714645. Merging the results and
downloading the sequences from the Ensembl Genome
Browser (NCBI36/hg18 release 54, May 2009) resolved
5951 sequences recognized by AGO2. The RNA-Seq
dataset discussed above was again used to provide the
negative 3’-UTRs [27]. After subtracting the transcripts
recognized by AGO2, the negative dataset comprised
5841 sequences.
Table 1 gives a short description of the datasets compo-

sition, the number of proteins and the number of target
sequences. A more detailed description of all RBPs can be
found in Additional file 1. The data for theAURA_dataset,
3K-, PUM2+, PUM2- and iAGO2 are provided in Addi-
tional file 2.

SVM
The method we use to classify binding and non-binding
RNA sequences is the Support Vector Machine (SVM)
[38]. An SVM classifier tries to discriminate linearly
between RNA sequences which belong to different classes
yi with yi ∈ {+1,−1}: a sequence xi belongs to the positive
class with label +1 (e.g. bound RNA) or to the negative
class with label −1 (e.g. not bound RNA). The goal of a

Table 1 Dataset description

Dataset No. proteins No. of targets Type

AURA_dataset

RBP+ 15 8086 positive dataset

3K- - 3000 negative dataset

PUM2_dataset

PUM2+ 1 2151 positive dataset

PUM2- 1 3000 negative dataset

iAGO2_dataset

1 5951 positive dataset

1 5841 negative dataset

A short description of the dataset compositions, the number of proteins in each
dataset and the sum of the target sequences. A more detailed description of the
AURA_dataset and the number of target sequences used for training can be
found in Table 2, first and second column.

SVM is to find a discrimination function, which divides
the two classes in such way that the label for new entries
can be predicted. In this work, we use the freely available
SVM package LIBSVM [39].

Feature extraction and representation
PSSM
Motifs are sequence patterns in RNA, DNA or proteins
that can be modeled by position-specific scoring matri-
ces (PSSMs). MEME Suite [19] can detect motifs in sets of
sequences, create the corresponding PSSM and compute
the motif score scoreŝi which is calculated for each m-
length subsequence ŝi = bi+1 . . . bi+m, i ∈ {0, ..., n−m+1}
along the n-length RNA sequence b1b2 . . . bj . . . bn where
bj is the ribonucleotide at the j-th position andm themotif
lengthm ≤ n:

scoreŝi =
m∑

k=1
pssm(bi+k , k) (1)

where pssm(b, k) returns the matrix value for b ∈
{A,U ,C,G} and position k.
We searched for significant motifs in each RBP+ set

using the following MEME Suite property settings: mod =
zoops, minw = 5 and maxw = 10.

Tetranucleotides
We codified the individual RNA sequence composi-
tions using the frequency of all possible tetranucleotides
(AAAA,AAAU ,AAUC, . . . ). The corresponding feature
reported the frequency of each tetranucleotide in the
overall RNA sequence.

Simple secondary structures
We evaluated the following features based on RNA sec-
ondary structures predicted with RNAfold [40]:

1. predicted folding energy [14] (calculated using
RNAfold);

2. stem density, proportion of paired base pairs [14];
3. number of stems [14];
4. accessibility, computed by identifying subsequences

with at least four consecutive nucleotides in single
stranded form, i.e. not part of a stem. We codified
these subsequences using tetranucleotides. The
corresponding feature was set to 1 if a specific
subsequence was single stranded, but otherwise 0.
Additional file 3: Figure S1 illustrates the calculation
of the secondary structure features.

Prediction methods
Using Oli, binding and non-binding RNAs for a specific
RBP were predicted by applying a SVM that described
each RNA sequence in terms of the frequency of 256
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features corresponding to all possible tetranucleotide
sequences.
OliMo extended Oli by adding 10 PSSM-based motif

scores. Given a specific RBP, we applied a SVM to discrim-
inate binding from non-binding RNAs, describing each
RNA sequence using 266 features: the tetranucleotide fre-
quencies (see above) and 10 PSSM-based motif scores
calculated for each subsequence in the RNA strand. Bind-
ing sites occur more often than expected by chance on
regulated UTRs [4]. Accordingly we represented the bind-
ing sites on each RNA sequence by the 10 highest motif
scores.
OliMoSS extended OliMo by adding secondary struc-

ture features. Given a specific RBP, we applied a SVM to
discriminate binding from non-binding RNAs by describ-
ing each RNA sequence with a total of 525 features: the
tetranucleotide frequencies and PSSM scores described
above, plus three additional secondary structure proper-
ties (the predicted folding energy of the formed secondary
structure, the stem density and the number of stems in the
structure) and 256 features representing the accessibility
of different tetranucleotides.

Evaluation and comparison
The models were analysed in two evaluations. In
Evaluation 1, we tested the predictive capability of Oli,
OliMo and OliMoSS against the AURA_dataset, each
RBP+ set assisted with the negative 3K- counterpart, and
calculated the AUC and precision, as previously reported
with RNAcontext and RPISeq. Finally we applied the
Wilcoxon signed-rank test (with a significance level of
0.01) to the AUCs to compare their performance. In order
to assess the significance of the resulting AUCs, we calcu-
lated their confidence interval: we carried out the exper-
iment 10 times, each time generating the 3K- set using
3000 randomly selected and non-overlapping ENSEMBL
transcripts. Furthermore, we investigated whether the
trained protein-specific SVMs discriminate between the
different RBP+ sets. To address this, we applied each
model to the RBP+ sets of the other 14 RBPs and cal-
culated the sensitivity. We also used iAGO2 to test the
predictions of our AGO2-models. Evaluation 2 tested the
performance ofOli,OliMo andOliMoSS on PUM2+ com-
pared to PUM2- and 3K-. We calculated AUC and preci-
sion, and compared the predictions (using the Wilcoxon
signed-rank test) with RNAcontext and RPISeq.
A short description and a definition of the performance

metrics can be found in the Additional file 3.
In each evaluation we carried out a 10-fold cross val-

idation. Within each training fold, a grid-search iden-
tified the best value for the linear kernel parameter C
according to the highest Matthews correlation coeffi-
cient (MCC) to evaluate the classification ability. An
n-fold cross-validation is preferable to a leave-one-out

cross-validation because it has been used in most pre-
vious reports [9,12,13,16,17] and is recommended for
calculations that are demanding on computer resources
[41]. Moreover, Muppirala et al. and Pancaldi and Bäh-
ler reported no differences in the predictions compared to
the use of leave-one-out cross-validation. All the scripts
we describe were implemented in Python. The oversam-
pling algorithm SMOTE was used to balance the data and
was applied only to the training folds. We sought binding
motifs with MEME Suite in each of the 10 training folds
separately to avoid circularity and to ensure a fair testing.
Here, we only applied the linear kernel because the bal-
ancing with SMOTE was implemented in the input space
and the linear kernel must therefore be used. Other ker-
nels would require the training data to be balanced in each
kernel-defined feature-space, and this transformation was
not the goal of the paper.

Results and discussion
Evaluation 1
Table 2 shows the performance of Oli, OliMo, OliMoSS,
RNAcontext, RPISeq-SVM and RPISeq-RF on each RBP
in the AURA_dataset. Each RBP+ set was filtered using
sequence identity thresholds of 80% (results shown in
Table 2) and 30% (results shown in Additional file 3: Table
S2). High levels of sequence identity in the 10-fold cross
validation can introduce biases and can shift the results
versus high true positive and true negative predictions.
This is generally the case for protein sequences but evi-
dently does not apply to RNA sequences. Lower levels of
sequence identity did not influence our predictions, thus
we only report the results for the RBP+ sets with less
than 80% sequence identity. It was not possible to generate
RPISeq predictions for the 30% identity dataset because
the method is restricted to 100 RNA sequences per run
and is only accessible online. It is not feasible to calcu-
late interactions within large datasets in steps of 100 RNA
sequences. For this reason we calculated the AUCs only
for the sequences with 80% identity.
Additional file 3: Table S1 reports the confidence inter-

vals of the resulting AUCs at a confidence level of α =
0.01. The p-values of the Wilcoxon signed-rank test are
presented in Additional file 3: Table S3, and the precisions
for each method, calculated at a threshold of 0.5, can be
found in Additional file 3: Table S4.
Oli and OliMo achieved the highest mean AUC of 0.75,

followed by RNAcontext with a mean of 0.71. RPISeq-
SVM and RPISeq-RF performed the worst, with means of
0.66 and 0.61, respectively. TheWilcoxon signed-rank test
showed a significant difference between the prediction of
Oli and OliMoSS (p = 0.004) and between the prediction
of OliMo and OliMoSS (p = 0.006) but there was no sig-
nificant difference between Oli and OliMo (p = 0.202).
All three approaches showed a statistically significant
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Table 2 Performance ofOli,OliMo,OliMoSS, RNAcontext and RPISeq on the AURA_dataset

Name #(RBP+) Oli OliMo OliMoSS RNAcontext RPISeq-SVM RPISeq-RF

AGO1 1824 0.86 0.85 0.84 0.83 0.74 0.62

AGO2 207 0.84 0.83 0.70 0.80 0.7 0.61

AGO4 270 0.87 0.84 0.78 0.82 0.76 0.62

AUF1 1319 0.69 0.69 0.67 0.62 0.57 0.6

CPEB1 182 0.69 0.67 0.59 0.55 0.62 0.53

CPEB4 72 0.52 0.54 0.60 0.50 0.54 0.52

CUGBP1 195 0.78 0.78 0.65 0.72 0.72 0.6

ELAVL1 1262 0.73 0.73 0.69 0.68 0.6 0.61

PUM1 420 0.68 0.68 0.66 0.68 0.67 0.64

PABP 258 0.57 0.58 0.52 0.52 0.52 0.51

QKI 710 0.87 0.86 0.86 0.83 0.78 0.76

TNRC6A 246 0.87 0.83 0.79 0.82 0.67 0.67

TNRC6B 742 0.86 0.86 0.82 0.83 0.70 0.68

TNRC6C 151 0.80 0.80 0.68 0.77 0.70 0.61

U2AF65 228 0.73 0.73 0.67 0.71 0.64 0.64

Mean±sd 0.75±0.11 0.75±0.10 0.70±0.09 0.71±0.11 0.66±0.07 0.61±0.06

The table lists RBPs, the number of sequences and the AUCs for each method on the AURA_dataset. The AUCs are calculated in 10-fold cross validations and at a
sequence identity of 80%. The negatives are provided in all cases by 3K- (see Evaluation 1). Data are reported with means ± standard deviation (sd).

difference in prediction compared to RPISeq-RF. RNA-
context showed statistically significant differences in pre-
diction to RPISeq-SVM (p = 0.01) and RPISeq-RF(p =
0.001). Similarly, Oli and OliMo are statistically different
from RNAcontext (p = 0.001 in each case) and from both
RPISeq methods (p < 0.002). All approaches were char-
acterized by low precision values, the mean ranging from
0.14 (RPISeq-RF) to 0.34 (Oli and OliMo). RNAcontext
(Prec = 0.29) and OliMoSS (Prec = 0.30) outperformed
both RPISeq-SVM (Prec = 0.15) and RPISeq-RF (Prec =
0.14). The computation of the precision at a threshold of
0.5 does not show the overall potential of the methods,
which is instead best visualized by PR curves.
Oli was compared in detail with RNAcontext, because

the latter was the most competitive with our novel meth-
ods. To visualize the classification ability of the two
approaches, we plotted the PR curve (Additional file 4)
and the receiver operating characteristic (ROC) curve
(Additional file 5) for each RBP. The optimum area of a PR
curve is the upper-right corner, and both methods strug-
gled to reach it for proteins CPEB4 and PABP. Oli out-
performed RNAcontext for most RBPs and the curve was
visibly shifted over the y-axis. Regarding the ROC curves,
both approaches were competitive, essentially reflecting
the AUCs listed in Table 2.
The performance of our approaches was protein depen-

dent. For several RBPs (e.g. AGO1, AGO2, AGO4 and
QKI),Oli andOliMo achieved an AUC ≥ 0.80, whereas in
other cases (e.g. CPEB4 and PABP), the performance was
worse (AUC ≤ 0.6). This is possibly because each RBP

binds in a specific way and the adopted features may not
always capture the particular binding property.
For example, Argonaute family members are known

to bind small miRNAs which finally bind the target
sequences. This complementarity is probably easier to
detect in the binding sequences, which could explain the
good performances of AGO1, AGO2 and AGO4. Simi-
larly, protein quaking (QKI) binds to RNA targets con-
taining the core sequence -YUAAY- [42]. When applied to
the poly(A)-binding protein (PABP), which predominantly
binds to the poly-A tails of mRNAs, our methods gener-
ated nearly random results. One explanatory hypothesis is
that the poly-A sequence alone is not enough to discrimi-
nate between positive and negative data.
We anticipated that as more binding information is pro-

vided, such as motif score and secondary structure, better
discrimination would be achieved between binding and
non-binding RNA. However, we observed the opposite
phenomenon in our models. OliMoSS achieved only low
AUCs and a statistically significant difference in predic-
tion, confirming it was the weakest of our approaches.
We concluded that the secondary structure features were
not necessary, perhaps because enough binding informa-
tion is already included in the tetranucleotide representa-
tion. Furthermore, the accessibility feature can also have
a limited impact because some RBPs bind RNA back-
bones rather than accessible ribonucleotides. Generally
the tetranucleotide-based features were able to capture
the specific binding properties. Figure 1 shows the perfor-
mance of Oli on the AURA_dataset.
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Figure 1 ROC curve showing the performance of tetranucleotide
frequency-based discrimination. The ROC curves show the
performance in 10-fold cross validations for the Olimethod on the
AURA_dataset and on PUM2+. The negative data are in both cases
provided by 3K-. The further the ROC curve advances towards the
upper-left corner, the better the classification ability of the model. A
curve near the 45-degree diagonal reflects a random classification.

We also tested the widely-used normalization of
tetranucleotide features, as applied in RPISeq, but this
did not improve either the AUC or the precision (data
not shown). Normalizing the tetranucleotide features can
disrupt the frequency of important tetranucleotides and
thus reduce discrimination within our dataset. Further
improvements can instead be achieved by applying other
rebalancing techniques. For example, the undersampling
of 3K- in combination with the oversampling algorithm
SMOTE for the positive data, proved to be a better choice
for smaller datasets with fewer than 50 sequences (the
cut-off value we used). An alternative balancing tech-
nique is the assignment of different weights to different
classes during training (implemented in LIBSVM). How-
ever, weighting the classes did not influence the predic-
tions achieved using our data.
Here we used the tetranucleotide frequencies to code

the RNA sequences. These features are identical to
RPISeq. Previously published studies use dinucleotides
[43] to identify contact profiles from RBP-RNA complexes
andWang et al. [17] chose sequences, three nucleotides in
length, to codify RNA. In our case, using k-mers of length
two and four gave similar prediction results, whereas
using k-mers larger than six reduced the prediction abil-
ity of the classifiers and caused much higher calculation
times for the balancing algorithm SMOTE. Using longer
k-mers to represent the RNA sequences forces most of

the frequencies to be 0. A similar result was observed in
our dataset for RNAs shorter than 1500 nucleotides: sen-
sitivity and specificity are unbalanced because most of the
tetranucleotide frequencies are zero. Interestingly, highly
unbalanced datasets, with many more negative sequences
than positives, did not have such an impact. The calcu-
lated AUC remained stable even if the negative dataset
size increased substantially. This suggests that even in
an unbalanced scenario, the proportion of correctly pre-
dicted sequences remains balanced.
Although applying the same sequence features, our

protein-specific discrimination (i.e. one model for each
RBP) was more useful that the general discrimination
approach of RPISeq. Because proteins utilise different
binding mechanisms, a protein-specific model can catch
binding preferences better than a less specific one. Spe-
cific models can be created by detecting and isolating
important and protein-dependent features. To gain more
insight, we calculated the information gain [44] for each
tetranucleotide. The 18 most important features for each
protein, ranked by their information gain, can be found in
the Additional file 3: Table S5. An interesting observation
is that the highest values are assigned to UUUU, AAAA,
AUUU and UUUA (in contrast to Muppirala et al., who
reported AUUC, AGUG, UUUU and UCAA as the most
frequent tetranucleotides) and that the 10 highest-ranked
tetranucleotides do not really vary across the proteins.
The protein-dependent tetranucleotides only begin to dif-
fer in the lower ranks. We argue that these results can be
used as the first criteria to select important features and
to create more specific models.
The binding mechanism is not the only factor that dif-

fers between proteins and needs individual treatment. The
datasets themselves also differ, because they reflect dif-
ferent experiments with various cell-lines under diverse
conditions. One single model created using such a mix of
information and diversity, cannot reasonably be expected
to achieve accuracy, whereas protein-dependent training
can catch the precious information contained in each
dataset.
To investigate whether the protein-specific SVMs dis-

criminate between the different RBP+ sets, we calcu-
lated the sensitivity and specificity for each RBP model.
Assuming each RNA in the RBP+ sets as a positive (i.e.
binding-partner), we can calculate the sensitivity of the
model against the binding partners of the other RBPs. The
results are shown in Additional file 3: Table S7. Interest-
ingly, many protein models detected binding sequences
(with sens>0.5) in the QKI, AGO1-4 and TNRC6A-C
datasets. AUF1 detected binding transcripts in all RBP+
sets. The opposite phenomenon was observed for CPEB4
and PABP: the sensitivities never exceed 0.4. Transcripts
have binding sites for several RBPs, therefore it is possible
to find targets also within the other RBP+ sets. Moreover,
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by assuming that the shared and overlapping targets are
positives and the non-shared targets are negatives, we cal-
culated the sensitivities and specificities for all themodels.
The results can be found in Additional file 3: Table S8
for the sensitivities and Additional file 3: Table S9 for the
specificities. As expected, the sensitivities in this test are
high, because the binding partners have been detected
also in the other RBP+ sets, and almost all of the mod-
els achieved low specificities on RBP+ sets AGO1-4 and
TNRC6A-C. The number of overlaps between the bound
sequences in the different RBP+ sets can be found in
Additional file 3: Table S6.
Inferring RBP-RNA binding based only on the pres-

ence of specific binding motifs may underestimate the
complexity of the binding process for some RBPs, explain-
ing the lower performance of RNAcontext in the PR
curves. The same applies in the case of OliMo, which did
not improve the predictions even when motif-based fea-
tures were included.Motif-based featuresmaywork better
when known and experimentally verified motifs can be
used. Considering that high-throughputmethods produce
large amounts of data, even a small change in the preci-
sion of an in silicomethod results in the better prediction
of binding RNAs.
The iAGO2_dataset was used to test our AGO2-models

independently: Oli performed best (AUC = 0.71), fol-
lowed by OliMo (AUC = 0.69) and OliMoSS (AUC =
0.63). These values are promising and show that models
trained on experimental data can be useful to discriminate
between target sequences. The availability of further high-
throughput data will make it possible to test more of our
models independently.

Evaluation 2
Table 3 compares the performance ofOli,OliMo,OliMoSS,
RNAcontext, RPISeq-SVM and RPISeq-RF on PUM2+ and
two different negative datasets: PUM2- and 3K-. The
ROC curve for PUM2+ and 3K- is shown in Figure 1.
Oli and OliMo achieved similar AUCs and precision
on the PUM2- and 3K- datasets, and both performed
marginally better thanOliMoSS. RNAcontext and RPISeq-
SVM achieved similar AUCs to Oli and OliMo on both
datasets, but much lower precision scores. The worst

performance was achieved by RPISeq-RF (AUC<0.57 and
Prec<0.43). Secondary structure features did not improve
the prediction, confirming the results of Evaluation 1. We
expected models trained on real binding data (i.e. PUM2-)
to increase the degree of discrimination, but instead this
reduced the performance of all methods.
In order to determine the ability of a model based

on real negative data to find binding partners among
general 3’-UTR sequences, we tested the models gener-
ated by the 10-fold cross validation with PUM2+ and
PUM2-, substituting the negatives of each of the 10 sets
with negatives from 3K-. Evidently an approach based
on real data should also be able to distinguish between
real positives and randomly-selected sequences. Further-
more, the task should be easier than distinguishing real
negatives because the precision increased (Prec = 0.81).
This is consistent with the fact that all the methods per-
form better when the negatives are sourced from the
3K- dataset. Similarly, to determine the ability to dis-
tinguish between real positives and real negatives, we
considered the models trained with PUM2+ and 3K-
and tested their performance against PUM2-. In this
case, the precision declined to 0.69. Therefore a com-
plete dataset obtained by in vivo experiments can be
used effectively to train SVMs with simple sequence
features.
The evaluation highlights the importance of negative

training data, which is rarely available but is necessary to
build accurate models. Because the performance values of
all methods tested on PUM2- and 3K- are correlated with
a Pearson coefficient of 0.99 (Table 3), random sequences
can provide a good approximation if no experimental neg-
atives are available. They can also be used to determine
the relative performance of the methods, as shown in
Evaluation 1.
Finally, when training with PUM2-, the difference

in precision is 0.14 between Oli and RNAcontext and
0.25 between Oli and RPISeq-SVM. As discussed under
Evaluation 1, even a small change in precision is impor-
tant. If we consider 1000 RNAs, an increase in precision
of 0.14 results in the correct classification of an additional
140 RNA sequences. Figure 2 shows the PR curve for Oli
and RNAcontext on PUM2+ and PUM2-.

Table 3 Performance ofOli,OliMo,OliMoSS, RNAcontext and both RPISeqmethods on PUM2+ in combination with two
different negative datasets

Pos. data Neg.data Value Oli OliMo OliMoSS RNAcontext RPISeq-SVM RPISeq-RF

PUM2+ PUM2- AUC 0.77 0.77 0.74 0.75 0.73 0.52

Prec 0.73 0.73 0.69 0.59 0.48 0.42

PUM2+ 3K- AUC 0.84 0.84 0.82 0.83 0.77 0.56

Prec 0.80 0.80 0.74 0.68 0.47 0.40

The table shows the performance for each method on two different datasets: one with PUM2+ and experimental negatives PUM2- and one with PUM2+ and randomly
selected 3’-UTRs 3K-. AUC and precision (Prec) values were calculated for a 10-fold cross validation.
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Figure 2 Precision-recall curves of Oli and RNAcontext. The PR
curves show the performance of Olimethod (red line) and RNAcontext
(green line) on experimental data from PUM2+ and PUM2- using
10-fold cross validations. The further the curve advances to the
upper-right corner, the better the classification ability of the model. A
more detailed explanation is provided in the Additional file 3.

Conclusions
The correct characterization of RBP-RNA interactions
in silico provides important data for the assignment
of protein functions, which currently requires either in
vivo and in vitro laboratory experiments. We applied
SVMs to experimental datasets and attempted to predict
RNA targets for different RBPs. We initially described
the RNA sequences in three different ways: (1) the Oli
method, which uses tetranucleotides as features; (2) the
OliMo method, which also incorporates motif scores
from automatically-detected binding motifs; and (3) the
OliMoSS method, which extends OliMo by also including
secondary structure features. We compared the predic-
tions achieved using our methods with those generated
by RNAcontext and RPISeq. Oli and OliMo performed
better than OliMoSS and RPISeq and when applying the
same nucleotide-based featuresOli outperformed RPISeq,
supporting our decision to train SVMs for each RBP
separately. Binding motifs alone were not discriminative
enough on our datasets, as shown by the higher precision
of Oli and OliMo compared to RNAcontext. Further com-
parisons showed that models trained on randomly-chosen
RNA sequences performed better than those trained on
experimentally-detected non-binding sequences. Exper-
imental data can therefore be used to train an SVM
with tetranucleotide frequency features, which can
then be used to predict interactions with other RNA
sequences.

An ideal method should predict RBP interactions in
the absence of existing binding data. Thus we are aware
of a limitation in our proposed work: interactions can
only be predicted when at least one experimental dataset
for an RBP exists. This goal still remains challenging.
Future work may include the incorporation of accessibility
features calculated according to nucleotide solvent acces-
sibility [45] and not only, as in our case, by the tetranu-
cleotide single-stranded form, as well as the creation of
protein-dependent models trained with pre-selected RBP-
specific features.
We conclude that simple sequence information, such as

tetranucleotide representation within an RNA sequence,
in combination with experimental binding data, can be
used effectively to construct accurate predictive mod-
els. However, the choice of negative training examples
is important. They can be approximated using random
sequences if real data are not available, but ideally they
should be derived from the same experiment, under the
same conditions, and using the same cell line. Only under
these conditions would computational methods be able
to capture specific binding phenomena to identify the
precise discriminative properties of a given protein.

Additional files

Additional file 1: RBP descriptions. The table contains a description of
all RBPs used in the AURA_dataset and a description of the PUM2 protein.
The file is in csv format and tab-delimited. The first column lists the UniProt
ID of the RBP followed by the protein name, gene name and the function
(source: UniProt [46]).

Additional file 2: Datasets. This tab-delimited table is in csv format and
contains the RNA sequences for each RBP+ set, for 3K-, PUM2+, PUM2- and
iAGO2. The first row shows RBP names followed by the bound RNA identifiers
(if not otherwise specified, this is an UCSC Genome Browser ID [47]).

Additional file 3: Supplementary Information. This pdf file contains the
description of the performance measures, supplementary figure and tables.

Additional file 4: Precision-recall curves forOli and RNAcontext on
the AURA_dataset. This pdf file shows a PR curve for each RBP, visualizing
the performances of Oli and RNAcontext in a 10-fold cross validation. Oli
outperforms RNAcontext for most RBPs.

Additional file 5: ROC curves for Oli and RNAcontext on the
AURA_dataset. This pdf file shows a ROC curve for each RBP, visualizing
the performances of Oli and RNAcontext in a 10-fold cross validation. The
curves basically reflect the AUCs in Table 1 and do not show a significant
difference in the prediction ability of the two methods.
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