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Introduction

General N = 2 flux compactifications of eleven-dimensional supergravity [1] on eight-

manifolds M have two independent internal supersymmetry generators ξ1, ξ2 which are

global sections of the rank sixteen bundle S of Majorana spinors on M . The class of such

compactifications is little explored, with the notable exception of compactifications down

to Minkowski 3-space [2], which arise when imposing the Weyl condition on ξ1 and ξ2

and which, as a consequence of no-go theorems, can only support a flux at the quantum,
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rather than classical, level. Relaxing this condition leads to backgrounds which can sup-

port classical fluxes and which have a surprisingly rich geometry. Some aspects of such

backgrounds were discussed in [3] using a formalism which uses the auxiliary nine-manifold

M̂
def.
= M ×S1 and the canonical lifts ξ̂1, ξ̂2 to M̂ of the internal supersymmetry generators

(see also [4]). In that approach, one finds that M̂ is endowed with a stratified G-structure

whose strata are defined by the isomorphism type of the stabilizer group inside (Spin(9))

of the pair of lifted spinors at various points of M̂ . The strata of M̂ correspond [3] to

stabilizers isomorphic with SU(3), G2 or SU(4). On the other hand, it was shown in [5]

that the stabilizer stratification induced by ξ1 and ξ2 on M has SU(2), SU(3), G2 and

SU(4) strata, whose description is considerably more complex. This stratification of M

coincides with a certain coarsening of the preimage of the connected refinement of the

canonical Whitney stratification [6, 7] of a four-dimensional compact semi-algebraic [8, 9]

body P ⊂ R4 through a certain map B : M → R4 whose image is contained in P. As shown

in [5], this complicated stratification generalizes what happens in the much simpler case

of N = 1 M-theory flux compactifications on eight-manifolds [10–13] (which extend the

classically fluxless case of [14–16]), where the relevant semi-algebraic body is the interval

[−1, 1], endowed with its Whitney stratification.

The complexity of the picture found in [5] may come as a surprise given the relative

simplicity of the stabilizer stratification of M̂ . The purpose of this note is to explain this

difference. Embedding M into M̂ as a hypersurface j(M) located at some fixed point of S1,

we show that the cosmooth [17] generalized distribution [18–21] D of [5] (which is the polar

distribution defined by three 1-forms V1, V2, V3 ∈ Ω1(M)) coincides with the intersection

of TM with the restriction j∗(D̂) ≡ D̂|j(M) of the polar distribution D̂ which is defined

on M̂ by three 1-forms V̂1, V̂2, V̂3 ∈ Ω1(M̂). The latter can be expressed as bilinears in ξ̂1

and ξ̂2. The algebraic constraints satisfied by V1, V2 and V3 as a result of Fierz identities

for ξ1 and ξ2 are equivalent with the algebraic constraints satisfied by V̂1, V̂2 and V̂3 as a

result of Fierz identities for ξ̂1 and ξ̂2. The intersection D = j∗(D̂)∩TM may be pointwise

transverse or non-transverse, giving rise to a disjoint union decomposition M = T t N ,

where T is the transverse locus and N is the non-transverse locus of M . While D and

j∗(D̂) coincide when restricted to N , the ranks of their restrictions to T differ by one. The

fact that T may be nonempty turns out to be responsible for the difference between the

stabilizer stratifications of M and M̂ and explains the increased complexity of the former

when compared to the latter. In the special case when the transverse locus is empty (which

turns out to be the case considered in [3]), the equality D = j∗(D̂) holds globally on M and

the stabilizer stratification of M is obtained directly from that of M̂ by intersecting every

stratum of the latter with j(M). In the generic case when T 6= ∅, the relation between

the stabilizer stratifications of M and M̂ can be understood using a version of known

facts [22–27] regarding G-structures induced on orientable hypersurfaces of a G-structured

manifold. On the open stratum U ⊂ M which carries an SU(2) structure (the “generic

locus” of [5]), this observation allows one to give an explicit formula for the defining forms

of the SU(2) structure in terms of the defining forms of the SU(3) structure which exists [3]

on an open subset Û of M̂ .
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The note is organized as follows. Section 1 briefly recalls some results of [5], to which we

refer the reader for further information. Section 2 discusses the stabilizer stratification of M̂

and compares its intersection with j(M) with the B-preimage of the connected refinement

of the canonical Whitney stratification of P. Section 3 takes up the issue of transversality

of the pointwise intersection of j∗(D̂) with TM and shows how the transverse or non-

transverse character of this intersection explains the increased complexity of the stabilizer

stratification of M as compared to that of M̂ . The same section shows how the stratified

G-structure of M can be obtained by reducing that of M̂ along this intersection. Section 4

expresses the defining form of the SU(2) structure which exists on the generic locus of M

in terms of the defining forms of the SU(3) structure which exists on an open subset of M̂ ,

while section 5 concludes.

Notations and conventions. We use the same notations and conventions as refer-

ence [5], to which we refer the reader for details. An equality which holds for any point of

a subset A of a manifold is written as =A.

1 Brief summary of the eight-dimensional formalism

Let S denote the rank 16 vector bundle of Majorana spinors on M (which is endowed

with the admissible [28, 29] scalar product B) and ν denote the volume form of (M, g).

Let γ : ∧T ∗M → End(S) be the structure morphism of S. Given two Majorana spinors

ξ1, ξ2 ∈ Γ(M,S) which are B-orthonormal everywhere, we define the 0- and 1-forms:1

bi = B(ξi, γ(ν)ξi) , b3
def.
= B(ξ1, γ(ν)ξ2) (1.1)

Vi = UB(ξi, γaξi)e
a , V3

def.
= B(ξ1, γaξ2)ea , W

def.
= U B(ξ1, γaγ(ν)ξ2)ea

with i = 1, 2 and the linear combinations:

b±
def.
=

1

2
(b1 ± b2) , V±

def.
=

1

2
(V1 ± V2) . (1.2)

It is convenient to consider the smooth map:

b
def.
= (b+, b−, b3) : M → R3 .

The Fierz identities for ξ1, ξ2 imply [5] that (1.1) satisfy the constraints:

||V−||2 + b2− = ||V3||2 + b23 , ||V+||2 + b2+ = 1− (||V3||2 + b23)

〈V+, V−〉+ b+b− = 〈V+, V3〉+ b+b3 = 〈V−, V3〉+ b−b3 = 0

||W ||2 + ||V3||2 = 1 + b2− − b2+
〈W,V+〉 = 0 , 〈W,V−〉 = b3 , 〈W,V3〉 = −b− .

(1.3)

In view of the first two relations, we define:

β
def.
=
√
||V−||2 + b2− =

√
||V3||2 + b23 =

√
1− b2+ − ||V+||2 : M → R . (1.4)

1The notation =U means that a relation holds on any open subset U of M which supports a local coframe

(ea)a=1...8 of M .
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Consider the cosmooth generalized distributions:

D def.
= kerV+ ∩ kerV− ∩ kerV3 ⊂ TM , D0

def.
= D ∩ kerW ⊂ D . (1.5)

As shown in [5], the rank stratifications of M induced by D and D0 have the same open

stratum, the so-called generic locus of M :

U def.
= {p ∈M |rkD(p) = 5} = {p ∈M |rkD0(p) = 4}

while the complement W def.
= M \ U (the non-generic locus) decomposes as:

W =W2 tW1 tW0 = Z2 t Z1 t Z0 , (1.6)

where:

Wk
def.
= {p ∈ W|rkD(p) = 8− k} , Zk

def.
= {p ∈ W|rkD0(p) = 8− k} (1.7)

and Z3 = ∅. The rank stratifications of M induced by D and D0 are the disjoint union

decompositions:

M = U tW2 tW1 tW0 , M = U t Z2 t Z1 t Z0 . (1.8)

It was shown in [5] that these stratifications can be described as different coarsenings of

the B-preimage of the connected refinement of the canonical Whitney stratification of a

semi-algebraic body P ⊂ R4, where B is the map defined through:

B = (b, β) : M → R4 ,

a map whose image is contained in P. In particular, we have U = B−1(IntP) and W =

B−1(∂P), while:

Z0 =W0 , Z1 =W1
1 , Z2 =W0

1 tW2 ,

where W0
1 and W1

1 are defined in loc. cit. and satisfy W0
1 t W1

1 = W1. We refer

the reader to [5] for the description of P and of its Whitney stratification, which we

will freely use below. The description of Wk and Zk as B-preimages of disjoint unions

of various Whitney strata of the frontier of P can be found in loc. cit. It was also

shown in [5] that the rank stratification of D0 coincides with the stabilizer stratification

of M , whose strata are defined by the isomorphism type of the common stabilizer group

Hp
def.
= StabSpin(TpM,gp)(ξ1(p), ξ2(p)) as p ∈M . These isomorphism types are SU(2), SU(3),

G2 or SU(4) according to whether p belongs to U , Z2, Z1 or Z0. The stabilizer stratification

is the main datum describing the “stratified G-structure” which is induced by ξ1 and ξ2

on M (see [5]).

2 Circle uplifts to an auxiliary nine-manifold

2.1 The nine-manifold M̂

Following [11], consider the 9-manifold M̂
def.
= M × S1, endowed with the direct product

metric ĝ, where S1 has unit radius. Let s ∈ [0, 2π) denote an angular coordinate on S1

– 4 –
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π1

π2

j

S1M̂

M

Figure 1. The canonical projections π1, π2 of M̂ and the section j of π1.

and π1 and π2 denote the canonical projections of M̂ onto M and S1, respectively (see

figure 1). Consider the embedding j : M ↪→ M̂ of M in M̂ as the hypersurface given by

the equation s = 0:

j(p) = (p, 0) , ∀p ∈M .

This gives a section of the map π1 : M̂ → M , thus π1 ◦ j = idM , which implies that the

pull-back map j∗ : Ω(M̂) → Ω(M) satisfies j∗ ◦ π∗1 = idΩ(M). The differential j∗
def.
= dj :

TM ↪→ TM̂ |j(M) is injective and identifies TM with the corank one sub-bundle j∗(TM)

of the restriction of TM̂ to j(M). To simplify notation, we identify M with j(M) and

TM with j∗(TM) ⊂ TM̂ |j(M). The unit circle S1 is endowed with the exact one-form ds,

dual via the musical isomorphism to the Killing vector field ∂
∂s which generates rotations

of S1. Let θ
def.
= π∗2(ds) = d(s ◦ π2) ∈ Ω1(M̂) be the normalized Killing 1-form dual to the

Killing vector field which generates S1-rotations of M̂ . We orient M̂ by considering the

volume form:

ν̂
def.
= θ ∧ π∗1(ν) =⇒ π∗1(ν) = ιθν̂ . (2.1)

Notice that ιθπ
∗
1(ν) = 0 and that ν̂ is rotationally-invariant, since so is the metric ĝ of M̂ .

Let Ŝ denote the positive signature bundle of real spinors on M̂ and γ̂ : ∧T ∗M̂ →
End(Ŝ) be its structure morphism. As explained in [4], the vector bundle Ŝ can be identified

with the pull-back π∗1(S). The positive signature condition means that γ̂(ν̂) = +idŜ , which

amounts to:

γ̂(θ) = π∗1(γ(ν)) . (2.2)

There exists a natural C∞(M,R)-linear injection:

Γ(M,S) 3 ξ ↪→ ξ̂ ∈ Γ(M̂, Ŝ)

which is constructed as explained in [4] and whose image equals the space of those global

sections of Ŝ which are invariant under S1-rotations of M̂ . We say that ξ̂ (which can be

identified with π∗1(ξ)) is the canonical lift to M̂ of the Majorana spinor ξ ∈ Γ(M,S). The

bundle Ŝ admits a canonical scalar product B̂ which is invariant under S1-rotations of M̂

and hence satisfies (see [4]):

B̂(ξ̂, ξ̂′) = π∗1(B(ξ, ξ′)) = B(ξ, ξ′) ◦ π1 , ∀ξ, ξ′ ∈ Γ(M,S) . (2.3)

– 5 –
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2.2 The distribution D̂

Let ξ1, ξ2 be an everywhere-orthonormal pair of global sections of S and let ξ̂1, ξ̂2 be their

canonical lifts to M̂ . Relations (2.3) show that ξ̂1 and ξ̂2 are everywhere-orthonormal

on M̂ :

B̂(ξ̂i, ξ̂j) = δij , ∀i, j = 1, 2 .

Consider the following one-forms defined on M̂ , where k = 1, 2, 3:

V̂k
def.
= π∗1(Vk) + (bk ◦ π1)θ , V̂± =

1

2
(V̂1 ± V̂2) = π∗1(V±) + (b± ◦ π1)θ . (2.4)

Relations (2.2) and (2.3) imply that V̂k coincide with the natural 1-forms constructed from

the canonical lifts ξ̂i of the Majorana spinors ξi:

V̂1 =Û B̂(ξ̂1, γ̂mξ̂1)êm , V̂2 =Û B̂(ξ̂2, γ̂mξ̂2)êm , V̂3 =U B̂(ξ̂1, γ̂mξ̂2)êm , (2.5)

where êm is any local coframe of M̂ defined above an open subset Û ⊂ M̂ and γ̂m
def.
= γ̂(êm).

The one-forms (2.4) are invariant under S1-rotations of M̂ , so their Lie derivatives with

respect to ∂
∂s vanish. Since π∗1(Vk) are orthogonal to θ, we have:

〈V̂k, V̂l〉 = (〈Vk, Vl〉+ bkbl) ◦ π1 , ∀k, l = 1, 2, 3 , (2.6)

where we used the normalization property ||θ||2 = 1. Relations (2.6) imply that the first

two rows of (1.3) are equivalent with the following system:

||V̂−||2 = ||V̂3||2 , ||V̂+||2 = 1− ||V̂3||2

〈V̂+, V̂−〉 = 〈V̂+, V̂3〉 = 〈V̂−, V̂3〉 = 0
, (2.7)

which can also be written as:

||V̂1|| = ||V̂2|| = 1 , ||V̂3||2 =
1

2
(1− 〈V̂1, V̂2〉)

〈V̂1, V̂3〉 = 〈V̂2, V̂3〉 = 0
. (2.8)

Relation (1.4) implies:

||V̂−|| = ||V̂3|| =
√

1− ||V̂+||2 = β̂ , (2.9)

where β̂
def.
= β ◦ π1. Relations (2.8) coincide2 with [3], eqs. (2.5), (2.16), where they were

obtained through direct computation starting from (2.5) and using Fierz identities for

two spinors in nine dimensions. The common kernel of V̂k defines a cosmooth generalized

distribution on M̂ :

D̂ def.
= ker V̂1 ∩ ker V̂2 ∩ ker V̂3 = ker V̂+ ∩ ker V̂− ∩ ker V̂3 ⊂ TM̂ . (2.10)

This distribution is invariant with respect to rotations of M̂ . However, notice that D̂
need not be orthogonal to the rotation generator θ] and hence it cannot be written as the

π1-pullback of a distribution defined on M .

2We mention that the vector fields denoted here by V̂1,2,3 are denoted by V1,2,3 in loc. cit., while the

vector fields denoted here by V̂± correspond to half of the vector fields denoted by V± in loc. cit., i.e.

V̂ here
± = 1

2
V there
± . Compare [3], eq. (2.26) with our relation V̂± = 1

2
(V̂1 ± V̂2).
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2.3 The distribution D̂0

One can also lift W ∈ Ω1(M) to the following one-form defined on M̂ , which is everywhere

orthogonal to θ:

Ŵ
def.
= π∗1(W ) =Û B̂(ξ̂1, γ̂mγ̂(θ)ξ̂2)êm . (2.11)

The last equality follows by choosing êm such that ê9 = θ and noticing that γ̂(θ)2 = idŜ
(since θ2 = ||θ||2 = 1 in the Kähler-Atiyah algebra of (M̂, ĝ)) and hence B̂(ξ̂1, γ̂9γ̂(θ)ξ̂2) =

B̂(ξ̂1, ξ̂2) = 0. The system (1.3) is equivalent with (2.7) taken together with the following

supplementary equations:

||Ŵ ||2 = 1 + (ρ2 − β2 − b2+) ◦ π1 , 〈Ŵ , V̂+〉 = 0 , 〈Ŵ , V̂−〉 = b3 ◦ π1 , 〈Ŵ , V̂3〉 = −b− ◦ π1 ,

(2.12)

where:

ρ
def.
=
√
b2− + b23 . (2.13)

The 1-forms V̂k and Ŵ define a generalized distribution D̂0 on M̂ which is rotationally-

invariant:

D̂0
def.
= D̂ ∩ ker Ŵ ⊂ D̂ . (2.14)

Once again, this distribution need not be orthogonal to θ] (i.e. it need not be contained in

ker θ) and hence it cannot be written as the π1-pullback of a distribution defined on M .

2.4 The stabilizer groups for M and M̂

Since the natural action of Spin(Tp̂M̂, ĝp) ' Spin(9) on Ŝp induces an adjoint action on

End(Ŝp̂) with respect to which γ̂m(p̂) transform as the components of a one-form, it follows

that the common stabilizer:

Ĥp̂
def.
= StabSpin(Tp̂M̂,ĝp̂)(ξ̂1(p̂), ξ̂2(p̂)) (p̂ ∈ M̂)

satisfies:

q̂p̂(Ĥp̂) ⊂ StabSO(Tp̂M̂,ĝp̂)(V̂+(p̂), V̂−(p̂), V̂3(p̂)) , (2.15)

where q̂p̂ : Spin(Tp̂M̂, ĝp̂) → SO(Tp̂M̂, ĝp̂) is the covering map. Notice that SO(Tp̂M̂, ĝp̂)

does not stabilize θ(p̂). On the other hand, the common stabilizer:

Hp
def.
= StabSpin(TpM,gp)(ξ1(p), ξ2(p)) (p ∈M)

of ξ1(p) and ξ2(p) inside Spin(TpM, gp) satisfies [5]:

qp(Hp) ⊂ StabSO(TpM,gp)(V+(p), V−(p), V3(p),W (p)) (p ∈M) , (2.16)

where qp : Spin(TpM, gp)→ SO(TpM, gp) is the covering map. The relation:

StabSO(TpM̂,ĝp)(θ(p)) = SO(TpM, gp) , ∀p ∈M ≡ j(M)

implies that the following holds for any point p ∈M ≡ j(M):

StabSO(TpM̂,ĝp)(V̂+(p), V̂−(p), V̂3(p), Ŵ (p), θ(p))

' StabSO(TpM,gp)(V+(p), V−(p), V3(p),W (p)) (2.17)
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The stabilizers Ĥp̂ were discussed in [3] (they can be isomorphic with SU(4),G2 or SU(3)),

while Hp were computed in [5] (they can be isomorphic with SU(4),G2, SU(3) or SU(2)).

As we shall see in what follows, the isomorphism type of Ĥp̂ defines a stratification of M̂

which can be characterized as the pull-back through a smooth and rotationally-invariant

map α̂ ∈ C∞(M̂,R) of the connected refinement of the canonical Whitney stratification of

a closed interval.

2.5 The stratifications of M̂ and M induced by D̂

The rank function of D̂ gives a decomposition:

M̂ = Û t Ŵ , (2.18)

where:

Û def.
= {p̂ ∈ M̂ |rkD̂(p̂) = 6} , Ŵ def.

= {p̂ ∈ M̂ |rkD̂(p̂) > 6} . (2.19)

The locus Ŵ decomposes further according to the corank of D̂ inside TM̂ :

Ŵ = Ŵ2 t Ŵ1 .

where:

Ŵ2
def.
= {p̂ ∈ M̂ |rkD̂p̂ = 7} , Ŵ1

def.
= {p̂ ∈ M̂ |rkD̂p̂ = 8} . (2.20)

Notice that we always have rkD̂(p̂) < 9, since ||V̂1|| = ||V̂2|| = 1 by (2.8) and hence the

space spanned by V̂1(p̂), V̂2(p̂) and V̂3(p̂) has dimension at least one. We thus have a disjoint

union decomposition:

M̂ = Û t Ŵ2 t Ŵ1 . (2.21)

Also notice that Û , Ŵ1, Ŵ2 and Ŵ are invariant under rotations of the circle and hence

they have the forms:

Û = π−1
1 (U ′) = U ′ × S1 , Ŵ = π−1

1 (W ′) =W ′ × S1

Ŵ1 = π−1
1 (W ′1) =W ′1 × S1 , Ŵ2 = π−1

1 (W ′2) =W ′2 × S1
,

where U ′,W ′1,W ′2 and W ′ = W ′1 t W ′2 are subsets of M which give a decomposition (see

figure 2):

M = U ′ tW ′ = U ′ tW ′2 tW ′1 . (2.22)

As we shall see below, this decompositions of M induced by D̂ is generally quite different

from the first decomposition in (1.8) (which is induced by D). Using (2.8), the Gram

determinant formula gives:

||V̂1 ∧ V̂2 ∧ V̂3||2 = det

 1 α̂ 0

α̂ 1 0

0 0 1−α̂
2

 =
1

2
(1 + α̂)(1− α̂)2 , (2.23)

where we introduced the function (this is denoted by α in [3]):

α̂
def.
= 〈V̂1, V̂2〉 ∈ C∞(M̂, [−1, 1]) . (2.24)
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Figure 2. The decomposition of M induced by D̂. The figure shows the particular case when

each of the loci Ŵ1 and Ŵ2 (depicted in magenta and yellow respectively) is connected. The open

stratum Û (depicted in cyan) defined by D̂ is the complement of Ŵ = Ŵ1 t Ŵ2 inside M̂ . The

intersection of Ŵk with j(M) determines loci W ′k ⊂ M , which in this low-dimensional rendering

are depicted as dots. The intersection of Û with j(M) determines the locus U ′ ⊂ M , which is the

complement of the union W ′ =W ′1 tW ′2 in M . In brown, we depicted the space D̂(j(p)) ⊂ Tj(p)M̂
for a point p ∈M .

Notice that α̂ is invariant under rotations of the circle and hence:

α̂ = α ◦ π1 for some function α ∈ C∞(M,R) .

Relation (2.23) implies that the decomposition (2.18) of M̂ coincides with the α̂-preimage

of the canonical Whitney stratification of the closed interval [−1, 1]:

Û = α̂−1((−1, 1)) = {p̂ ∈ M̂ | α̂(p̂) ∈ (−1, 1)} , Ŵ = α̂−1({−1, 1}) = {p̂ ∈ M̂ | |α̂(p̂)| = 1} ,

while the first decomposition of M given in (2.22) coincides with the α-preimage of the

same stratification:

U ′=α−1((−1, 1)) = {p ∈M | α(p) ∈ (−1, 1)} , W ′=α−1({−1, 1}) = {p ∈M | |α(p)| = 1} .

The following result (cf. [3]) shows that the rank stratification of M̂ induced by D̂ coincides

with the α̂-preimage of the connected refinement of the Whitney stratification of the in-

terval, while the stratification of M given by the second decomposition in (2.22) coincides

with the α-preimage of the same.

Proposition. Let p̂ ∈ Ŵ.

• For α̂(p̂) = +1, we have V̂3(p̂) = 0 and V̂1(p̂) = V̂2(p̂) with ||V̂1(p̂)|| = 1. Thus

rkD̂(p̂) = 8.

• For α̂(p̂) = −1, we have V̂2(p̂) = −V̂1(p̂) with ||V̂1(p̂)|| = ||V̂3(p̂)|| = 1 and V̂3(p̂) ⊥
V̂1(p̂). Thus rkD̂(p̂) = 7.
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α̂(p̂) β(π1(p̂)) B−1-stratum π1-projection rkD̂(p̂) Ĥp̂

+1 0 Ŵ1 W ′1 8 SU(4)

−1 1 Ŵ2 W ′2 7 G2

∈ (−1, 1) ∈ (0, 1) Û U ′ 6 SU(3)

Table 1. The stabilizer stratification of M̂ . The second column of the table uses relation (2.26).

Figure 3. Hasse diagram of the incidence poset (see [5], appendix C) of the connected refinement

of the Whitney stratification of the interval [−1, 1]. The α̂-preimages of the strata depicted in

magenta, yellow and cyan correspond to the SU(4), G2 and SU(3) loci of M̂ respectively.

In particular, we have:

Ŵ1 = α̂−1({+1}) = {p̂ ∈ M̂ |α̂(p̂) = +1} , Ŵ2 = α̂−1({−1}) = {p̂ ∈ M̂ |α̂(p̂) = −1}
W ′1 = α−1({+1}) = {p ∈M |α(p) = +1} , W ′2 = α−1({−1}) = {p ∈M |α(p) = −1} .(2.25)

Proof. Follows immediately from (2.8). �
The following statement given in [3] follows from known facts about stabilizers of actions

of Lie groups on spheres3:

Proposition. The isomorphism type of Ĥp̂ is given by (see table 1):

• Ĥp̂ ' SU(4) for p̂ ∈ Ŵ1 = α̂−1({+1})

• Ĥp̂ ' G2 for p̂ ∈ Ŵ2 = α̂−1({−1})

• Ĥp̂ ' SU(3) for p̂ ∈ Û = α̂−1((−1, 1)) .

In particular, the stabilizer stratification of M̂ coincides with the rank stratification

of D̂ and hence with the α̂-preimage of the canonical Whitney stratification of the interval

[−1, 1] (see figure 3).

3The stabilizer of a single non-vanishing spinor in the Majorana representation ∆9 ' R16 of Spin(9)

is a subgroup isomorphic with Spin(7), belonging to a certain conjugacy class of subgroups of Spin(9)

which is usually denoted by Spin∆(7) (see, for example, [30]). With respect to this subgroup, we have

the decomposition ∆9 = Λ7 ⊕ ∆7 ⊕ R, where Λ7 ' R7 and ∆7 ' R8 are the vector and real spinor

representations of Spin(7), respectively. Stabilizing ξ̂1(p̂) first, we can take ξ̂1(p̂) ∈ R and ξ̂2(p̂) ∈ Λ7 ⊕∆7.

Thus Ĥp̂ ' StabSpin∆(7)(ξ̂2(p̂)) is isomorphic with SU(4) ' Spin(6), G2 or SU(3). The first case arises when

ξ̂2(p̂) ∈ Λ7, the second when ξ̂2(p̂) ∈ ∆7 and the third when ξ̂2(p̂) has non-vanishing projection on both Λ7

and ∆7. In the second and third case, we used the fact that Spin(7) acts transitively on the unit sphere

S7 ⊂ ∆7 with stabilizer G2 and the fact that G2 acts transitively on S6 ⊂ Λ7 with stabilizer SU(3).
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2.6 Comparison with the stratification of M induced by the connected refine-

ment of the Whitney stratification of P

Let β : M → R be the function defined in (1.4).

Proposition. We have:

α = 〈V1, V2〉+ b1b2 = 1− 2β2 ∈ C∞(M, [−1, 1]) (2.26)

and hence β(M) ⊂ [0, 1] and:

U ′ = β−1((0, 1)) , W ′1 = β−1({0}) , W ′2 = β−1({+1}) . (2.27)

Moreover, the following relations express W ′1,W ′2,W ′ and U ′ in terms of the strata intro-

duced in [5], subsection 5.3:

W ′1 = B−1(I) =W0 tW0
1 , W ′2 = B−1(D) =W1

1 tW2+
2 (2.28)

W ′ =W0 tW1 tW2+
2 , U ′ = B−1(IntP) tB−1(A) tB−1(∂3P) = U tW2−

2 tW3
2 .

Proof. Relation (2.26) follows from (2.24) and (2.6), where the last equality in (2.26)

follows by subtracting the second equation of (1.3) from the first and using (1.4) and (1.2).

Relations (2.27) follow immediately from (2.25) upon using (2.26). The equalities in (2.28)

follow immediately from the last two equations in (2.27) upon using the last Proposition

in [5], subsection 4.2 and the results of [5], subsection 5.3. �

3 Transversality

3.1 Recovering D from D̂

To understand the relation between the rank stratifications of D and D̂, notice that (2.4),

together with the obvious equality j∗(TM) = ker θ|j(M), imply that D can be recovered

from D̂ through the relation j∗(D) =
(
D̂|j(M)

)
∩ j∗(TM). Identifying M with j(M) (and

hence TM with j∗(TM)), we can write this relation as (see figure 2):

D = D̂|M ∩ TM . (3.1)

Also notice that U ′ andW ′ coincide with the generic and degeneration loci of the restricted

distribution D̂|M :

U ′ = {p ∈M |rkD̂(p) = 6} , W ′ = {p ∈M |rkD̂(p) > 6} .

3.2 The transverse and non-transverse loci of M

Recall that two subspaces K1 and K2 of a vector space K satisfy dim(K1 +K2) = dimK1 +

dimK2−dim(K1∩K2) i.e. codim(K1+K2) = codimK1+codimK2−codim(K1∩K2), where

codim denotes the codimension relative to K. Since dim(K1∩K2) ≤ min(dimK1, dimK2),

we have max(codimK1, codimK2) ≤ codim(K1 ∩ K2) ≤ codimK1 + codimK2. The sub-

spaces are called transverse when codim(K1 ∩K2) = codimK1 + codimK2, which is equiv-

alent with codim(K1 +K2) = 0 i.e. with K1 +K2 = K. This condition defines a symmetric

binary relation (the transversality relation) on the set of all subspaces of K. For p ∈ M ,

let tp denote the transversality relation between subspaces of Tj(p)M̂ , and 6tp denote its

negation (the non-transversality relation).
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Definition. The transverse locus is the following subset of M :

T def.
= {p ∈M |D̂(p) tp TpM} , (3.2)

while its complement in M is called the non-transverse locus :

N def.
= {p ∈M |D̂(p) 6tp TpM} , (3.3)

where we identify p ∈M with j(p) ∈ M̂ and TpM with the subspace j∗,p(TpM) of Tj(p)M̂ .

3.3 Characterizing the transverse and non-transverse loci

Proposition. Let p ∈M ≡ j(M). Then:

dimD(p) ∈ {dim D̂(p), dim D̂(p)− 1} . (3.4)

Moreover, the following statements are equivalent:

(a) p ∈ N

(b) dimD(p) = dim D̂(p)

(c) D(p) = D̂(p)

(d) D̂(p) ⊂ TpM

(e) θ(p) ∈ 〈V̂1(p), V̂2(p), V̂3(p)〉 .

In particular, we have dimD(p) = dim D̂(p)− 1 iff p ∈ T .

Proof. Since TpM̂ has dimension nine while TpM has dimension eight (thus codimTpM =

1), relation (3.1) implies codimD(p) ≤ codimD̂(p) + 1, i.e. dimD(p) ≥ dim D̂(p)− 1, with

equality iff D̂(p) and TpM are transverse inside TpM̂ . Since D(p) = D̂(p) ∩ TpM , we have

dimD(p) ≤ dim D̂(p). This gives (3.4) and shows that:

D̂(p) t TpM iff dimD(p) = dim D̂(p)− 1 .

The non-transverse case corresponds to dimD(p) = dim D̂(p), which is equivalent with

D(p) = D̂(p) since D(p) is a subspace of D̂(p). Since D(p) = D̂(p) ∩ TpM ⊂ TpM ,

the equality D(p) = D̂(p) holds iff D̂(p) ⊂ TpM . Since TpM = ker θ(p) and D̂(p) =

∩3
i=1 ker V̂i(p), this happens if ∩3

i=1 ker V̂i(p) ⊂ ker θ(p), which by duality (taking polars)

happens iff θ(p) ∈ 〈V̂1(p), V̂2(p), V̂3(p)〉. �

Corollary. Let p ∈M ≡ j(M). Then the following statements are equivalent:

(a) p ∈ N .

(b) There exist λ1, λ2, λ3 ∈ R such that:

λ1V1(p) + λ2V2(p) + λ3V3(p) = 0 and λ1b1(p) + λ2b2(p) + λ3b3(p) = 1 .

In particular, the non-transverse locus is contained in the degeneration locus of D and

hence the generic locus of D is contained in the transverse locus:

N ⊂ W , U ⊂ T . (3.5)
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P-locus D̂-stratum B−1-stratum D0-stratum rkD̂ rkD rkD0 transversality Ĥp Hp

∂0P = ∂I W ′1 W0 Z0 8 8 8 N SU(4) SU(4)

∂0
1P = IntI W ′1 W0

1 Z2 8 7 6 T SU(4) SU(3)

∂1
1P = ∂D W ′2 W1

1 Z1 7 7 7 N G2 G2

IntD ⊂ ∂2P W ′2 W2+
2 Z2 7 6 6 T G2 SU(3)

A t ∂3P U ′ W2−
2 tW3

2 Z2 6 6 6 N SU(3) SU(3)

IntP U ′ U U 6 5 4 T SU(3) SU(2)

Table 2. The ranks of D̂|M ,D and D0 on various loci of M and the character of the intersection

D̂|M ∩ TM . The stabilizer groups on M̂ and M are shown in the last two columns.

Proof. Follows immediately from (2.4) and from the characterization of non-transversality

given at point (e) of the previous proposition, using the fact that θ(p) is orthogonal

to Vk(p). �

3.4 Expressing T and N through the preimage of the connected refinement

of the Whitney stratification of P

Proposition. The transverse and non-transverse loci are given by the following unions

of the strata introduced in [5], subsection 5.3:

T =W0
1 tW2+

2 t U , N =W0 tW1
1 tW2−

2 tW3
2 (3.6)

and we have the relations:

U ′ ∩ T = U , U ′ ∩N =W2−
2 tW3

2

W ′1 ∩ T =W0
1 , W ′1 ∩N =W0 (3.7)

W ′2 ∩ T =W2+
2 , W ′2 ∩N =W1

1 .

Proof. Follows immediately by comparing the ranks of D̂|M and D on various loci and using

relations (2.28), the characterization of non-transversality given in the previous subsection

and the results summarized in tables 5 and 6 of [5]. �
The situation is summarized in table 2.

Remark. The proposition implies:

U = {p ∈M |rkD̂(p) = 6 and D̂(p) intersects TpM transversely} = U ′ ∩ T
W = {p ∈M |rkD̂(p) > 6 or D̂(p) intersects TpM non− transversely} =W ′ ∪N .

In particular, the SU(2) stratum U of M is the intersection of the SU(3) stratum Û of M̂

with the locus j(T ) ⊂ j(M), while the degeneration points of D (the points of the locus

W ⊂M) are of three kinds:

• The points p ∈ W ′1 =W0tW0
1 (where β = 0 i.e. α = +1), which form the intersection

of the SU(4) stratum Ŵ1 of M̂ with j(M). At such points, we have Hp ' SU(4) or

SU(3) according to whether p ∈ N or p ∈ T .

– 13 –



J
H
E
P
1
1
(
2
0
1
5
)
1
7
4

• The points ofW ′2 =W1
1tW

2+
2 (where β = 1 i.e. α = −1), which form the intersection

of the G2 stratum Ŵ2 of M̂ with j(M). At such points, we have Hp ' G2 or SU(3)

according to whether p ∈ N or p ∈ T .

• The points ofW\W ′ =W2−
2 tW3

2 , which form the intersection of the SU(3) stratum

Û of M̂ with the locus j(N ) ⊂ j(M). At such points, we have Hp ' SU(3).

3.5 The case T = ∅

The previous proposition immediately implies the following:

Corollary. The condition T = ∅ is equivalent with the conditions W0
1 = W2+

2 = U = ∅.
When this condition is satisfied, we have W ′1 = Z0 =W0, W ′2 = Z1 =W1

1 and U ′ = Z2 =

W2−
2 t W3

2 . In this case, we have M = N = W0 t W1
1 t W

2−
2 t W3

2 and Ĥp ' Hp for

any p ∈ M , both groups being isomorphic with SU(4), G2 or SU(3) according to whether

p ∈ W0, p ∈ W1
1 or p ∈ W2−

2 tW3
2 .

Notice that T = ∅ implies B−1(IntP) = U = ∅ and hence requires that the image of B be

contained in the frontier ∂P of P. More precisely, we have:

T = ∅ iff B(M) ⊂ ∂I t ∂D t A t ∂3P .

Remark. Reference [3] uses the assumption (see equation (3.9) of loc. cit.) that θ(p) is a

linear combination of V̂1(p), V̂2(p) and V̂3(p) for every point p ∈M . By the characterization

given at point (e) of the Proposition of subsection 3.3, this assumption is equivalent with

the requirement that the transverse locus T be empty and hence that we are in the setting

of the Corollary above. By the Corollary of subsection 3.3, the condition T = ∅ requires,

in particular, that the 1-forms V1(p), V2(p) and V3(p) be linearly dependent at every point

p ∈M (cf. [5], appendix G). In was shown in [5] that, generically, we have U 6= ∅ and hence

the transverse locus is not empty in the generic case.

3.6 Relation between the stabilizer stratifications of M and M̂

It is known that an orientable hypersurface in an 8-manifold with SU(4) structure carries

a naturally induced SU(3) structure (see, for example, [22], section 4). An orientable

hypersurface in a 7-manifold with G2 structure carries a naturally induced SU(3) structure

(see, for example, [23–25]). Finally, an orientable hypersurface of a manifold with SU(3)

structure carries a naturally induced SU(2) structure [26]. Since these statements are

purely algebraic, they extend immediately to the case of Frobenius distributions. Using

these facts and the results above, we can understand how the stratified G-structure of M̂

induces the stratified G-structure of M . Namely, we have (see table 2):

• The restriction D|N coincides with D̂|N and hence D|N carries the same structure

group (namely SU(4), G2 or SU(3)) as D̂|N on the componentsW0,W1
1 andW2−

2 tW3
2

respectively of the non-transverse locus.

• The restriction D|T is an orientable and corank one generalized sub-distribution of

D̂|T and hence D|T carries the structure group SU(3), SU(3) and SU(2) on the
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components W0
1 , W2+

2 and U respectively of the transverse locus T on which D̂|T
has the structure group SU(4), G2 and SU(3) respectively.

These observations give a different way to understand the results of [5], provided that

one knows the codimension of D(p) inside D̂(p) on the various strata (which follows from

loc. cit.).

4 Explicit relation between the SU(3) structure on Û and the SU(2)

structure on U

Since j identifies U = U ′∩T with Û ∩ j(T ), the restriction of D̂ to the locus U ≡ j(U) ⊂ Û
is a regular Frobenius distribution of rank six. Since M̂ is oriented with volume form (2.1),

we can orient D̂|U using the volume form:

ν̂⊥
def.
=

1

||V̂+ ∧ V̂− ∧ V̂3||
ιV̂+∧V̂−∧V̂3

ν̂|U . (4.1)

4.1 The projection of θ along D̂ on the generic locus

The one-form θ|U decomposes uniquely as:

θ|U = θ⊥ + θ‖ , (4.2)

where θ⊥ ∈ Ω1
U (D̂) = 〈V̂+|U , V̂−|U , V̂3|U 〉⊥ and θ‖ ∈ Ω1

U (D̂⊥) = 〈V̂+|U , V̂−|U , V̂3|U 〉 (see

figure 4). Since U is a subset of T , the characterization at point (e) of the Proposition of

subsection 3.3 gives θ|U 6∈ 〈V̂+|U , V̂−|U , V̂3|U 〉 and hence θ⊥ 6= 0 and we can define the unit

norm one-form:

n
def.
=

θ⊥
||θ⊥||

∈ Ω1
U (D̂) . (4.3)

We orient the rank five Frobenius distribution D|U such that its volume form is given by:

ν⊥ = − 1

||V+ ∧ V− ∧ V3||
ιV+∧V−∧V3ν . (4.4)

Proposition. We have D|U = (ker θ⊥)∩D̂|U , i.e. the normalized vector field n] ∈ Γ(U , D̂)

is everywhere orthogonal to D|U inside D̂|U , where ] denotes the musical isomorphism of

(M̂, ĝ). Moreover, we have:

||θ⊥|| =
||V+ ∧ V− ∧ V3||
||V̂+ ∧ V̂− ∧ V̂3||

(4.5)

and:

ν⊥ = −ιnν̂⊥ . (4.6)

Furthermore, we have:

θ‖ =
b+

1− β2
V̂+ +

b−
β2
V̂− +

b3
β2
V̂3 (on U) (4.7)
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Figure 4. Construction of θ⊥(p) for p ∈ U ≡ j(U) ⊂ j(M) ⊂ M̂ . The vectors θ](p) ∈ TpM̂ and

θ]⊥(p) ∈ TpM̂ shown in the figure are obtained by applying the musical isomorphism of (M̂, ĝ) to

the 1-forms θ(p) and θ⊥(p). The vertical arrow represents the space V̂](p) spanned by the vectors

V̂ ]
1 (p), V̂ ]

2 (p) and V̂ ]
3 (p) inside TpM̂ . The vectors θ]⊥(p) and θ]‖(p) are the orthogonal projections of

θ](p) onto D̂(p) and V̂](p) respectively. The subspace D(p) of TpM̂ coincides with the intersection

of D̂(p) with TpM = ker θ(p) ⊂ TpM̂ and hence it is orthogonal to the vector θ](p) ∈ TpM̂ . It is

also orthogonal to the subspace V̂](p) ⊂ TpM̂ .

and:

||θ⊥||2 = 1−
b2+

1− β2
− ρ2

β2
(on U) , (4.8)

where ρ was defined in (2.13).

Proof. Since D ⊂ TM , we have D|U ⊂ ker θ|U and hence θ vanishes on D|U . Since θ‖ is a

linear combination of V̂1|U , V̂2|U and V̂3|U and since D̂ = ∩3
i=1 ker V̂i, we have D̂|U ⊂ ker θ‖

and hence θ‖ vanishes on D̂|U and thus also on D|U ⊂ D̂|U . Using relation (4.2), the fact

that θ|U and θ‖ vanish on D|U implies that θ⊥ vanishes on D|U and hence that θ]⊥ and n]

are orthogonal to D|U . Relations (4.4) and (2.1) give:

ν⊥ = − 1

||V+ ∧ V− ∧ V3||
ιV+∧V−∧V3∧θν̂|U =

||V̂+ ∧ V̂− ∧ V̂3||
||V+ ∧ V− ∧ V3||

ιθ⊥ ν̂⊥ , (4.9)

where in the second equality we used the relation (4.1) and the equality:

V+ ∧ V− ∧ V3 ∧ θ = V̂+ ∧ V̂− ∧ V̂3 ∧ θ = −θ⊥ ∧ V̂+ ∧ V̂− ∧ V̂3 ,

which follows from the decompositions (2.4) and (4.2) upon noticing that V̂+∧V̂−∧V̂3∧θ‖ =

0. Relations (4.5) and (4.6) now follow from (4.9) upon noticing that ||ν⊥|| = ||ν̂⊥|| = 1 and

||ιθ⊥ ν̂⊥|| = ||θ⊥||||ν̂⊥|| = ||θ⊥||. The decomposition (4.2) means that θ‖ is the projection of

θ onto 〈V̂+|U , V̂−|U , V̂3|U 〉. Writing θ‖ = a+V̂+|U +a−V̂−|U +a3V̂3|U with ar ∈ C∞(U ,R), we

have 〈θ, V̂r〉|U = 〈θ‖, V̂r〉|U = ar||V̂r||2|U , where we used the fact that 〈V̂r, V̂s〉 = ||V̂r|||2δrs
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for all r, s ∈ {+,−, 3} (see (2.7)). On the other hand, relations (2.4) give 〈θ, V̂r〉|U = br.

Thus ar = br
||V̂r||2

on U , i.e.:

a+ =
b+

||V̂+||2
=

b+
1− β2

, a− =
b−

||V̂−||2
=
b−
β2

, a3 =
b3

||V̂3||2
=
b3
β2

(on U) ,

where we used (2.9). This immediately gives (4.7) and (4.8). Notice that relation (4.8) can

also be derived from (4.5) by using the expression for the Gram determinant ||V+∧V−∧V3||2

given in [5], section 4.2 and the relation ||V̂+∧ V̂−∧ V̂3||2 = ||V̂+||2||V̂−||2||V̂3||2 = β4(1−β2)

(which follows from (2.9)). Indeed, we have:

||θ⊥||2 =
||V+ ∧ V− ∧ V3||2

||V̂+ ∧ V̂− ∧ V̂3||2
= −

β2(β4 − β2(1− b2+ + ρ2) + ρ2)

β4(1− β2)

=
β2(1− β2)− β2b2+ − ρ2(1− β2)

β2(1− β2)
,

which recovers (4.8). �

Remark. Relations (4.2), (4.3), (4.7) and (4.8) give:

θ =U
b+

1− β2
V̂+ +

b−
β2
V̂− +

b3
β2
V̂3 +

√
1−

b2+
1− β2

− ρ2

β2
n . (4.10)

Substituting (2.4) into this relation allows us to express θ|U in terms of V+, V−, V3 and n:

θ =U

b+
1−β2V+ − b−

β2 V− − b3
β2V3

1− b2+
1−β2 − ρ2

β2

+
n√

1− b2+
1−β2 − ρ2

β2

. (4.11)

Relation (4.10) should be compared with equation (3.9) of reference [3], which holds only

on the non-transverse locus N (and on its lift to M̂). By contrast, equation (4.10) holds

on the generic locus U , which is contained in the transverse locus.

4.2 Relation between SU(2) and SU(3) structures

An SU(2) structure on the oriented rank five Frobenius distribution D|U which is compatible

with the metric g|D and with the orientation of D can be described by a normalized one-

form α ∈ Ω1
U (D) and three mutually orthogonal 2-forms ω1,ω2,ω3 ∈ Ω2

U (D) satisfying the

equations (see [26]):

ιαωk = 0

〈ωk,ωl〉 = 2δkl

ωk ∧ ωl = δklv ,

(4.12)

where k, l = 1, 2, 3 and v is a non-vanishing four-form which satisfies:

ιαν⊥ =
1

2
v i.e. α ∧ v = 2ν⊥ .
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Namely, we have D0|U = kerα and (ω1,ω2,ω3) is an orthogonal basis of the free C∞(U ,R)-

module Ω2+
U (D0) of D0|U -longitudinal self-dual 2-forms. As explained in [26], this basis can

be chosen such that it forms a positively-oriented frame of the rank three bundle ∧2+D∗0,

where the latter is endowed with the orientation naturally induced from that of D0 (which

is given by the volume form 1
2v).

On the other hand, an SU(3) structure on the oriented rank six Frobenius distribution

D̂|U which is compatible with the metric ĝ|D and with the orientation of D̂ is determined [23]

by an almost complex structure I ∈ Γ(U ,End(D̂)) which is compatible with the metric and

orientation of D̂, together with a complex-valued three-form Ω ∈ Ω2
U (D̂) ⊗ C which is of

unit norm and has type (3, 0) with respect to I. The almost complex structure defines a

two-form J ∈ Ω2
U (D̂) through the relation:

J(X,Y )
def.
= ĝ(X, IY ) , ∀X,Y ∈ Γ(U , D̂) (4.13)

and this form satisfies:

ν̂⊥ =U
1

6
J ∧ J ∧ J . (4.14)

The phase of the normalized (3,0)-form Ω is fixed through the convention:

Ω ∧ Ω̄ =U −8iν̂⊥ , (4.15)

Decomposing Ω into its real and imaginary parts:

Ω = ϕ+ iρ with ϕ,ρ ∈ Ω3
U (D̂) , (4.16)

relation (4.15) amounts to:

ϕ ∧ ρ =U 4ν̂⊥ . (4.17)

The following proposition gives the relation between SU(3) structures on the rank six Frobe-

nius distribution D̂|U
def.
= j∗(D̂)|U and SU(2) structures on its corank one sub-distribution

D|U ⊂ D̂|U .

Proposition. There is a bijective correspondence between SU(3) structures on D̂|U which

are compatible with the metric and orientation of D̂|U and SU(2) structures on D|U which

are compatible with the metric and orientation of D|U . This correspondence is given as

follows, where n was defined in (4.3):

(a) Given a metric- and orientation-compatible SU(3) structure on D̂|U with 2-form J ∈
Ω2
U (D̂) and complex 3-form Ω ∈ Ω3

U (D̂)⊗C, the following formulas give the canonical

forms defining the corresponding metric- and orientation-compatible SU(2) structure

on D|U , where i is the imaginary unit:

α = −ιnJ|D ∈ Ω1
U (D) , ω1 = J|D ∈ Ω2

U (D) ,

ω2 + iω3 = −i ιnΩ|D ∈ Ω2
U (D) .
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(b) Given a metric- and orientation-compatible SU(2) structure on D|U which is defined

by the canonical forms α ∈ Ω1
U (D) and ωk ∈ Ω2

U (D) (where k = 1, 2, 3), the following

forms define the corresponding metric- and orientation-compatible SU(3) structure

on D̂|U :

J = ω1 +α ∧ n ∈ Ω2
U (D̂) , (4.18)

Ω = (ω2 + iω3) ∧ (α+ in) ∈ Ω3
U (D̂)⊗ C . (4.19)

Proof. This is an obvious adaptation of [26], proposition 1.4 to the case of Frobenius

distributions. Notice that the signs agree with our choices of orientation. Indeed, we have:

α ∧ v = α ∧ ω1 ∧ ω1 =U −(ιnJ) ∧ J ∧ J|D = −1

3
ιn(J ∧ J ∧ J)|D =U −2ιnν̂⊥ = 2ν⊥ .

�

4.3 Recovering the SU(2) structure on the generic locus of M

Reference [3] constructs an SU(3) structure on the rank six Frobenius distribution which

is obtained by restricting D̂ to the open subset Û ⊂ M̂ , a set which (by the results of

section 3) contains the π−1
1 (U) of the generic locus. This SU(3) structure is described in

loc. cit through certain differential forms denoted there by:

K ∈ Ω2
Û (D̂) and ϕ, ρ ∈ Ω3

Û (D̂) .

As shown in appendix A, the canonically-normalized forms of that SU(3) structure are

given by:

Ĵ =U
1√

1− β2

[
K − 1

β2
(V̂− ∧ V̂3)

]
∈ Ω2

Û (D̂)

Ω̂ = ϕ̂+ iρ̂ ∈ Ω3
Û (D̂)⊗ C , (4.20)

where:

ϕ̂
def.
=

1√
1− α̂

ϕ =
1

β̂
√

2
ϕ , ρ̂

def.
=

1√
1− α̂

√
2

1 + α̂
ρ =

1

β̂

√
2(1− β̂2)

ρ . (4.21)

Restricting everything to the subset U ≡ j(U) ⊂ Û ⊂M , we obtain an SU(3) structure on

the restricted Frobenius distribution D̂|U , whose canonically-normalized forms are given by:

J = Ĵ |U , Ω = Ω̂|U .

By definition, the 1-form θ⊥ ∈ Ω1(U) is the component of θ|U which is orthogonal to the sub-

bundle 〈V̂+|U , V̂−|U , V̂3|U 〉 of T ∗M̂ |U generated by the 1-forms V̂+|U , V̂−|U and V̂3|U . Hence

the 1-form n (which is defined through (4.3)) is also orthogonal to this sub-bundle and thus

ιnV̂k = 0 for all k. On the other hand, we have D|U = ker θ ∩ D̂|U = ker n ∩ D̂|U ⊂ ker n
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and hence ωk and α (which are longitudinal to the Frobenius distribution D|U ) are also

orthogonal to n. These observations show that we have the relations:

ιnV̂k = ιnωk = ιnα = 0 , ∀k = 1, 2, 3 . (4.22)

Using (4.22), relation (4.18) implies:

α = −ιnJ = −ιnĴ |U .

Substituting the first relation of (4.20), this gives:

α = − 1√
1− β2

ιnK|U . (4.23)

Now (4.18) and (4.20) give:

ω1 = J + n ∧α =
1√

1− β2

[
K − n ∧ (ιnK)− 1

β2
V̂− ∧ V̂3

]
|U . (4.24)

Relation (4.19) expands as:

Ω = (ω2 + iω3) ∧α+ (iω2 − ω3) ∧ n = (ω2 ∧α− ω3 ∧ n) + i(ω3 ∧α+ ω2 ∧ n) .

Comparing this with the second relation in (4.20) gives:

ϕ̂|U
def.
= ϕ = α ∧ ω2 − n ∧ ω3 , ρ̂|U

def.
= ρ = α ∧ ω3 + n ∧ ω2 .

Using (4.21) and (4.22), these equations imply:

ω2 = ιnρ̂|U =
1

β
√

2(1− β2)
ιnρ|U , ω3 = −ιnϕ̂|U = − 1

β
√

2
ιnϕ|U . (4.25)

Relations (4.23), (4.24) and (4.25) express the defining forms of the SU(2) structure on the

generic locus U ⊂M in terms of the defining forms of the SU(3) structure which exists on

the locus Û ⊂ M̂ .

5 Conclusions and further directions

We analyzed the stabilizer stratifications of internal eight-manifolds M which can arise

in N = 2 M-theory flux compactifications down to three dimensions using the formalism

based on the auxiliary nine-manifold M̂
def.
= M ×S1, which can be viewed as a trivial circle

bundle over M with projection π1. We showed how the complicated stratified G-structure

of M which was determined in [5] relates to the much simpler stratified G-structure of M̂ .

The increased complexity of the former arises from the fact that the cosmooth generalized

distribution D̂ whose rank determines the stabilizer stratification of M̂ may have pointwise

transverse or non-transverse intersection with the π1-pull-back of the tangent bundle of M .

We also gave an explicit construction of the defining forms of the SU(2) structure which

exists on the generic locus U ⊂ M in terms of the defining forms of the SU(3) structure

which exists on the locus Û ⊂ M̂ .
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An important aspect of our analysis is that the simplification obtained by uplifting to

the nine-dimensional cylinder M̂ is only apparent. While the stabilizer stratification of M̂

is indeed simpler than that of M , a large part of the complexity of the stratified G-structure

of M is ‘hidden’ in the character of the intersection of D̂|M and TM . Therefore, passing

from M to M̂ does not simplify the problem in any fundamental way, but merely divides

differently the complexity of the stabilizer stratification of M : part of that complexity

is encoded by the simpler stabilizer stratification of M̂ while the remainder is captured

by the character of the intersection D̂|M ∩ TM . In particular, the expectation that the

analysis of stratified G-structures of flux compactifications simplifies upon passing to some

uplifted description fails to materialize in our case. Part of the reason for this phenomenon

is the high dimensionality (namely eight) of the internal space M and one may speculate

that this relates to the problem of “dual gravitons” which is relevant for such backgrounds

of M-theory.

One could also consider higher dimensional uplifts, for example to a ten-dimensional

manifold of the form M̂ ′
def.
= M ×Σ, where Σ is a (compact) Riemann surface. Such higher

uplifts may lead to even simpler stabilizer stratifications of M̂ ′. However, the character of

the intersection of j(M) with this stratification would be more complex, since the number

of essentially distinct cases grows with the dimension of the uplift. Hence uplifting to

higher dimensions simplifies one aspect of the problem (namely, the stabilizer stratification

of the uplift) while complicating the other (namely, the analysis of the intersection of j(M)

with the uplift stratification). Since one is ultimately interested in describing the stabilizer

stratification of M rather than that of the auxiliary space M̂ ′, it is unclear that there is

much gain in such repackaging of the complexity. In our opinion, the best approach is that

of [5], which gives a direct and complete solution using the tools of stratification theory

and semi-algebraic geometry, without introducing any auxiliary space constructions.

It is natural to wonder what insight could be gained by replacing the cylinder M̂

with a topologically non-trivial S1-bundle over M . Since the character of the intersection

D̂|M ∩TM is determined pointwise, it is clear that modifying the global topology of M̂ will

affect the topology of its stratification, without changing the stratified G-structure of M

(which is the physically relevant object), hence without leading to any true simplification

of the problem. In general, questions regarding the precise relation between the topology

of possible uplifts and the topology of the relevant stratifications require detailed analysis

which falls outside the scope of the present work.

A related problem is whether (as suggested by the results of [31, 32]) one can find a

compact manifold M̂ ′ (of dimension higher than nine) which fibers over M , such that the

stratified G-structure of M uplifts to a globally-defined reduction of structure group of M̂ ′.

In full generality, the answer to this question is non-obvious, since the topology of such

M̂ ′ would have to depend rather non-trivially on the topology of the stratified G-structure

of M . Another interesting question is to find a physics interpretation of the interaction

between uplifts, stratified G-structures and intersection theory which appears to govern

many of the phenomena uncovered in this paper and in the closely related work of [31, 32].

This requires further conceptual development on which we hope to report in future work.
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A Canonically-normalized forms of the SU(3) structure on M̂

Reference [3] constructs a two-form J ∈ Ω2
Û (D̂) given by equation (2.29) of loc. cit. When

translated into our notations, that equation amounts to:

J =Û K −
2

1− α̂
V̂− ∧ V̂3 = K − 1

β̂2
V̂− ∧ V̂3 , (A.1)

where (as in [3]):

K
def.
=

1

2
B̂(ξ̂1, γ̂m1m2 ξ̂2)êm1 ∧ êm2 ∈ Ω2(M̂) .

To arrive at (A.1), we used relation (2.26) and the fact that V̂ here
± = 1

2V
there
± . By the

construction given in [3] (see the derivation of eq. (2.29) of loc. cit. and the discussion

preceding it), the 2-form J coincides with the orthogonal projection of K onto Ω2(D̂) ⊂
Ω2(M̂). We thus have ιV̂kJ = 0 for all k = 1, 2, 3 and hence J is a two-form defined on M̂

which is longitudinal to the distribution D̂. Define I ∈ Γ(Û ,End(TM̂)) through:

J(X,Y )
def.
= ĝ(X, IY ) , ∀X,Y ∈ Γ(Û , T M̂) . (A.2)

In a local frame êm of M̂ defined over an open subset U ⊂ M̂ , we have Iên = I p
n êp and

J(êm, ên) = Jmn = −Jnm, hence (A.2) becomes:

Jmn = −Jnm =U I
p

n ĝpm ,

where ĝmp = ĝpm = ĝ(êm, êp). Thus I n
m = −Jmpĝpn = −J n

m and I2(êm) = I n
m I(ên) =

I n
m I p

n êp = JmnJ
npêp. Hence equation (2.36) of [3] implies:

I2|D̂ =Û −
1 + α̂

2
idD̂ . (A.3)

Therefore, the quantity:

Î
def.
=

√
2

1 + α̂
I =

1√
1− β̂2

I ∈ Γ(Û , T M̂) (A.4)

satisfies Î2|D̂ =Û −idD̂ and hence it gives an almost complex structure on the rank six

Frobenius distribution which is obtained by restricting D̂ to Û . The two-form associated

to this almost complex structure is given by:

Ĵ =

√
2

1 + α̂
J =

1√
1− β̂2

J =
1√

1− β̂2

[
K − 1

β̂2
V̂− ∧ V̂3

]
∈ Ω2

Û (D̂) (A.5)
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and satisfies the analogue of the normalization condition (4.14) (on Û) by virtue of equa-

tion4 (2.40) of [3]. Loc. cit. also constructs two real 3-forms ϕ and ρ on Û which are

orthogonal to V̂+, V̂− and V̂3 on Û and hence belong to the space Ω3
Û (D̂) (see page 10

of [3]). These forms satisfy relation (2.39) of [3], which in our notations reads:

ϕ ∧ ρ =Û 4∗̂(V̂+ ∧ V̂− ∧ V̂3) = 4(1− α̂)

√
1 + α̂

2
ν̂⊥ , (A.6)

where we used (2.23) and the fact that V̂ here
± = 1

2V
there
± . Defining:

ϕ̂
def.
=

1√
1− α̂

ϕ =
1

β̂
√

2
ϕ

ρ̂
def.
=

1√
1− α̂

√
2

1 + α̂
ρ =

1

β̂

√
2(1− β̂2)

ρ , (A.7)

relation (A.6) reduces to the analogue of (4.17), which holds on Û . Loc. cit. also defines

a complex-valued 3-form Ω ∈ Ω3
Û (D̂)⊗ C through [3], eq. (2.41), which reads:

Ω
def.
= ϕ+ i

√
2

1 + α̂
ρ .

Defining:

Ω̂
def.
=

1√
1− α̂

Ω =
1

β̂
√

2
Ω = ϕ̂+ iρ̂ , (A.8)

relation (2.42) of [3] becomes the condition that Ω̂ is Î-pseudoholomorphic:

Î(1)Ω̂ = −i Ω̂ (i.e. Î(1)ϕ̂ = ρ̂) ,

where Î(1) denotes the action of Î on the first “slot” of Ω̂. On the other hand, the analogue of

relation (4.17) shows that Ω̂ satisfies the analogue of (4.15) on Û . Combining everything,

we conclude that Ĵ and Ω̂ are the canonically-normalized forms of the SU(3) structure

which was constructed in [3] on the rank six Frobenius distribution obtained by restricting

D̂ to the locus Û ⊂ M̂ .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

4Notice that there is a typo in [3], eq. (2.40), in that the right hand side of that equation should equal
3(1+α)
4(1−α)

∗ (V+ ∧ V− ∧ V3) (in the notations of loc. cit.). With this correction, that equation is equivalent

in our notations with J ∧ J ∧ J = 3(1+α)
(1−α̂)

∗̂(V̂+ ∧ V̂− ∧ V̂3), where we used the fact that V̂ here
± = 1

2
V there
± .

Relation (2.23) implies ∗̂(V̂+ ∧ V̂− ∧ V̂3) = (1 − α̂)
√

1+α̂
2
ν̂⊥ and hence J ∧ J ∧ J = 6

(
1+α̂

2

)3/2
ν̂⊥ i.e.

Ĵ ∧ Ĵ ∧ Ĵ = 6ν̂⊥. Here ∗̂ denotes the Hodge operator of (M̂, ĝ).
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