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Abstract
Background: Chronic wound pathogenic biofilms are host-pathogen environments that colonize
and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to
promote their own survival and the chronic nature of the infection. Few studies have performed
extensive surveys of the bacterial populations that occur within different types of chronic wound
biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing,
shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the
major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound
types: diabetic foot ulcers (D), venous leg ulcers (V), and pressure ulcers (P).

Results: There are specific major populations of bacteria that were evident in the biofilms of all
chronic wound types, including Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter,
Stenotrophomonas, Finegoldia, and Serratia spp. Each of the wound types reveals marked differences
in bacterial populations, such as pressure ulcers in which 62% of the populations were identified as
obligate anaerobes. There were also populations of bacteria that were identified but not recognized
as wound pathogens, such as Abiotrophia para-adiacens and Rhodopseudomonas spp. Results of
molecular analyses were also compared to those obtained using traditional culture-based
diagnostics. Only in one wound type did culture methods correctly identify the primary bacterial
population indicating the need for improved diagnostic methods.

Conclusion: If clinicians can gain a better understanding of the wound's microbiota, it will give
them a greater understanding of the wound's ecology and will allow them to better manage healing
of the wound improving the prognosis of patients. This research highlights the necessity to begin
evaluating, studying, and treating chronic wound pathogenic biofilms as multi-species entities in
order to improve the outcomes of patients. This survey will also foster the pioneering and
development of new molecular diagnostic tools, which can be used to identify the community
compositions of chronic wound pathogenic biofilms and other medical biofilm infections.
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Background
Biofilms are well documented as medical problems asso-
ciated with implants [1-9] and certain diseases [10-17].
However, the nature and importance of chronic wound
pathogenic biofilms (CWPB) is only now beginning to be
realized as reviewed and discussed in the scientific litera-
ture [18-25]. Chronic wounds, including diabetic foot
ulcers (D), venous leg ulcers (V), and pressure ulcers (P),
are often resistant to natural healing and require long
term medical care [26-38]. Chronic wounds and their
associated pathogenic biofilms [20,22,24,39-44] are also
associated as a primary contributing factor in hundreds of
thousands of annual deaths and billions of dollars in
direct medical costs annually [20,22,38,45-55].

For decades, medical microbiologists have relied on cul-
ture techniques to elucidate the complexity of infections
including CWPB [56,57]. These techniques with only
minor advancements have been used over the past 150
years and are currently the mainstay of the clinical micro-
biology laboratories. These culture methods can be used
to identify the "culturable" bacteria associated with such
biofilms. However, the use of laboratory culture tech-
niques is typically only able to detect (as isolates) those
organisms which grow relatively quickly and easily in lab-
oratory media. This presents an important problem and
descrepency because many of the bacteria in wound bio-
films are recalcitrant to culture [58]. Thus, there is a lack
of information about the diversity of populations that
occur in association with CWPB. A better understanding
of bacterial populations associated with CWPB is neces-
sary to enable development of next generation manage-
ment and therapeutics [59-62].

No studies have been identified which have utilized deep
sequencing molecular methods (pyrosequencing) to eval-
uate the diversity of microbial populations that occur
within the pathogenic biofilms associated with each of the
three major types of chronic wounds. This report
describes the first use of partial ribosomal amplification
and pyrosequencing (PRAPS) to look at the microbial
diversity in chronic wounds. Combined with two more
traditional molecular methods; full ribosomal amplifica-
tion, cloning and Sanger sequencing (FRACS) and partial
ribosomal amplification, density gradient gel electro-
phoresis (DGGE) and Sanger sequencing (PRADS) we are
providing a comprehensive survey of the microbial popu-
lations that are present in three types of chronic wound
biofilms: venous leg ulcers, diabetic foot ulcers, and pres-
sure ulcers. The compilation of data obtained with each of
these methods provides one of the first comprehensive
surveys of bacteria that are occur in three different types of
chronic wound biofilms.

Results and Discussion
Comparison of Molecular Methods and wound types
It should be noted that this paper is not intended to con-
trast each of the molecular methods, or to purposefully
compare wound types, but rather to detail the results of
each individually in the hopes of gaining an understand-
ing of the microbial diversity within pathogenic biofilms.
Although this study could be used to compare or contrast
the three molecular methods, we sought instead to use
these relatively different strategies to better survey and
report the diversity in the different types of wounds. A
portion of the bias of one molecular method (e.g. due to
primer specificity and universality) we intended to be
somewhat compensated by the other methods, each of
which utilize different "universal" 16S primers. Another
important note is that these analyses do not represent the
diversity within a given wound from a single patient;
instead these data represented diversity among a given
chronic wound type. In-depth comparison of the popula-
tions between each wound type as part of this study would
also have been outside the scope of the methodologies
and experimental design employed. The primary observa-
tions that could be logically employed when comparing
wound types are two-fold. Each wound type demon-
strated populations and diversity that were markedly
more prevalent than those seen in other wound types as
discussed below. Each wound group also demonstrated a
different level of oxygen tolerance among its bacterial
populations (Figure 1). This second observation indicates
there may be a common pathophysiology among wound
types that likely affects the ecology of the wound environ-
ment and may play an important role in determining the
bacterial genera that can become integrated as part of a
wound biofilm. These observations obviously cannot be
fully addressed within the scope of this survey yet they do
provide important directions for future research.

PRAPS
The Rowher lab [63] was the first to pyrosequencing
approaches to evaluate the diversity of complex microbial
ecosystems by looking at environmentally isolated
genome sequences from two sites in the Soudan Mine,
Minnesota, USA. A few studies have utilized a PRAPS
approach to evaluate the genetic diversity of clinical sam-
ples [64] or as as a form of clinical isolate genotyping [65-
69]. To date, PRAPS has not been used to evaluate the bio-
diversity of clinically infected biofilm samples, particu-
larly CWPB.

A total of 193890 sequences were generated among the 4
samples including the pooled control sample of which
over 129,000 sequences were utilized in the actual PRAPS
analysis, gave a comprehensive functional survey of path-
ogenic biofilm populations within each wound type
(Table 1). Facultative gram negative rods predominated in
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the V wounds. The predominant bacterial types in V bio-
films were Enterobacter, Serratia, Stenotrophomonas, and
Proteus spp. (Table 2). Strict anaerobes, cocci, and gram
positives were scarce. In D samples the primary bacterial
genera were Staphylococcus, Peptoniphilus, Rhodopseu-
domonas, Enterococcus, Veillonella, Clostridium, and Finegol-
dia spp. Facultative and strict anaerobic gram positive
cocci were most prevalent (Table 3). Finally, in P samples,
the predominant species were Peptoniphilus, Serratia, Pep-
tococcus, Streptococcus, and Finegoldia spp. Thus, strict
anaerobic gram positive cocci dominated the communi-
ties within P biofilms (Table 4).

FRACS
The use of Full Ribosomal Amplification, Cloning and
Sanger Sequencing (FRACS) has been utilized for at least
18 years to evaluate the biodiversity of environmental
samples [70-72]. This method has also been used to eval-
uate the microbial diversity of environmental biofilms
[73] and at least one study utilized this approach to eval-
uate the microbial diversity of diabetic foot ulcers [74].

When using FRACS for 200 random clones from each
library and following vector screening and quality scoring,
we found that between 179 and 194 sequences from each

Distribution of Bacterial Populations in Chronic Wounds in Relation to AerotoleranceFigure 1
Distribution of Bacterial Populations in Chronic Wounds in Relation to Aerotolerance. Diabetic, venous, or pres-
sure ulcer types were analyzed separately using pyrosequencing and the resulting populations grouped into 3 catagories based 
upon their suggested aerotolerance. This figure graphically illustrates the relative distribution of these functional catagories 
among the wound types.

Table 1: Overview of the phenotypes of microbial populations as determined using pyrosequencing (PRAPS). 

Pressure Ulcer
seq

Pressure Ulcer
genus

Diabetic Foot
Ulcer seq

Diabetic Foot
Ulcer genus

Venous Let
Ulcer seq

Venous Leg
Ulcer genus

Anaerobe 17105 12 10519 15 523 6
Aerobe 3241 9 2740 12 4402 9
Facultative 
anaerobes

6686 15 22673 19 25226 16

Gram positive 18751 18 22821 20 984 12
Gram negative 8281 17 13111 26 29167 19
Rod 8384 25 14682 34 29729 25
Cocci 18648 12 21250 12 422 6
UWB 440 8 656 7 1724 3

The data from pyrosequencing (PRAPS) is broken down into the number of sequences (seq) from each sample associated with the indicated 
phenotypic characteristic (anaerobe, gram positive, etc). Also shown are the number of genera that were associated with each of the phenotypic 
categories. UWB refers to unknown wound bacteria or sequences without significant similarity to a database sequences.
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library could be analyzed. The break down of genotypes
demonstrated similar trends (Table 5) as were observed
using PRAPS. Strict anaerobes, cocci, and gram positives
were scarce in the V group (Table 6). Facultative and strict
anaerobic gram positive cocci were most prevalent in the
D group (Table 7), and strictly anaerobic gram positive
dominated the P group (Table 8). In V samples the pre-
dominant bacterial genus, identified by FRACS, were over-
whelmingly Pseudomonas spp. (including P. aeruginosa
and P. fluorescens) followed by Enterobacter spp. (includ-
ing E. cloacae), Stenotrophomonas maltophilia, Proteus spp.,
and Staphyloccoccus aureus (Table 6). In the D sample the
predominant species was overwhelmingly Staphylococcus
aureus followed by Anaerococcus lactolyticus, Anaerococcus
vaginalis, Bacterioides fragilis, Finegoldia magna, and Mor-
ganella morganii (Table 7). Finally, predominant bacteria
in the P sample were Peptoniphilus ivorii, Anerococcus spp.,
Streptococcus dysgalactiae, and Peptoniphilus spp. (Table 8).

PRADS
The use of a Partial Ribosomal Amplification, DGGE, and
Sanger sequencing (PRADS) has been utilized extensively
to study microbial diversity [75-80]. This approach has
also been used extensively to study the microbial diversity
of biofilms [81-84] and has even been used to study clin-
ical biofilms [85]. The primary use of DGGE by itself is to
provide an indication of diversity. The number of bands
seen in a gel, in many cases, can provide a relative measure
of the number of different bacteria present. It is under-
stood that each of the bands seen in a DGGE gel can rep-
resent multiple species and even the same species can be
represented by multiple bands as we observed in the cur-
rent study (data not shown).

By excising the predominant bands from each sample,
cloning them into a vector, and sequencing them, the
identity of the bacteria from each band are identified. In

Table 2: Results obtained for venous leg ulcer sample using pyrosequencing (PRAPS). This table provides the identified genera of the 
bacteria found using pyrosequencing (PRAPS) in the V sample, the number of sequences corresponding to a given genus, the known 
gram staining properties, the aerotolerance (anaerobic, anaerobic, or facultative anaerobic) nature of the genus, and the relative 
shape (rod or cocci) of the genus. 

Genus Seq % Gram Aerotolerance Shape

Enterobacter spp. 14288 44.83 - Facultative anaerobe Rod
Serratia spp. * 6132 19.24 - Facultative anaerobe Rod
Stenotrophomonas spp. 3532 11.08 - Aerobe Rod
Proteus spp. 2469 7.75 - Facultative anaerobe Rod
UWB 1446 4.54 unk Unk Unk
Proteus mirabilis. 1080 3.39 - Facultative anaerobe Rod
Salmonella spp. 739 2.32 - Facultative anaerobe Rod
Clostridium spp. 408 1.28 + Anaerobe Rod
Alcaligenes faecalis 337 1.06 - Aerobe Rod
UWB 261 0.82 unk Unk Unk
Pseudomonas spp.* 185 0.58 - Aerobe Rod
Staphylococcus spp.* 143 0.45 + Facultative anaerobe Cocci
Brevundimonas diminuta 123 0.39 - Aerobe Rod
Streptococcus spp. 107 0.34 + Facultative anaerobe Cocci
Acinetobacter spp. 102 0.32 - Aerobe Rod
Enterococcus spp. 94 0.29 + Facultative anaerobe Cocci
Pantoea spp. 81 0.25 - Facultative anaerobe Rod
Corynebacterium striatum* 81 0.25 + Aerobe Rod
Peptoniphilus spp. 65 0.20 + Anaerobe Cocci
E. coli 31 0.10 - Facultative anaerobe Rod
Bacillus spp. 25 0.08 + Aerobe Rod
Paenibacillus spp. 24 0.08 + Facultative anaerobe Rod
Eubacterium spp. 24 0.08 + Anaerobe Rod
Klebsiella spp. 21 0.07 - Facultative anaerobe Rod
Xanthomonas spp. 17 0.05 - Aerobe Rod
UWB 17 0.05 unk Unk Unk
Ferrimonas spp. 17 0.05 - Facultative anaerobe Rod
Finegoldia magna 13 0.04 + Anaerobe Cocci
Dendrosporobacter quercicolus 13 0.04 - Anaerobe Rod

UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences. * The asterisk identifies bacteria 
previously cultured from a single culture result from each subject's medical record from subjects in the V pool. The only bacterium cultured that 
was not found using PRAPS was Citrobacter. The % represents the percentage of the total sequences analyzed within the sample.
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Table 3: Results obtained for diabetic foot ulcer sample using pyrosequencing (PRAPS). 

Genus Seq % Gram Aerotolerance Shape

Staphylococcus spp. 10874 29.72 + Facultative anaerobe Cocci
Peptoniphilus spp. 2555 6.98 + Anaerobic Cocci
RhodoPseudomonas spp. 2541 6.94 - Facultative anaerobe Rod
Enterococcus spp. 2341 6.40 + Facultative anaerobe Cocci
Veillonella spp. 1978 5.41 - Anaerobic Cocci
Clostridium spp. 1975 5.40 + Anaerobic Rod
Finegoldia magna 1953 5.34 + Anaerobic Cocci
Haemophilus spp. 1701 4.65 - Facultative anaerobe Rod
Acinetobacter spp. 1301 3.56 - Aerobic Rod
Morganella spp. 1240 3.39 - Facultative anaerobe Rod
Serratia spp. 1125 3.07 - Facultative anaerobe Rod
Proteus spp. 1072 2.93 - Facultative anaerobe Rod
Dialister spp. 1029 2.81 - Anaerobic Rod
Streptococcus spp. 751 2.05 + Facultative anaerobe Cocci
Stenotrophomonas spp. 669 1.83 + Aerobe Rod
Peptococcus niger 588 1.61 + Anaerobic Cocci
UWB 342 0.93 unk Unk Unk
Klebsiella spp. 326 0.89 - Facultative anaerobe Rod
Actinomyces spp. 307 0.84 + Facultative anaerobe Rod
Gordonia spp. 302 0.83 + Aerobic Rod
Delftia spp. 251 0.69 - Aerobic Rod
Gemella spp. 168 0.46 + Anaerobic Cocci
Corynebacterium spp. 157 0.43 + Facultative anaerobe Rod
UWB 143 0.39 unk Unk Unk
UWB 107 0.29 unk Unk Unk
Salmonella enterica 102 0.28 - Facultative anaerobe Rod
Fusobacterium spp. 99 0.27 - Anaerobic Rod
Varibaculum cambriense 54 0.15 + Anaerobic Rod
Enterobacter spp. 52 0.14 - Facultative anaerobe Rod
Bacillus spp. 51 0.14 + aerobic Rod
Eikenella spp. 42 0.11 - facultative anaerobe Rod
Anaerococcus spp. 42 0.11 + anaerobic Cocci
Hydrogenophaga spp. 40 0.11 - aerobic Rod
Alcaligenes faecalis 36 0.10 - aerobic Rod
E coli 32 0.09 - facultative anaerobe Rod
Sphingomonas spp. 26 0.07 - aerobic Rod
Acidovorax spp. 26 0.07 - aerobic Rod
Prevotella spp. 22 0.06 - anaerobic Rod
UWB 20 0.05 unk unk Unk
Eubacterium spp. 20 0.05 + anaerobic Rod
Bacteroides spp. 20 0.05 - anaerobic Rod
UWB 17 0.05 unk unk Unk
UWB 16 0.04 unk unk Unk
Selenomonadaceae spp. 16 0.04 - anaerobic Rod
Brevibacterium spp. 14 0.04 + aerobic Rod
Riemerella spp. 13 0.04 - aerobic Rod
UWB 11 0.03 unk unk Unk
Bradyrhizobium spp. 11 0.03 - aerobic Rod
Pantoea agglomerans 10 0.03 - facultative anaerobe Rod

This table provides the identified genus of the bacteria found using pyrosequencing (PRAPS) in the D sample, the number of sequences 
corresponding to this genus, the known gram staining properties, the aerotolerance (anaerobic, anaerobic, or facultative anaerobic) nature of the 
genus, and the shape of the genus. UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences. * The 
asterisk identifies bacteria previously cultured from a single culture result from each subject's medical record from subjects in the diabetic foot ulcer 
pool (D sample). Bacteria that were cultured and were not found using PRAPS include Citrobacter and Pseudomonas. % represents the percentage of 
the total sequences analyzed within the sample.
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the V sample the primary bacteria were Enterobacter, Pseu-
domonas, and Proteus spp. (Table 9). This is similar to the
results seen using both FRACSS and PRAPS. In the D sam-
ple, PRADS identified Pseudomonas, Haemophilus, Citro-
bacter, and Stenotrophomonas as the predominant species
(Table 9). In the P sample the primary species identified
was Serratia, Dialister, and Peptococcus spp. (Table 9).

Culturing
A review of the literature identifies Staphylococcus spp. as
the predominant organisms associated with wounds
based upon culturing [86-88]. As discussed in the intro-

duction, this is primarily due to the ability of this bacte-
rium to be propagated in culture media under typical
laboratory conditions. Pseudomonas spp., another easy to
culture bacteria is also frequently isolated from chronic
wounds using culture methods [89,90]. Other species that
have been most consistently identified in association with
chronic wounds include E. coli, Enterobacter cloacae, Kleb-
siella, Streptococcus, Enterococcus. and Proteus spp.
[25,58,86,88,90-95]. One notable commonality of the
above organisms is the ease with which they can be cul-
tured in standard laboratory growth media under aerobic
conditions. These claims are upheld by the data presented

Table 4: Results obtained for the pressure ulcer sample (P) using pyrosequencing (PRAPS).

Genus Seq % Gram Aerotolerance Shape

Peptoniphilus spp. 10543 38.38 + Anaerobe Cocci
Serratia spp. 5234 19.05 - facultative anaerobe Rod
Peptococcus niger. 3042 11.07 + anaerobe Cocci
Streptococcus spp. 3016 10.98 + facultative anaerobe Cocci
Finegoldia magna 1743 6.34 + anaerobe Cocci
Dialister spp. 1374 5.00 - anaerobe rod
Pectobacterium spp. 528 1.92 - facultative anaerobe rod
Enterobacter spp. 392 1.43 - facultative anaerobe rod
Proteus spp. 308 1.12 - facultative anaerobe rod
Veillonella spp. 186 0.68 - anaerobe cocci
UWB 141 0.51 Unk unk unk
UWB 121 0.44 Unk unk unk
Clostridium spp. 93 0.34 + anaerobe rod
Corynebacterium striatum 73 0.27 + aerobe rod
Delftia spp. 65 0.24 - aerobe rod
UWB 63 0.23 Unk unk unk
Enterococcus spp. 62 0.23 + facultative anaerobe cocci
Staphylococcus spp. 56 0.20 + facultative anaerobe cocci
Hydrogenophaga spp. 54 0.20 - aerobe rod
Eggerthella lenta 33 0.12 + anaerobe rod
UWB 31 0.11 Unk unk unk
UWB 31 0.11 Unk unk unk
Prevotella spp. 31 0.11 - anaerobe rod
Varibaculum cambriense 28 0.10 + anaerobe rod
Actinomyces europaeus 28 0.10 + facultative anaerobe rod
Ferrimonas spp. 27 0.10 - facultative anaerobe rod
Bacillus spp. 24 0.09 + aerobe rod
UWB 22 0.08 Unk unk unk
Fusobacterium spp. 22 0.08 - anaerobe rod
Alcaligenes faecalis 20 0.07 - aerobe rod
UWB 17 0.06 Unk unk unk
Riemerella spp. 15 0.05 - aerobe rod
UWB 14 0.05 Unk unk unk
Stenotrophomonas spp. 14 0.05 - aerobe rod
Shewanella spp. 11 0.04 - facultative anaerobe rod
Eubacterium spp. 10 0.04 + anaerobe rod

This table provides the identified genus of the bacteria found using pyrosequencing (PRAPS) in the P sample, the number of sequences 
corresponding to this genus, the known gram staining properties, the aerotolerance (anaerobic, anaerobic, or facultative anaerobic) nature of the 
genus, and the shape of the genus. UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences. * The 
asterisk identifies bacteria previously cultured from a single culture result from each subject's medical record from subjects in the P pool. Bacteria 
that were cultured and were not found using PRAPS include Acinetobacter, Leclercia, Morganella, and Pseudomonas. The % represents the percentage 
of the total sequences analyzed within the sample.
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Table 5: Overview of the phenotypes of microbial populations as determined using shotgun Sanger sequencing (FRACS). 

Category Pressure Ulcer
seq

Pressure Ulcer
sp.

Diabetic Foot
Ulcer seq.

Diabetic Foot
Ulcer sp.

Venous Leg
Ulcer seq

Venous Leg
Ulcer sp.

aerobes 20 5 1 1 114 7
facultative 
anaerobes

21 8 102 15 69 15

anaerobes 143 13 75 15 7 3
Cocci 136 11 137 14 14 6
Rods 48 15 41 17 176 19
gram positive 153 14 136 15 21 9
gram negative 31 12 42 17 169 16
UWB 2 2 0 0 4 4

The data from Sanger sequencing (FRACS) is broken down into the number of sequences (seq) from each sample (P, D, and V) that were related to 
a given characteristic (anaerobe, gram positive etc). Also shown are the number of genera that were associated with each of the phenotypic 
categories. UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences.

Table 6: Results obtained for venous leg ulcer sample (V) using shotgun Sanger sequencing (FRACS).

Genus species Number seq % Gram Aerotolerance Shape

Pseudomonas sp*. 45 23.20 - aerobic rod
Pseudomonas aeruginosa.* 30 15.46 - aerobic rod
Pseudomonas fluorescens* 20 10.31 - aerobic rod
Enterobacter spp. 19 9.79 - facultative rod
Stenotrophomonas maltophilia. 14 7.22 - aerobic rod
Enterobacter cloacae 10 5.15 - facultative rod
Staphylococcus aureus* 7 3.61 + Facultative anaerobe cocci
Proteus vulgaris 6 3.09 - Facultative anaerobe rod
Shewanella algae 6 3.09 - Facultative anaerobe rod
Proteus mirabilis. 6 3.09 - Facultative anaerobe rod
UWB 4 2.06 unk unk unk
Clostridium perfringens 4 2.06 + anaerobic rod
Klebsiella spp.* 4 2.06 - facultative rod
Serratia marcescens * 3 1.55 - aerobic rod
Clostridium spp. 2 1.03 + anaerobic rod
Helcococcus kunzii 2 1.03 + facultative anaerobe cocci
Staphylococcus spp.* 2 1.03 + Facultative anaerobe cocci
Enterobacter aerogenes 2 1.03 - Facultative anaerobe rod
Bacillus fusiformis. 1 0.52 + aerobic rod
Enterococcus avium* 1 0.52 + Facultative anaerobe cocci
Enterococcus faecalis* 1 0.52 + Facultative anaerobe cocci
Peptococcus spp. 1 0.52 + anaerobic cocci
Achromobacter xylosoxidans 1 0.52 - aerobic rod
Salmonella spp. 1 0.52 - Facultative anaerobe rod
Escherichia coli 1 0.52 - Facultative anaerobe rod
Shigella spp. 1 0.52 - Facultative anaerobe rod

This table provides the identified genera of the bacteria found using shotgun Sanger sequencing (FRACS) in the V sample, the number of sequences 
corresponding to this genus, the known gram staining properties, the aerotolerance (anaerobic, anaerobic, or facultative anaerobic) nature of the 
genus, and the shape of the genus. UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences. The 
asterisk * identifies bacteria previously cultured from a single culture result from each subject's medical record from subjects in the V pool. Bacteria 
that were cultured and were not found using FRACSS include Acinetobacter, Citrobacter, and Corynebacterium. The % represents the percentage of 
the total sequences analyzed within the sample.
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here, as all of the isolates identified using the clinical cul-
tures are relatively easy to propogate under aerobic condi-
tions in standard laboratory media (Table 10).

Culture results for 29 of the 30 subjects were found by
auditing the subjects' past and current longitudinal medi-
cal records. The bacteria isolated are indicated for compar-
ative purposes in Tables 2, 3, 4 and 6, 7, 8 and reported
fully in Table 10. Cultures were positive for some bacteria
that were not identified using PRAPS, FRACS, or PRADS.
In the V group, Citrobacter was identified via culture and
was not discovered with molecular methods. In the D
group, all bacteria that were cultured were identified using
molecular methods. In the P group, Acinetobacter and
Escherichia spp. were cultured but not identified via
molecular methods. As noted in the methods, the samples
used for culturing were not necessarily collected in paral-
lel with the samples collected for molecular analyses.

Continuous longitudinal attempts to culture anaerobic
bacteria had also been made and were unsuccessful for
any of these patients. This highlights the problems with
laboratory culture methods especially with the P type
chronic wound, which is predicted to be primarily anaer-
obic using each of the molecular methods.

Comparison to normal flora
The microbial flora of normal skin is also considered com-
plex. A bacterial diversity study of normal skin flora from
6 healthy subjects was performed using molecular meth-
ods [96]. It was found that there were hundreds of bacte-
rial species among the individuals. The conclusions of this
study indicated that normal flora of skin is highly diverse
and only a few bacteria are common among the individu-
als. These included Propionibacteria, Corynebacteria, Staphy-
lococcus, and Streptococcus spp. [96]. These results were
largely corroborated by a previous study which collected

Table 7: Results obtained for diabetic foot ulcer sample (D) using shotgun Sanger sequencing (FRACS). 

Genus species Seq % Gram Aerotolerance Shape

Staphylococcus aureus * 70 39.33 + facultative Cocci
Anaerococcus lactolyticus 16 8.99 + anaerobic Cocci
Anaerococcus vaginalis 15 8.43 + anaerobic cocci
Bacterioides fragilis 7 3.93 - anaerobic rod
Finegoldia magna 6 3.37 + anaerobic cocci
Morganella morganii 5 2.81 - Facultative anaerobe rod
Enterococcus faecalis* 5 2.81 + facultative cocci
Peptoniphilus harei 5 2.81 + anaerobic cocci
Clostridium novyi 4 2.25 + anaerobic rod
Veillonella atypica 4 2.25 - anaerobic cocci
Abiotrophia para-adiacens 4 2.25 + anaerobic cocci
Veillonella parvula 4 2.25 - anaerobic cocci
Citrobacter murliniae * 3 1.69 - facultative anaerobe rod
Haemophilus spp. 3 1.69 - facultative rod
Clostridium spp. 3 1.69 + anaerobic rod
Haemophilus segnis 3 1.69 - faculative rod
Enterococcus avium* 3 1.69 + facultative cocci
Proteus spp.* 2 1.12 - Facultative anaerobe rod
Enterobacter aerogenes 2 1.12 - facultative rod
Dialister spp. 2 1.12 - anaerobic rod
Peptoniphilus asaccharolyticus 2 1.12 + anaerobic cocci
Enterobacter cloacae 1 0.56 - Facultative anaerobe rod
Klebsiella oxytoca* 1 0.56 - Facultative anaerobe rod
Escherichia coli 1 0.56 - facultative rod
Pseudoalteromonas spp. 1 0.56 - facultative rod
Porphyromonas levii 1 0.56 - anaerobic rod
Delftia acidovorans 1 0.56 - aerobic rod
Dialister invisus 1 0.56 - anaerobic rod
Staphylococcus epidermidis* 1 0.56 + facultative cocci
Staphylococcus spp.* 1 0.56 + facultative cocci
Granulicatella spp. 1 0.56 + anaerobic cocci

This table provides the identified genera of the bacteria found using shotgun Sanger sequencing (FRACS) in the D sample, the number of sequences 
corresponding to this genus, the known gram staining properties, the aerotolerance (anaerobic, anaerobic, or facultative anaerobic) nature of the 
genus, and the shape of the genus. The asterisk * identifies bacteria previously cultured from a single culture result from each subject's medical 
record from subjects in the D pool. Bacteria that were cultured and were not found using FRACSS include Pseudomonas, Serratia, and Streptococcus. 
The % represents the percentage of the total sequences analyzed within the sample.
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and analyzed swabs from the forehead of 5 individuals.
This study also found Staphylococcus and Propionibacteria
spp. as well as high prevalence of methylophilus spp. [97].
Few other studies were found evaluating normal skin
microflora suggesting that more extensive studies of
healthy skin microflora are also needed. The primary bac-
teria that occur on healthy skin also correlate to the pri-
mary bacteria cultured from wound biofilms. Future
studies are needed to evaluate the normal flora and
chronic wound biofilm flora from the same patients.

Anaerobes in pathogenic biofilms
In relation to anaerobes, the literature is now beginning to
show their importance in chronic wound pathogenic bio-
films. Even though such wounds are typically exposed to
air [88] anaerobes may be most prevelant physiological
type for a given wound or a given wound type as shown in
this study. Many of these newer studies show the impor-
tance of anaerobes such as Peptostreptococcus, Prevotella,
Finegoldia and Peptoniphilus spp. [88,89,91,93,94,98],
which were also seen as important in the current survey.

However, as noted previously, only a few studies have
looked at the populations of bacteria in various wound
types. Bowler et al [88] evaluated venous leg ulcers using
cultural isolation techniques that included special consid-
erations for the propogation of anaerobes. They found
that anaerobes represented 49% of the total microbial
composition in such wounds. This does not agree with
our analyses of the V type ulcer, which showed only 1.6%
of sequences were matched to anaerobes. However,
almost 30% of the sequences from D and 62% of
sequences from P wound types were matched to anaer-
obes. An interesting observation is that the differences in
the functional diversity of the pathogenic biofilms may
suggest important differences in the physiology of these
three types of wounds. As indicated previously, the patho-
physiology of a wound type may select for certain physio-
logical or functional populations within the associated
pathogenic biofilm. Thus, the bacterial populations
which are prevelant might in turn suggest differences in
management of the individual CWPB are necessary.

Table 8: Results obtained for the pressure ulcer sample (P) using shotgun Sanger sequencing (FRACS). 

Genus species Seq % Gram Aerotolerance Shape

Peptoniphilus ivorii 51 27.42 + anaerobic cocci
Anaerococcus lactolyticus 20 10.75 + anaerobic cocci
Anaerococcus vaginalis 16 8.60 + anaerobic cocci
Streptococcus dysgalactiae* 14 7.53 + facultative cocci
Peptoniphilus harei 14 7.53 + anaerobic cocci
Peptococcus niger 12 6.45 + anaerobic rod
Serratia marcescens 12 6.45 - aerobic rod
Finegoldia magna 10 5.38 + anaerobic cocci
Peptoniphilus indolicus 7 3.76 + anaerobic cocci
Clostridium hathewayi 4 2.15 + anaerobic rod
Prevotella buccalis 3 1.61 - anaerobic rod
Pseudomonas aeruginosa* 3 1.61 - aerobic rod
UWB 2 1.08 Unk unk unk
Dialister invisus 2 1.08 - anaerobic rod
Dialister spp. 2 1.08 - anaerobic rod
Delftia acidovorans 2 1.08 - aerobic rod
Pseudomonas fluorescens* 2 1.08 - aerobic rod
Helcococcus kunzii 1 0.54 + facultative anaerobe cocci
Enterococcus faecalis* 1 0.54 + facultative cocci
Staphylococcus epidermidis* 1 0.54 + facultative cocci
Streptococcus pyogenes* 1 0.54 + facultative cocci
Clostridium perfringens 1 0.54 + anaerobic rod
Klebsiella granulomatis 1 0.54 - Facultative anaerobe rod
Klebsiella pneumoniae 1 0.54 - Facultative anaerobe rod
Proteus vulgaris* 1 0.54 - Facultative anaerobe rod
Porphyromonas uenonis 1 0.54 - anaerobic rod
Pseudomonas spp.* 1 0.54 - aerobic rod

This table provides the identified genera of the bacteria found using shotgun Sanger sequencing (FRACS) in the P sample, the number of sequences 
corresponding to the given genus, the known gram staining properties, the aerotolerance (anaerobic, anaerobic, or facultative anaerobic) nature of 
the genus, and the shape of the genus. UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences. 
The asterisk * identifies bacteria previously cultured from a single culture result from each subject's medical record from subjects in the P pool. 
Bacteria that were cultured and were not found using FRACSS include Acinetobacter, Enterobacter, Leclercia and Morganella. The % represents the 
percentage of the total sequences analyzed within the sample.
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As has been demonstrated in the laboratory [59,99],
anaerobes may cope with the toxic effects of oxygen by
interacting with aerobic or facultative anaerobic bacterial
populations in a symbiotic manner as part of a process
known as coaggregation. Aerobic species may consume
oxygen and create localized environments, allowing the
obligate anaerobes to gain advantage when in close prox-
imity. The Lewandowski lab has also shown that oxygen
only penetrates microns into the surface of biofilms sug-

gesting that internal regions may support only anaerobes
and facultative anaerobes [100]. Such synergistic interac-
tions and advantages of biofilm phenotype have been
shown for specific aerobes and anaerobes. Using animal
models it has also been shown that mixtures of anaerobic
and aerobic bacteria have been shown to produce disease
states which cannot be reproduced by the individual spe-
cies alone [61,101-104,104,105]. These findings suggest a
complexity to the host-pathogen interaction that adds a

Table 9: Results obtained for each of the samples using DGGE band extraction and sequencing (PRADS). 

V seq V genus D seq D genus P seq P genus

18 Enterobacter spp.* 13 Pseudomonas spp.* 34 Serratia spp.
17 Pseudomonas spp.* 12 Haemophilus spp. 13 Dialister spp.
4 Proteus spp. 11 Citrobacter spp.* 10 Peptococcus spp.
2 Klebsiella spp.* 11 Stenotrophomonas spp. 3 Pseudomonas spp.*
2 Pectobacterium spp. 10 Morganella spp. 2 Citrobacter spp.
2 Erwinia spp. 10 Staphylococcus spp. 2 Morganella spp.
1 Serratia spp.* 5 Acinetobacter spp. 2 Proteus spp.*
1 UWB 5 Acinetobacter spp. 1 Haemophilus spp.
1 Haemophilus spp. 4 Morganella spp. 1 Klebsiella spp.

4 Proteus spp.* 1 Leminorella spp.
3 Delftia spp. 1 Pectobacterium spp.
3 Obesumbacterium spp. 1 Peptoniphilus spp.
2 Dialister spp. 1 Prevotella spp.
2 Mannheimia spp. 1 UWB
1 Comamonas spp.
1 Grimontia spp.
1 Klebsiella spp.*
1 Macrococcus spp.
1 Methylophaga spp.
1 Pantoea spp.
1 Pectobacterium spp.
1 Rahnella spp.
1 Serratia spp.*
1 Streptococcus spp.*
1 UWB

This table provides the identified genus of the bacteria found in each of the samples as determined by DGGE band excision, cloning and sequencing 
(PRADS). The number of sequences corresponding to this genus is provided. The physiological aspects of these isolates are described elsewhere in 
most cases. UWB refers to unknown wound bacteria or sequences without significant similarity to database sequences.

Table 10: Bacteria cultured during standard of care from three wound groups. 

Subjects V group Subjects D group Subjects P group

4 Enterococcus 2 Citrobacter 4 Staphylococcus
3 Staphylococcus 2 Enterococcus 2 Streptococcus
2 Enterobacter 2 Klebsiella 2 Enterococcus
2 Pseudomonas 2 Serratia 1 Escherichia
1 Klebsiella 2 Staphylococcus 1 Leclercia
1 Serratia 2 Streptococcus 1 Proteus
1 Citrobacter 1 Proteus 1 Pseudomonas
1 Acinetobacter 1 Pseudomonas 1 Acinetobacter

1 Escherichia 1 Enterobacter

Subject's medical records were examined, and the positive culture nearest to the date of sample collection for molecular analysis was considered. 
All thirty (30) subjects except for one (1) subject in the P group had a culture recorded in their medical records. The number of subjects within 
each group to culture positive for a bacterial genus is listed next to the genus. Many of the subjects were cultured for both aerobes and anaerobes, 
but the clinical laboratories reported no obligate anaerobes.
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new dimension to Koch's postulates. These finding also
dramatically highlight the failings of culture methods to
identify major populations of importance within each of
the wound types.

Conclusion
The primary contrasts we see in these data are the differ-
ences found in bacterial populations within wound types
using culture (Table 10) and molecular analyses (Tables 1,
2, 3, 4, 5, 6, 7, 8, 9). Here we show that culturing failed to
identify major contributing populations, especially strict
anaerobes, within the given wound types. Standard cul-
turing techniques are inherently biased as they only exam-
ine only the 1% of all microorganisms which are able to
grow fairly rapidly in pure culture. Culturing also requires
several days before the culturable bacteria can be identi-
fied whereas molecular methods such as PCR can typically
be completed within several hours. In addition, certain of
the isolates we have shown are primary populations
within a wound type, may never be cultured in the labo-
ratory due to reduced metabolic activity, obligate cooper-
ation with other bacteria, requirements for specialized
nutrients, or growth in specific environmental conditions
[106]. Molecular methods unlike culture methods also
have more potential to provide quantitative data. Argua-
bly, we have shown that molecular methods will allow
populations residing within biofilms to be more fully
characterized. The continued development of molecular
methods may lead to vastly improved tools for diagnos-
tics that will identify and provide quantification of the
diverse species potentially present in chronic wounds
thereby allowing physicians to better tailor their treat-
ment to each patient's unique pathogenic biofilm popula-
tions. This dramatically highlights the need to move
microbiological analyses of chronic wound pathogenic
biofilms toward molecular approaches.

If clinicians can gain a better understanding of the
wound's microbiota, it will give us a greater understand-
ing of the wound's ecology and will allow us to better
manage the wound. It is important to consider the bacte-
rial populations within pathogenic biofilms for many rea-
sons. These reasons typically relate to the fact that the
higher bacterial population diversity within a pathogenic
biofilm provides the bacterial community as a whole with
an enhanced ability to persist and thrive in a variety of
antagonistic situations, even in spite of combined host
and medicinal attack [107]. The current study has shown
that a wide variety of bacteria with different physiological
and phenotypic preferences are common as part of patho-
genic biofilm communities in chronic wounds. Addition-
ally, we can see that different types of wounds may have
different bacterial populations that are prevalent. Thus,
the CWPB in one wound or wound type may indicate a
therapy that is different than that indicated in another

wound or wound type. As noted previously, such conclu-
sions are beyond the scope of this survey but are suggested
by the results. These conclusions also provide direction
for future research. The use of traditional culture tech-
niques are widely used, but we and others have consist-
antly demonstrate that they are not likely to be the best
way to elucidate the bacterial populations within CWPB.

Methods
Biofilms from a total of 30 chronic wound patients were
included in this survey study. A total of 30 chronic
wounds were sampled and grouped into one of three cat-
egories of wounds: venous leg ulcers (V), diabetic foot
ulcers (D), or pressure ulcers (P). To identify the microbial
populations that occur in these types of wounds and to
gain a preliminary understanding of their relative impor-
tance, we took advantage of three powerful molecular
approaches that included PRADS [108], FRACS [109], and
PRADS [110]. These techniques allowed the bacterial
diversity that occurs within these CWPB types to be evalu-
ated.

Protocol for subject enrollment, DNA extraction, and 
Sample Preparation
Under the guidance of IBR protocols, chronic wounds of
30 subjects treated at the Southwest Regional Wound Care
Center (Lubbock, Texas) were debrided as per standard of
care; the debridement samples were collected with sterile
tools into sterile collection tubes and frozen until process-
ing for DNA extraction. Samples from 10 subjects with
venous leg ulcers, 10 subjects with diabetic foot ulcers,
and 10 subjects with pressure (decubitus) ulcers were
included in this study. Debridement samples (300 mg ±
150 mg) were collected into Lysing Matrix E tubes from
the FastDNA® SPIN for Soil Kit from MP Biomedicals LLC
(Solon, OH). The tubes were frozen at -70°C until DNA
extraction could be performed. When DNA extraction was
performed, the samples were removed from the freezer
and allowed to thaw at room temperature. Subsequently,
the DNA extraction protocol for the kit was followed with
the exception that human debridement samples were
used in place of soil samples. The extracted sample DNA
was stored at -70°C. After measuring the relative concen-
tration of bacterial DNA present based upon 16s quantita-
tive PCR using 16S Universal Eubacterial primers 530F
(5'-GTG CCA GCM GCN GCG G) and 1100R (5'-GGG
TTN CGN TCG TTG), the 10 samples from each of the
three wound groups were pooled at equal bacterial DNA
ratios to create three pools of DNA, each representing a
major category of chronic wound.

Partial ribosomal amplification and pyrosequencing 
(PRAPS)
The modified 16S Eubacterial primers 530F and 1100R
were used for amplifying the 600 bp region of 16S rRNA
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genes. The primer pair used for 454 Amplicon Sequencing
was designed with special Fusion Primers at the 5' end of
each primer as follows: 530F-A (5'-GCC TCC CTC GCG
CCA TCA GGT GCC AGC MGC NGC GG) and 1100R-B
(5'-GCC TTG CCA GCC CGC TCA GGG GTT NCG NTC
GTT G). All wound DNA samples were diluted to 100 ng/
μl. A 100 ng aliquot of sample DNA was used for a 50 μl
PCR reaction. HotStarTaq Plus Master Mix Kit (QIAGEN,
CA, USA) was used for PCR under the following condi-
tions: 94°C for 3 minutes followed by 32 cycles of 94°C
for 30 seconds; 60°C for 40 seconds and 72°C for 1
minute; and a final elongation step at 72°C for 5 minutes.
PCR products were purified using the PSI Ψ Clone PCR 96
Kit (Princeton Separations Inc, Freehold, NJ). Following
PCR amplification, samples were normalized in concen-
tration and sent on dry ice to the Medical Biofilm
Research Institute [111] for pyrosequencing using
genome sequencer FLX system's standard amplicon
sequencing protocols (F. Hoffmann-La Roche Ltd, Basel,
Switzerland).

Full ribosomal amplification, cloning and Sanger 
sequencing (FRACS)
The Eubacterial 16S primers 27F (5'-AGA GTT TGA TCM
TGG CTC AG) and 1525R (5'-AAG GAG GTG WTC CAR
CC) were synthesized by Integrated DNA Technologies
(Coralville, IA). These primers amplify roughly 1500 bp
spanning almost the entire 16S gene. A total of 100 ng of
sample DNA was used for each 50 μl PCR reaction. Hot-
StarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) was
used for PCR using the following conditions: 94°C for 3
minutes followed by 35 cycles of 94°C for 30 seconds,
52°C for 40 seconds, and 72°C for 2 minutes. A final
elongation step at 72°C for 10 minutes was also included.
The amplified fragments were subcloned into the pGEM-
T Easy Vector (Promega, Madison, WI) and transformed
into a competent E. coli K12 strain. Following blue/white
screening using standard methods, 200 clones from each
library were isolated and subcultured. The plasmid DNA
was extracted by using a QIAprep Spin Miniprep Kit (Qia-
gen, Valencia, CA). Bidirectional sequencing using T7 and
SP6 primers was performed by Agencourt Technologies
(Beverly, MA).

Partial Ribosomal Amplification, DGGE, and Sanger 
sequencing (PRADS)
The 16S Eubacterial primers 1070F (5'-ATG GCT GTC
GTC AGC T) and 1492R+GC (5'-GCC GCC TGC AGC
CCG CGC CCC CCG TGC CCC CGC CCC GCC GCC
GGC CCG GGC GCC TTA CCC TTG TTA CGA CTT) were
synthesized by Integrated DNA Technologies (Coralville,
IA). These primers produced an approximately 450 bp
16S ribosomal DNA (rDNA) amplicon with a GC clamp
to be analyzed by denaturing gradient gel electrophoresis
(DGGE). PCR reactions (50 μl of sample DNA) were per-

formed using 2× PCR Master Mix (Promega, Madison,
WI). Each reaction mixture consisted of 1.5 mM MgCl2,
200 μM of each dNTP, 0.5 μM of both the 1070F and
1492R+GC primers, 0.025 U/μl Taq DNA polymerase,
and 100 ng template DNA.

Denaturing gradient gel electrophoresis (DGGE) was per-
formed on the 16S amplicons described above using the
DCode™ DGGE system (Bio-rad). A 40%–70% denatur-
ing gradient was optimal for separation of the approxi-
mately 450 bp 16S amplicons, where 7 M urea and 40%
formamide is defined as 100%. Gels also contained an
8%–12% acrylamide gradient with a 12% native stacking
gel. Different volumes of each sample were loaded for
optimal visualization of bands with varying intensities.
The gel was run at 60 V for 20 hours and was then stained
with SYBR Gold® (Molecular Probes, Invitrogen, Carlsbad,
CA) and visualized with a FluorChem™ 8800 fluorescence
imager (Alpha Innotech Inc. San Leandro, CA). Nineteen
predominant bands that could be visualized by eye were
excised using a sterile, disposable scalpel and placed in 20
μl TE buffer (Figure 1). This included 4 bands from the
venous leg ulcer group (group V), 8 from the diabetic foot
ulcer group (group D), and 6 from the pressure ulcer
group (group P).

The TOPO TA Cloning® kit (Invitrogen Inc. Carlsbad, CA)
was used to clone the DNA from the excised DGGE bands
(pCR® 2.1-TOPO® vector and One Shot Chemically Com-
petent E. coli cells). The maximum amount of DNA (4 μl
diffused DNA in TE buffer) was used in each of the clon-
ing reactions following the manufacture's instructions.
Twelve clones per band were selected and grown over-
night in 250 μl LB broth containing 50 μg/ml kanamycin
in 96 well plates. The same 50 μl PCR reaction was pre-
pared as described above using the M13F and M13R
primer set instead of 1070F and 1492R+GC and 5 μl of
the overnight culture was added to each 50 μl PCR reac-
tion as the template DNA. The initial 96°C denaturing
step was sufficient to rupture the E. coli cells, releasing its
DNA as the starting template. These PCR products were
then sequenced by the University of Washington's High-
Throughput Genomics Unit (Seattle, WA).

Culturing
Samples were not collected in parallel with samples col-
lected for the PRAPS, FRACS, or PRADS; but culture results
were instead collected retrospectively from the subjects'
medical records. All samples were collected under IBR
protocols. This information is provided as a contrast to
the type of data normally collected from wounds. Results
were examined from each subject's medical record. The
culture results were collected usually within a week of the
samples that was collected for the PRAPS, FRACS, and
PRADS analyses. Sharp debridement from the subject's
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wound was placed in thioglycolate broth with indicator
(Hardy Diagnostics, Santa Maria, CA) and incubated at
35°C for up to 24 hours with the lid tightly closed before
being transferred to a CLIA certified microbiology labora-
tory for thorough aerobic and anaerobic culture analyses.
Bacteria were identified using Gram stains, non-selective
and selective/differential media, and biochemical tests.

Bioinformatics
Assembly, including vector scanning, quality analysis, and
consensus calling, of sequencing data was performed
using Seq-Man Pro assembler (DNAstar Madison, WI).
Sequences were assembled using SeqMan Pro Assembler
at 96% similarity, match size of 25, match spacing of 50,
minimum sequence length of 100, 0.0 and 0.7 gap and
gap extension penalties, and a minimum mismatch of 8 at
end bases. Multiple alignments were performed with Meg-
Align (DNAstar Madison, WI). BLAST analyses were per-
formed using WND.BLAST [112] and a custom 16S
ribosomal database derived from RDPII version 9
[113,114]. The database was first parsed with a custom
script to provide genus and species names as hit defini-
tions following BLAST analyses. For FRACS E-values <
10E-100 were considered acceptable for determining
genus, while hits of E = 0.0 and associated full alignments
> 1400 bp were considered acceptable for determining
genus and species. For PRADS and PRAPS all species
determinations are considered putative, E-values of 10–
100 are considered acceptable for determining genus,
while E-values better than 10–140, along with full input
sequence alignments, and genus/species agreement of all
similarly scoring top hits were required to list a putative
species.
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