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Abstract 

Background: The ever improving brightness of accelerator based sources is enabling novel observations and discov-
eries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality.

Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput 
experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the 
streamlined processing pipeline of ptychography data analysis.

Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the micro-
scope operators.
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Background
When new drugs are synthesized [1], dust particles 
are brought back from space [2], or new superconduc-
tors are discovered [3], a variety of sophisticated X-ray 
microscopes, spectrometers, and scattering instruments 
are often summoned to characterize their structure and 
properties. High-resolution and hyperspectral X-ray 
imaging, scattering and tomography instruments at mod-
ern synchrotrons are among the workhorses of mod-
ern discovery to study nano-materials and characterize 
chemical interactions or electronic properties at their 
interfaces.

A new generation of microscopes are being pioneered, 
commissioned, and planned at several US Department 
of Energy (DOE) user facilities [4–6] and elsewhere to 
achieve superior resolution and contrast in three dimen-
sions, encompassing a macroscopic field of view and 
chemical or magnetic sensitivity, by coupling together 

the brightest sources of tunable X-rays, nanometer posi-
tioning, nanofocusing lenses, and faster detectors. Exist-
ing soft X-ray detector technology in use at the Advanced 
Light Source (ALS) for example generates 350 MBytes/s 
per instrument [7]; commercial detectors for hard X-rays 
can record 6 GB/s or raw data per detector  [8, 9], and a 
synchrotron light source can support 40 or more experi-
ments simultaneously 24 hours a day. Accelerator tech-
nologies such as multi-bend achromat [10] are poised to 
increase brightness by two orders of magnitude around 
the globe   [11, 12]. Next generation microscopes may 
exploit multi-color sources, increased detector paral-
lelism, increased frame rate, or stroboscopic structured 
illumination to extract higher-dimensional, higher reso-
lution, higher frame-rate characterization of a specimen. 
There is a need for reducing data into meaningful images 
as rapidly as it is acquired, using low-cost algorithms and 
computational resources.

Modern synchrotron experiments often have quite 
complex processing pipelines, iterating through many 
different steps until reaching the final output. One exam-
ple for such an experiment is ptychography [13–15], 
which enables one to build up very large images by com-
bining the large field of view of a high-precision scanning 
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microscope system with the resolution provided by dif-
fraction measurements.

Ptychography uses a small step size relative to the size 
of the illuminating beam when scanning the sample, con-
tinuously generating large redundant datasets that can 
be reduced into a high-resolution image. Resolution of a 
ptychography image does not depend directly on the size 
or shape of the illumination. X-ray wavelengths can probe 
atomic and subatomic scales, although resolution in scat-
tering experiments is limitated by other factors such as 
radiation damage, exposure, and brightness of the source 
to a few nanometers except in special cases (such as peri-
odic crystals). To reconstruct an image of the object from 
a series of X-ray scattering experiments, one needs to solve 
a difficult phase retrieval problem, because at short wave-
lengths it is only possible to measure the intensity of the 
photons on a detector. The phase retrieval problem is made 
tractable in ptychography by recording multiple diffraction 
patterns from overlapping regions of the object, providing 
redundant datasets to compensate for the lack of the phase 
information. The problem is made even more challenging 
in the presence of noise, experimental uncertainties, optical 
aberrations, and perturbations of the experimental geome-
try which require specialized solvers and software [16–18].

In addition to its reconstruction pipeline, a ptychogra-
phy experiment involves additional I/O operations such 
as calibrating the detector, filtering raw data, and com-
municating parameters (such as X-ray wavelength, scan 
positions, detector distance, and flux or exposure times) 
to the analysis infrastructure.

Large community driven projects have developed 
frameworks optimized for distributed data stream pro-
cessing. Map-reduce-based solutions such as Hadoop 
[19, 20] and Spark [21] provide distributed I/O, a unified 
environment, and hooks for running map and reduce 
operations over a cloud-based network. Other frame-
works such as Flink [22], Samza [23], and Storm [24] are 
more tailored for real-time stream processing of tasks 
executing a directed acyclic graph (DAG) [25] of opera-
tions as fast as possible. Workflow graphs such a Luigi 
[26] and Dask distributed [27, 28] provide an iterative 
component, but are either optimized for batch process-
ing and workers are treated as a singular entity able to 
execute the DAG in its entirety.

Such frameworks target operations as a unit of tasks 
and generalize the notion of resources; however, the eco-
system is harder to decentralize. These paradigms are not 
easily mappable to a production beamline environment, 
where processing algorithms working on data from a 
detector might be running on a field-programmable gate 
array (FPGA), the motion control system on a real-time 
MCU, the acquisition control on a windows operating 
system, and the scientist a macOS laptop. The rest of the 

pipeline tasks might hop to several different architec-
tures including CPUs for latency bound tasks, and GPUs 
for high-throughput image processing and visualization. 
While frameworks such as Flink along with Kafka [29] 
(high-throughput distributed message system) and Zoo-
Keeper [30] (distributed coordination and management) 
can be adopted to fit the described processing environ-
ment, our solution at a lower level accomplishes the same 
task with less computational and human resources.

Nanosurveyor is a modular framework to support 
distributed real-time analysis and visualization of data. 
The framework makes use of a modular infrastructure 
similar to Hummingbird [31] developed to monitor flash 
X-ray imaging experiments at free electron lasers (FELs) 
with high data rates in real time over multiple cores and 
nodes. Similar frameworks and pipelines have been also 
implemented in other research fields such as serial crys-
tallography [32], cryo-electron microscopy [33], or func-
tional magnetic resonance imaging [34].

Within this framework, we developed a streamlined 
processing pipeline for ptychography which unifies all 
components involved and allows scientists to monitor 
and quickly act upon changes along the experimental and 
computational pipeline.

Methods: real‑time streaming framework
Nanosurveyor was developed to provide real-time feed-
back through analysis and visualization for experiments 
performed at synchrotron facilities, and execute a com-
plex set of operations within a production environment. 
Its design is such that it can be effectively adapted to 
different beamline environments. It is built around a cli-
ent–server infrastructure allowing scientists to use facil-
ity resources while located at a beamline or remotely, 
operating on live data streamed from the beamline. Addi-
tionally, one can use the Nanosurveyor user interface for 
off-line processing of experimental data saved on disk. In 
this section, we describe the resources and capabilities 
provided by the modular streaming infrastructure.

Terminology primer
As the streaming pipeline architecture is heavily depend-
ent on a variety of resources which uses terminology 
more common in computational sciences, a brief primer 
is necessary to ensure both completeness and clarity for 
the rest of the paper.

  • User interface: The user interface describes the visual 
layer and provides the interaction between user and 
hardware. PyQt [35] and PyQtGraph [36] serve as 
the core interface and visualization layer as these are 
popular graphics libraries which allow for easy cus-
tomization to serve processing needs.
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  • Communication: To ensure generality of the modu-
lar components within Nanosurveyor, communication 
between modules and throughout the system is impor-
tant. ZeroMQ, a communication interface [37], allows 
the internal architecture to communicate using common 
communication patterns while ensuring data are queued 
for processing and delivered to destination successfully. 
A core component of the communication interface is 
sockets acting as plugs between different modules.

  • Event loop: Actions driven by events are at the core 
of Nanosurveyor. This design allows for immedi-
ate response critical to a streaming pipeline. When 
an event such as reading occurs, the core pipeline 
pushes the information or metadata to the appropri-
ate events waiting in the pipeline. These actions take 
place until no other actions need to be performed.

Modular framework
As described above, Nanosurveyor is designed to be 
adaptable and modular. Therefore, we designed it with a 
client–server infrastructure (Fig. 1) enabling scientists to 

run their experiment while at the beamline or remotely 
from their institution. This strategy also allows the client 
to be very light and flexible while the server can be scaled 
according to the resources needed.

The Nanosurveyor infrastructure equips each module 
with two fundamental capabilities. First, a description 
format language of key-value pairs allows every module 
to describe its input and output. Second, it provides the 
ability to describe the connection between the modules, 
including the front-end.

The capability to connect the communication path 
between modules allows the end-to-end pipeline to 
be constructed and described seamlessly. This is done 
through a proxy communication layer allowing the 
modules to run either closely together or on com-
pletely separate machines. This strategy is transparent 
to the beamline user and accommodates both environ-
ments with centralized resources as well as those where 
resources are spread across a network.

Additionally, as each module in the pipeline can be 
executed in its own environment, Nanosurveyor provides 

Fig. 1 Streaming pipeline: Overview of the real-time streaming framework of Nanosurveyor. The modular server–client infrastructure is divided into 
a back-end (running the data processing unit) and a front-end (running the visualization and control unit). The data flow is depicted as a red arrow, 
while communication channels for controlling experiment and back-end are shown in gray. Once an experiment has started (trigger signal), the 
data collection unit continuously receives new data packets from a detector and sends raw data frames to the data processing unit. Depending on 
the specific needs of the experiment, different modules (from dark calibration to data writing) can be plugged into the pipeline. At all times, there is 
an active connection (asynchronous socket communication) between all components (including the visualization interface) allowing the scientist 
to monitor progress while data are still being acquired and processed
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dynamic parallelism by allowing the user to scale the 
number of resources available to each step: this is done 
by treating each stage as a worker process that can be 
scaled up or down to address bottleneck or performance 
issues.

Software stack
The core components of the Nanosurveyor streaming 
software are written in Python using ZeroMQ, a high-
performance messaging library [37] for network com-
munication, PyQt4 [35] and PyQtGraph [36] for the 
graphical user interface (GUI) and visualization, and 
Numpy [38] together with Scipy [39] for manipulation 
of data arrays. For some components, we used C exten-
sions in order to boost the performance to meet the 
demands of producing a real-time interactive tool run-
ning at the beamline. With all these dependencies pre-
installed, Nanosurveyor can be simply installed in the 
standard Python way: python setup.py install.

Python is a language with a robust and active commu-
nity with libraries that are well tested, supported, and 
maintained. Additionally, the choice of Python allows 
our infrastructure to be flexible to the demands of vary-
ing requirements of different processing pipelines. The 
ptychography pipeline (discussed in detail later in the 
paper) contains GPU optimized code and Python binding 
support easily allows the Nanosurveyor infrastructure 
to provide support for these types of hybrid architec-
tures. The framework currently runs on Mac, Linux, and 
Linux-based cluster environments, and can be extended 
to Windows platforms depending on support for module 
dependencies. The core components that Nanosurveyor 
depends on are available on all major platforms.

Communication
A critical component in generating usable real-time 
pipelines relies on the communication infrastructure. 
This enables a clear and concise separation of the inputs 
and outputs at the module level. Furthermore, it defines 
how modules communicate from beginning to end, 
and ensures that tasks are load-balanced to achieve the 
appropriate performance characteristics of the pipeline.

The communication in Nanosurveyor uses Javascript 
Object Notation (JSON) [40], an industry standard 
way of conveying metadata between modules as well as 
between the front-end and back-end. The metadata pro-
vides a human readable component.
ZeroMQ provides the communication backbone of the 

Nanosurveyor infrastructure. Using the publisher–sub-
scriber model for the core components enables Nano-
surveyor to provide a load-balancing scheme, which 
uses a backlog queue to avoid losing data when sufficient 
resources are not be available. The execution pipeline 

creates a command port and a data port. The command 
port allows metadata to reach and update parameters 
as well as return responses to keep status requests alive 
and provide feedback on the current state of the running 
module. The data port moves data through the pipeline, 
running the actionable item within each module and 
moving the result to the output queue to be processed by 
the next stage of the pipeline.

Two types of configurations are required: front-end and 
back-end. The front-end sets up the variables necessary 
for each module to function while the back-end configu-
ration is responsible for allocating resources, balancing 
the load of workers, scheduling activities, and communi-
cating between modules while providing feedback to the 
front-end.

These two components provide the Nanosurveyor 
infrastructure with the information it needs to establish 
the relevant connections, receive and send parameters 
to ensure proper configuration, and introspect the state 
of parameters and data to provide visual feedback to the 
user when running through the processing pipeline.

Client–server architecture
The Nanosurveyor framework consists of an assortment 
of core components that ensure that the front-end pro-
vides easy to use and adaptable interface while the back-
end is efficient, resilient, and responsive. The individual 
processing modules are all based on the same structure: 
an event loop runs routing data from the control and data 
sockets, waiting for tasks, asking the handler for config-
uration parameters (JSON string), and processing data 
(receiving/sending through the data socket).

Back‑end
The main back-end handler is running a big ZeroMQ 
event loop. The main task of the handler is to register the 
modules that run on the back-end and ensure data and 
control paths are appropriately connected up and run-
ning. It also does the following:

  • Launches all the processing modules as separate pro-
cesses (single-core or MPI) and keeps track of the 
jobs started. This can be done with a batch process-
ing system such as SLURM (or any other queuing 
system) or by launching separate python processes;

  • Creates the sockets for streaming pipeline, which 
is a list of control and data sockets communicating 
between the handler and all the processing modules 
as well as the data collector and the interface;

  • Runs the event loop, takes commands, deals out data 
packets, and handles everything in the back-end 
including user interruption and other control and 
configuration commands.
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Data tracking
Tracking and ensuring the correctness of data is an 
important part of the execution pipeline. The Nanosur-
veyor framework provides a module called nscxwrite 
which allows customized writing of files at different 
stages of the data acquisition pipeline (raw, filtered, and 
reconstructed). This capability provides several benefits, 
such as assurances to users that data move correctly from 
module to module and are not corrupted along the way, 
as well as an ability to debug an algorithm that is exe-
cuted within a complex sequence of events.

Furthermore, the ability to save intermediate data can 
be enabled or disabled (for performance reasons or to 
reduce storage) as well as customized. The framework 
also comes with a standalone script called nsraw2cxi, 
that translates raw detector data to processed CXI files, 
and a script to stream simulated FCCD data through the 
pipeline for testing. The data format of the output files 
follows the CXI file format [41].

Logging
Nanosurveyor also provides a way to debug a complex 
pipeline through logging of both the output and error 
channels which includes communication between mod-
ules as well as output and error that arise from within 
modules.

The output of all modules is piped to STDOUT and 
STDERR within the file system running each process 
($HOME/.nanosurveyor/streaming/log/).

This is a useful tool that invokes tail -f on the piped 
out/err files, making it possible to monitor what is going 
within the individual processing modules.

Graphical user interface
For the front-end, the framework provides a versatile 
GUI based on PyQt4 and PyQtgraph for monitor-
ing, visualizing, and controlling the data processed live 
or post-processed through the pipeline. PyQt4 (built 
on Qt) provides the ability to construct and modify the 
user interface to easily add and remove functionality 
while PyQtgraph provides access to advanced visuali-
zation functionality for data that can be represented as 
images or volumes. Several common operations provided 
through the framework include the following:

  • View the content of already processed files: inspect 
reconstructions from collected data and provide 
other useful utilities (histograms, error line plots, 
correlation plots, and others);

  • Control and monitor the streaming: configure 
streaming, inspect live reconstruction, monitor per-
formance (upload/download rates, status update of 
the streaming components);

  • Simulate an experiment starting from an SEM image 
or similar;

  • Process and inspect, through a provided interface, 
data from custom modules processed on the back-
end (e.g., data from a ptychography or Tomography 
reconstruction).

Generally speaking, the design facilitates adding new 
modules to the GUI, e.g., a viewer for tomograms or sim-
ilar. This flexibility allows the front-end to be customized 
for different beamline processing environments.

Finally, the architecture aims to be modular in the 
front- and back-end of the client–server architecture, 
meaning that there is a template structure for the basic 
features of a processing module. Additionally, in princi-
ple, any given processing module can be hooked into this 
network (e.g., tomography, spectral analysis, or any other 
image analysis).

Results: streaming ptychography
We adapted the outlined streaming framework described 
above for the specific needs of ptychography and are cur-
rently implementing this ptychography streaming pipe-
line at the beamline for scanning transmission X-ray 
microscopy (STXM) at the ALS. The main motivation 
for this project is to make high-resolution ptychographic 
reconstructions available to the scientist in real-time. To 
achieve this goal, we streamlined all relevant process-
ing components of ptychography into a single unit. A 
detailed outline of our pipeline is sketched in Fig. 2.

As described in the previous sections, we follow the 
idea of a modular streaming network using a client–
server architecture, with a back-end for ptychographic 
processing pipeline and a front-end for configuration, 
control and visualization purposes.

On the back-end side, the streaming infrastructure is 
composed of a communication handler and four differ-
ent kinds of workers addressing dark frames, diffrac-
tion frames, reduced and downsampled images and the 
ptychographic reconstruction using a software package 
for scalable heterogeneous adaptive real-time ptychog-
raphy (SHARP [18]). The handler bridges the back-end 
with the front-end and controls the communication and 
data flow among the different back-end workers. The 
dark worker accumulates dark frames and provides sta-
tistical maps (mean and variance) of the noise structure 
on the detector. The frame workers transform raw into 
clean (pre-processed) diffraction frames. This involves a 
subtraction of the average dark, filtering, photon count-
ing, and downsampling. Depending on the computing 
capacities of the back-end, it is possible to run as many 
frame workers simultaneously as needed. The image 
worker reduces a collection of clean diffraction frames, 
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producing low-resolution image reconstructions and 
an initial estimate of the illumination function which, 
together with the clean diffraction frames, is then feeded 
as an input for the high-resolution ptychographic recon-
struction worker (SHARP).

The front-end consists of a worker that reads raw data 
frames from a fast charge-coupled device (FCCD) [42], 
coordinating with a separately developed interface for 
controlling the experiment (such as motors and shutters) 
and a graphical user interface (GUI) which is used both 
for visualizing and controlling the ongoing reconstruc-
tion. An example view of the GUI for streaming ptychog-
raphy is shown in Fig. 3.

Following the data flow along the streaming pipeline, the 
starting trigger comes from the control interface which 

initiates a new ptychographic scan providing information 
about the scan (step size, scan pattern, number of scan 
points) and other relevant information (e.g., wavelength) 
to the back-end handler. Simultaneously, the control sends 
triggers to the scanning motors and the FCCD. A typical 
ptychographic scan combines the accumulation of a given 
number of dark frames together with scanning the sample 
in a region of interest. The frame-grabber, already wait-
ing for raw data packets to arrive, assembles the data and 
sends it frame-by-frame to the back-end handler. When 
dealing with an acquisition control system that runs inde-
pendently, the handler can distinguish between dark and 
data frames using counters. Dark and data frames are dis-
tributed to the corresponding workers. Having clean dif-
fraction frames and an initial guess for the illumination 

Fig. 2 Ptychographic streaming pipeline: streaming pipeline implemented at the ALS for ptychographic imaging. The software structure follows 
the same logic as sketched in Fig. 1. Once a new scan has been triggered by the experimental control, a frame-grabber continuously receives raw 
data packets from the camera, assembles them to a frame and sends raw frames to the back-end. Incoming frames are processed by different (and 
independent) workers of the back-end and reduced data are sent back to the front-end and visualized in a graphical user interface (GUI). The pipe-
line includes a dark worker for dark correction, multiple frame workers for pre-processing and data reduction, an image worker for low-resolution 
image reconstruction and a SHARP worker for high-resolution ptychographic image reconstruction. A handler is coordinating the data and com-
munication workflow in which different types of control and data plugs (sockets) are used. While most of the components communicate via the 
transmission control protocol (TCP), the raw data packets from the camera are sent via the user datagram protocol (UDP)
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ready, the SHARP worker is able to start the iterative 
reconstruction process. SHARP initializes and allocates 
space to hold all frames in a scan, computes a decompo-
sition scheme, initializes the image and starts the recon-
struction process. Unmeasured frames are either set to a 
bright-field frame (measured by removing the sample) or 
their weight is set to 0 until real data are received.

Depending on the configuration, data at different states 
within the streaming flow can be displayed in the GUI 
and/or saved to a CXI file via the nscxiwrite worker 
module.

All components of the streaming interface run inde-
pendent event loops and use asynchronous (non-block-
ing) socket communication. To maximize performance, 
the front-end operates very close to the actual experi-
ment, while the back-end runs remotely on a powerful 
GPU/CPU cluster.

Pre‑processing of FCCD data
We developed the following processing scheme for 
denoising and cleaning the raw data from the FCCD and 
preparing frames for the ptychographic reconstruction,

1. Define center (acquire some diffraction frames and 
compute the center of mass if needed). This is needed 
for cropping, and to deal with beamstop transmis-
sion;

2. Average dark frames: we first acquire a sequence of 
frames when no light is present, and compute the 
average and standard deviation of each pixel and 
readout block. We set a binary threshold to define 
bad (noisy) pixels or bad (noisy) ADC channels, 
when the standard deviation is above a threshold or if 
the standard deviation is equal to 0;

3. Remove offset using the overscan linear or quadratic 
offset: stretch out the readout sequence in time and 
fit a second order polynomial over the overscan;

4. Identify the background by thresholding;
5. Perform a Fourier transform of the readout sequence 

of the background for each channel, remove high 
frequency spikes by thresholding, and subtract from 
data;

6. Threshold signal below 1 photon;
7. Divide by beamstop transmission;
8. Crop image around center;

Fig. 3 Graphical user interface (GUI): for the ptychographic streaming pipeline implemented at the ALS. The interface provides a real-time view of 
the ptychographic reconstruction (high resolution), b real-time view of the STXM analysis (low resolution), c current guess of the illumination func-
tion, d current processed data frame, e logging and error messages and f error metrics of the iterative reconstruction process, and other control and 
monitoring elements around
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9. Downsample: take a fast Fourier transform (FFT), 
crop or multiply by a kernel (e.g., Gaussian) and take 
inverse fast Fourier transform (IFFT).

Simulation
For testing the functionality and performance of the 
streaming ptychography pipeline as well as exploring 
different configurations, we developed a protocol that 
simulates an entire ptychography scan. Using a simu-
lated illumination from a Fresnel Zone Plate (FZP) 
and basic scan parameters (number of scan points, the 
scanning step size, the scanning pattern), diffraction 
patterns from a well-known test sample are calculated 
in the same raw data format as those generated by the 
FCCD. As a last step, Poisson noise and a real back-
ground are added to the data. These raw data packets 
together with the simulated metadata are introduced to 
the end-to-end streaming pipeline and produce outputs 
as shown in Fig. 3.

One major benefit of this feature is the ability to scale 
and test the pipeline at different acquisition rates and 
therefore be able to provide performance metrics on the 
behavior of a sequence of algorithms enabling developers 
to further improve their execution pipeline.

In a simple performance test, we simulated a 40 × 40 
scan producing 1600 raw data frames which were sent by 
a virtual FCCD at a rate of 10 Hz. At the end of the pipe-
line, we observed a complete reconstructed image after 
around 5 min. This translates into a streamlining pipe-
line rate of about 2 Hz, with most of the time spent on 
filtering and cleaning the individual frames. A significant 
portion of the pre-processing time is unique to the FCCD 
pipeline. While this rate is still far from ideal, it can be 
easily be sped up and scaled by using parallel execution, 
load-balancing strategies, and eventually through high-
throughput GPU optimizations. With further improve-
ments on the performance on the individual components 
as well as optimization of the network communication, 
we expect a substantial increase of the processing rate.

Experimental data
Experimental data produced by the FCCD can involve 
missing frames, corrupted frames, and timing issues 
between different hardware and software components. 
In addition, the correct choice parameter values for the 
ptychographic reconstruction might be inherent to the 
data itself and can thus carry from experiment to experi-
ment. To make Nanosurveyor more robust for such cases, 
it is desirable to expose configuration parameters as a 
runtime or heuristic feature rather than determined them 
at execution time, and take a more data-based approach 
where options are set based on feature detection.

Discussion
Performance considerations and additional limitations 
must be understood and considered in integrating such 
an execution pipeline in a production environment. 
While the following list is not comprehensive, in building 
this environment, we have considered the following:

  • Limits (performance, algorithm, memory, disk) to 
software and hardware need to be considered. The 
Nanosurveyor infrastructure provides logging sup-
port while the ZeroMQ publisher–subscriber model 
allows a stuck or crashed process to be replaced with 
another. The current solution Nanosurveyor can be 
made more robust and this is work that is considered 
as active and ongoing;

  • Hardware failures are inevitable in a production 
environment involving machinery. Recovery from 
these types of issues requires customization for each 
beamline environment. Within Nanosurveyor, there 
is a heartbeat for each module and a base mechanism 
within the framework to inform the user that a fail-
ure (or multiple failures) might have occurred;

  • Interrupting experiments should be a core use case 
of any real-time feedback loop when trying to get 
an understanding of the data as quickly as possi-
ble. Once information about the material is flow-
ing through the computational pipeline, it is valu-
able to be able to determine if an experiment is, in 
fact, failing or uninteresting. This can occur in many 
ways such as wrong setup, wrong material, or wrong 
region of scanning. For these scenarios, it is prudent 
for a working pipeline to be able to abort, clear out 
the pipeline, and reset itself;

  • Expensive operations and algorithms executed in a 
beamline operating environment may have varying 
degrees of performance characteristics. These char-
acteristics can often slow down the overall pipeline 
if any one of the operations is inefficient. Nanosur-
veyor attempts to get around this issue in two ways: 
first, it allows for a load-balancing approach where 
more workers can be added to the expensive stages 
of the pipeline. Second, using the ZeroMQ queue, 
the beamline can still operate with the slowdown and 
backlog while ensuring that the pipeline can continue 
to function, at least until hardware memory runs out. 
This issue can also be mitigated by evaluating the 
performance of the module and if possible optimiz-
ing the algorithm as well;

  • As data rates might increase both in speed and size, 
we have several optimization strategies, including 
parallelizing computation load across a bigger back-
end, speeding up expensive algorithms, and extract-
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ing or identifying important information earlier to 
reduce size and complexity.

  • For current 2D and 3D visualization requirements, it 
is sufficient to use PyQtGraph. However, if the data 
volume gets large enough such that it would be dif-
ficult to view raw output, visualization frameworks 
supporting distributed rendering strategies could be 
used. More advanced approaches such as adaptive 
downsampling, compression, or other visualization 
representations could be swapped into the pipeline if 
needed.

Conclusions and future work
This work introduced Nanosurveyor—a framework for 
real-time processing at synchrotron facilities. The infra-
structure provides a modular framework, support for 
load-balancing operations, the ability to run in a distrib-
uted client–server mode, and gives feedback on each 
stage of a complex pipeline.

The framework was adapted to support streamlined 
pipelines for ptychography. In this case, expensive stages 
such as pre-processing are load-balanced with multi-
ple workers, and image reconstruction are parallelized 
over MPI to compute efficiently in a distributed manner. 
Results from every stage of the pipeline are then trans-
mitted to the front-end, providing users at the beamline 
comprehensive knowledge of the experiment and of how 
the data are transformed from start of acquisition to end 
output. Although the Nanosurveyor framework provides 
several core capabilities that are necessary for operating at 
typical beamlines, there are several key advances that we 
are currently working on to make the computational pipe-
line complete. A couple of highlights include the following:

Iterative execution, instrument control Adding support 
for controlling the beamline itself will complete the cur-
rent pipeline and provide an iterative execution loop 
enabling future pipelines to adaptively acquire and ana-
lyze data from the operating beamline, and automati-
cally request more data when necessary. For example, if 
the reconstruction detects bad frames, or that the sam-
ple has drifted, then more frames can be automatically 
requested on the fly without interrupting the overall 
experiment. If the reconstruction determines that part 
of the image being acquired is empty or uninteresting it 
could request fewer frames and focus on the relevant part 
of the sample.

Optimizing pipeline execution Currently, communication 
occurs over ZeroMQ providing many benefits, including 
dealing with backlog, automated load-balancing, and the 
ability to interleave work running different stages of the 
execution pipeline. We are also investigating ways to fuse 

modules to optimize execution times. Making communi-
cation agnostic by using handles enables efficient use of 
memory optimization strategies, socket communication, 
or saving on data movement costs, e.g., transferring data 
between GPU-based modules by moving a pointer rather 
than copying data.

In conclusion, we have presented a framework that is 
built to run at modern beamlines, can handle the geo-
graphic considerations between users and experiments 
running at synchrotron facilities, and supports real-time 
feedback. These features, along with the modular design, 
provide a foundation that can be extended and readily 
deployed on many of the beamlines in use today.
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