
Daurer et al. Adv Struct Chem Imag (2017) 3:7
DOI 10.1186/s40679-017-0039-0

RESEARCH

Nanosurveyor: a framework for real-time
data processing
Benedikt J. Daurer1*, Hari Krishnan2*, Talita Perciano2, Filipe R. N. C. Maia1,3, David A. Shapiro4,
James A. Sethian2,5 and Stefano Marchesini2*

Abstract

Background: The ever improving brightness of accelerator based sources is enabling novel observations and discov-
eries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality.

Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput
experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the
streamlined processing pipeline of ptychography data analysis.

Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the micro-
scope operators.

Keywords: Streaming, Ptychography

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
When new drugs are synthesized [1], dust particles
are brought back from space [2], or new superconduc-
tors are discovered [3], a variety of sophisticated X-ray
microscopes, spectrometers, and scattering instruments
are often summoned to characterize their structure and
properties. High-resolution and hyperspectral X-ray
imaging, scattering and tomography instruments at mod-
ern synchrotrons are among the workhorses of mod-
ern discovery to study nano-materials and characterize
chemical interactions or electronic properties at their
interfaces.

A new generation of microscopes are being pioneered,
commissioned, and planned at several US Department
of Energy (DOE) user facilities [4–6] and elsewhere to
achieve superior resolution and contrast in three dimen-
sions, encompassing a macroscopic field of view and
chemical or magnetic sensitivity, by coupling together

the brightest sources of tunable X-rays, nanometer posi-
tioning, nanofocusing lenses, and faster detectors. Exist-
ing soft X-ray detector technology in use at the Advanced
Light Source (ALS) for example generates 350 MBytes/s
per instrument [7]; commercial detectors for hard X-rays
can record 6 GB/s or raw data per detector [8, 9], and a
synchrotron light source can support 40 or more experi-
ments simultaneously 24 hours a day. Accelerator tech-
nologies such as multi-bend achromat [10] are poised to
increase brightness by two orders of magnitude around
the globe [11, 12]. Next generation microscopes may
exploit multi-color sources, increased detector paral-
lelism, increased frame rate, or stroboscopic structured
illumination to extract higher-dimensional, higher reso-
lution, higher frame-rate characterization of a specimen.
There is a need for reducing data into meaningful images
as rapidly as it is acquired, using low-cost algorithms and
computational resources.

Modern synchrotron experiments often have quite
complex processing pipelines, iterating through many
different steps until reaching the final output. One exam-
ple for such an experiment is ptychography [13–15],
which enables one to build up very large images by com-
bining the large field of view of a high-precision scanning

Open Access

*Correspondence: benedikt@xray.bmc.uu.se; hkrishnan@lbl.gov;
smarchesini@lbl.gov
1 Laboratory of Molecular Biophysics, Department of Cell and Molecular
Biology, Uppsala University, Uppsala, Sweden
2 Computational Research Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Full list of author information is available at the end of the article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81087756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-6798-2913
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-017-0039-0&domain=pdf

Page 2 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

microscope system with the resolution provided by dif-
fraction measurements.

Ptychography uses a small step size relative to the size
of the illuminating beam when scanning the sample, con-
tinuously generating large redundant datasets that can
be reduced into a high-resolution image. Resolution of a
ptychography image does not depend directly on the size
or shape of the illumination. X-ray wavelengths can probe
atomic and subatomic scales, although resolution in scat-
tering experiments is limitated by other factors such as
radiation damage, exposure, and brightness of the source
to a few nanometers except in special cases (such as peri-
odic crystals). To reconstruct an image of the object from
a series of X-ray scattering experiments, one needs to solve
a difficult phase retrieval problem, because at short wave-
lengths it is only possible to measure the intensity of the
photons on a detector. The phase retrieval problem is made
tractable in ptychography by recording multiple diffraction
patterns from overlapping regions of the object, providing
redundant datasets to compensate for the lack of the phase
information. The problem is made even more challenging
in the presence of noise, experimental uncertainties, optical
aberrations, and perturbations of the experimental geome-
try which require specialized solvers and software [16–18].

In addition to its reconstruction pipeline, a ptychogra-
phy experiment involves additional I/O operations such
as calibrating the detector, filtering raw data, and com-
municating parameters (such as X-ray wavelength, scan
positions, detector distance, and flux or exposure times)
to the analysis infrastructure.

Large community driven projects have developed
frameworks optimized for distributed data stream pro-
cessing. Map-reduce-based solutions such as Hadoop
[19, 20] and Spark [21] provide distributed I/O, a unified
environment, and hooks for running map and reduce
operations over a cloud-based network. Other frame-
works such as Flink [22], Samza [23], and Storm [24] are
more tailored for real-time stream processing of tasks
executing a directed acyclic graph (DAG) [25] of opera-
tions as fast as possible. Workflow graphs such a Luigi
[26] and Dask distributed [27, 28] provide an iterative
component, but are either optimized for batch process-
ing and workers are treated as a singular entity able to
execute the DAG in its entirety.

Such frameworks target operations as a unit of tasks
and generalize the notion of resources; however, the eco-
system is harder to decentralize. These paradigms are not
easily mappable to a production beamline environment,
where processing algorithms working on data from a
detector might be running on a field-programmable gate
array (FPGA), the motion control system on a real-time
MCU, the acquisition control on a windows operating
system, and the scientist a macOS laptop. The rest of the

pipeline tasks might hop to several different architec-
tures including CPUs for latency bound tasks, and GPUs
for high-throughput image processing and visualization.
While frameworks such as Flink along with Kafka [29]
(high-throughput distributed message system) and Zoo-
Keeper [30] (distributed coordination and management)
can be adopted to fit the described processing environ-
ment, our solution at a lower level accomplishes the same
task with less computational and human resources.

Nanosurveyor is a modular framework to support
distributed real-time analysis and visualization of data.
The framework makes use of a modular infrastructure
similar to Hummingbird [31] developed to monitor flash
X-ray imaging experiments at free electron lasers (FELs)
with high data rates in real time over multiple cores and
nodes. Similar frameworks and pipelines have been also
implemented in other research fields such as serial crys-
tallography [32], cryo-electron microscopy [33], or func-
tional magnetic resonance imaging [34].

Within this framework, we developed a streamlined
processing pipeline for ptychography which unifies all
components involved and allows scientists to monitor
and quickly act upon changes along the experimental and
computational pipeline.

Methods: real‑time streaming framework
Nanosurveyor was developed to provide real-time feed-
back through analysis and visualization for experiments
performed at synchrotron facilities, and execute a com-
plex set of operations within a production environment.
Its design is such that it can be effectively adapted to
different beamline environments. It is built around a cli-
ent–server infrastructure allowing scientists to use facil-
ity resources while located at a beamline or remotely,
operating on live data streamed from the beamline. Addi-
tionally, one can use the Nanosurveyor user interface for
off-line processing of experimental data saved on disk. In
this section, we describe the resources and capabilities
provided by the modular streaming infrastructure.

Terminology primer
As the streaming pipeline architecture is heavily depend-
ent on a variety of resources which uses terminology
more common in computational sciences, a brief primer
is necessary to ensure both completeness and clarity for
the rest of the paper.

 • User interface: The user interface describes the visual
layer and provides the interaction between user and
hardware. PyQt [35] and PyQtGraph [36] serve as
the core interface and visualization layer as these are
popular graphics libraries which allow for easy cus-
tomization to serve processing needs.

Page 3 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

 • Communication: To ensure generality of the modu-
lar components within Nanosurveyor, communication
between modules and throughout the system is impor-
tant. ZeroMQ, a communication interface [37], allows
the internal architecture to communicate using common
communication patterns while ensuring data are queued
for processing and delivered to destination successfully.
A core component of the communication interface is
sockets acting as plugs between different modules.

 • Event loop: Actions driven by events are at the core
of Nanosurveyor. This design allows for immedi-
ate response critical to a streaming pipeline. When
an event such as reading occurs, the core pipeline
pushes the information or metadata to the appropri-
ate events waiting in the pipeline. These actions take
place until no other actions need to be performed.

Modular framework
As described above, Nanosurveyor is designed to be
adaptable and modular. Therefore, we designed it with a
client–server infrastructure (Fig. 1) enabling scientists to

run their experiment while at the beamline or remotely
from their institution. This strategy also allows the client
to be very light and flexible while the server can be scaled
according to the resources needed.

The Nanosurveyor infrastructure equips each module
with two fundamental capabilities. First, a description
format language of key-value pairs allows every module
to describe its input and output. Second, it provides the
ability to describe the connection between the modules,
including the front-end.

The capability to connect the communication path
between modules allows the end-to-end pipeline to
be constructed and described seamlessly. This is done
through a proxy communication layer allowing the
modules to run either closely together or on com-
pletely separate machines. This strategy is transparent
to the beamline user and accommodates both environ-
ments with centralized resources as well as those where
resources are spread across a network.

Additionally, as each module in the pipeline can be
executed in its own environment, Nanosurveyor provides

Fig. 1 Streaming pipeline: Overview of the real-time streaming framework of Nanosurveyor. The modular server–client infrastructure is divided into
a back-end (running the data processing unit) and a front-end (running the visualization and control unit). The data flow is depicted as a red arrow,
while communication channels for controlling experiment and back-end are shown in gray. Once an experiment has started (trigger signal), the
data collection unit continuously receives new data packets from a detector and sends raw data frames to the data processing unit. Depending on
the specific needs of the experiment, different modules (from dark calibration to data writing) can be plugged into the pipeline. At all times, there is
an active connection (asynchronous socket communication) between all components (including the visualization interface) allowing the scientist
to monitor progress while data are still being acquired and processed

Page 4 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

dynamic parallelism by allowing the user to scale the
number of resources available to each step: this is done
by treating each stage as a worker process that can be
scaled up or down to address bottleneck or performance
issues.

Software stack
The core components of the Nanosurveyor streaming
software are written in Python using ZeroMQ, a high-
performance messaging library [37] for network com-
munication, PyQt4 [35] and PyQtGraph [36] for the
graphical user interface (GUI) and visualization, and
Numpy [38] together with Scipy [39] for manipulation
of data arrays. For some components, we used C exten-
sions in order to boost the performance to meet the
demands of producing a real-time interactive tool run-
ning at the beamline. With all these dependencies pre-
installed, Nanosurveyor can be simply installed in the
standard Python way: python setup.py install.

Python is a language with a robust and active commu-
nity with libraries that are well tested, supported, and
maintained. Additionally, the choice of Python allows
our infrastructure to be flexible to the demands of vary-
ing requirements of different processing pipelines. The
ptychography pipeline (discussed in detail later in the
paper) contains GPU optimized code and Python binding
support easily allows the Nanosurveyor infrastructure
to provide support for these types of hybrid architec-
tures. The framework currently runs on Mac, Linux, and
Linux-based cluster environments, and can be extended
to Windows platforms depending on support for module
dependencies. The core components that Nanosurveyor
depends on are available on all major platforms.

Communication
A critical component in generating usable real-time
pipelines relies on the communication infrastructure.
This enables a clear and concise separation of the inputs
and outputs at the module level. Furthermore, it defines
how modules communicate from beginning to end,
and ensures that tasks are load-balanced to achieve the
appropriate performance characteristics of the pipeline.

The communication in Nanosurveyor uses Javascript
Object Notation (JSON) [40], an industry standard
way of conveying metadata between modules as well as
between the front-end and back-end. The metadata pro-
vides a human readable component.
ZeroMQ provides the communication backbone of the

Nanosurveyor infrastructure. Using the publisher–sub-
scriber model for the core components enables Nano-
surveyor to provide a load-balancing scheme, which
uses a backlog queue to avoid losing data when sufficient
resources are not be available. The execution pipeline

creates a command port and a data port. The command
port allows metadata to reach and update parameters
as well as return responses to keep status requests alive
and provide feedback on the current state of the running
module. The data port moves data through the pipeline,
running the actionable item within each module and
moving the result to the output queue to be processed by
the next stage of the pipeline.

Two types of configurations are required: front-end and
back-end. The front-end sets up the variables necessary
for each module to function while the back-end configu-
ration is responsible for allocating resources, balancing
the load of workers, scheduling activities, and communi-
cating between modules while providing feedback to the
front-end.

These two components provide the Nanosurveyor
infrastructure with the information it needs to establish
the relevant connections, receive and send parameters
to ensure proper configuration, and introspect the state
of parameters and data to provide visual feedback to the
user when running through the processing pipeline.

Client–server architecture
The Nanosurveyor framework consists of an assortment
of core components that ensure that the front-end pro-
vides easy to use and adaptable interface while the back-
end is efficient, resilient, and responsive. The individual
processing modules are all based on the same structure:
an event loop runs routing data from the control and data
sockets, waiting for tasks, asking the handler for config-
uration parameters (JSON string), and processing data
(receiving/sending through the data socket).

Back‑end
The main back-end handler is running a big ZeroMQ
event loop. The main task of the handler is to register the
modules that run on the back-end and ensure data and
control paths are appropriately connected up and run-
ning. It also does the following:

 • Launches all the processing modules as separate pro-
cesses (single-core or MPI) and keeps track of the
jobs started. This can be done with a batch process-
ing system such as SLURM (or any other queuing
system) or by launching separate python processes;

 • Creates the sockets for streaming pipeline, which
is a list of control and data sockets communicating
between the handler and all the processing modules
as well as the data collector and the interface;

 • Runs the event loop, takes commands, deals out data
packets, and handles everything in the back-end
including user interruption and other control and
configuration commands.

Page 5 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

Data tracking
Tracking and ensuring the correctness of data is an
important part of the execution pipeline. The Nanosur-
veyor framework provides a module called nscxwrite
which allows customized writing of files at different
stages of the data acquisition pipeline (raw, filtered, and
reconstructed). This capability provides several benefits,
such as assurances to users that data move correctly from
module to module and are not corrupted along the way,
as well as an ability to debug an algorithm that is exe-
cuted within a complex sequence of events.

Furthermore, the ability to save intermediate data can
be enabled or disabled (for performance reasons or to
reduce storage) as well as customized. The framework
also comes with a standalone script called nsraw2cxi,
that translates raw detector data to processed CXI files,
and a script to stream simulated FCCD data through the
pipeline for testing. The data format of the output files
follows the CXI file format [41].

Logging
Nanosurveyor also provides a way to debug a complex
pipeline through logging of both the output and error
channels which includes communication between mod-
ules as well as output and error that arise from within
modules.

The output of all modules is piped to STDOUT and
STDERR within the file system running each process
($HOME/.nanosurveyor/streaming/log/).

This is a useful tool that invokes tail -f on the piped
out/err files, making it possible to monitor what is going
within the individual processing modules.

Graphical user interface
For the front-end, the framework provides a versatile
GUI based on PyQt4 and PyQtgraph for monitor-
ing, visualizing, and controlling the data processed live
or post-processed through the pipeline. PyQt4 (built
on Qt) provides the ability to construct and modify the
user interface to easily add and remove functionality
while PyQtgraph provides access to advanced visuali-
zation functionality for data that can be represented as
images or volumes. Several common operations provided
through the framework include the following:

 • View the content of already processed files: inspect
reconstructions from collected data and provide
other useful utilities (histograms, error line plots,
correlation plots, and others);

 • Control and monitor the streaming: configure
streaming, inspect live reconstruction, monitor per-
formance (upload/download rates, status update of
the streaming components);

 • Simulate an experiment starting from an SEM image
or similar;

 • Process and inspect, through a provided interface,
data from custom modules processed on the back-
end (e.g., data from a ptychography or Tomography
reconstruction).

Generally speaking, the design facilitates adding new
modules to the GUI, e.g., a viewer for tomograms or sim-
ilar. This flexibility allows the front-end to be customized
for different beamline processing environments.

Finally, the architecture aims to be modular in the
front- and back-end of the client–server architecture,
meaning that there is a template structure for the basic
features of a processing module. Additionally, in princi-
ple, any given processing module can be hooked into this
network (e.g., tomography, spectral analysis, or any other
image analysis).

Results: streaming ptychography
We adapted the outlined streaming framework described
above for the specific needs of ptychography and are cur-
rently implementing this ptychography streaming pipe-
line at the beamline for scanning transmission X-ray
microscopy (STXM) at the ALS. The main motivation
for this project is to make high-resolution ptychographic
reconstructions available to the scientist in real-time. To
achieve this goal, we streamlined all relevant process-
ing components of ptychography into a single unit. A
detailed outline of our pipeline is sketched in Fig. 2.

As described in the previous sections, we follow the
idea of a modular streaming network using a client–
server architecture, with a back-end for ptychographic
processing pipeline and a front-end for configuration,
control and visualization purposes.

On the back-end side, the streaming infrastructure is
composed of a communication handler and four differ-
ent kinds of workers addressing dark frames, diffrac-
tion frames, reduced and downsampled images and the
ptychographic reconstruction using a software package
for scalable heterogeneous adaptive real-time ptychog-
raphy (SHARP [18]). The handler bridges the back-end
with the front-end and controls the communication and
data flow among the different back-end workers. The
dark worker accumulates dark frames and provides sta-
tistical maps (mean and variance) of the noise structure
on the detector. The frame workers transform raw into
clean (pre-processed) diffraction frames. This involves a
subtraction of the average dark, filtering, photon count-
ing, and downsampling. Depending on the computing
capacities of the back-end, it is possible to run as many
frame workers simultaneously as needed. The image
worker reduces a collection of clean diffraction frames,

Page 6 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

producing low-resolution image reconstructions and
an initial estimate of the illumination function which,
together with the clean diffraction frames, is then feeded
as an input for the high-resolution ptychographic recon-
struction worker (SHARP).

The front-end consists of a worker that reads raw data
frames from a fast charge-coupled device (FCCD) [42],
coordinating with a separately developed interface for
controlling the experiment (such as motors and shutters)
and a graphical user interface (GUI) which is used both
for visualizing and controlling the ongoing reconstruc-
tion. An example view of the GUI for streaming ptychog-
raphy is shown in Fig. 3.

Following the data flow along the streaming pipeline, the
starting trigger comes from the control interface which

initiates a new ptychographic scan providing information
about the scan (step size, scan pattern, number of scan
points) and other relevant information (e.g., wavelength)
to the back-end handler. Simultaneously, the control sends
triggers to the scanning motors and the FCCD. A typical
ptychographic scan combines the accumulation of a given
number of dark frames together with scanning the sample
in a region of interest. The frame-grabber, already wait-
ing for raw data packets to arrive, assembles the data and
sends it frame-by-frame to the back-end handler. When
dealing with an acquisition control system that runs inde-
pendently, the handler can distinguish between dark and
data frames using counters. Dark and data frames are dis-
tributed to the corresponding workers. Having clean dif-
fraction frames and an initial guess for the illumination

Fig. 2 Ptychographic streaming pipeline: streaming pipeline implemented at the ALS for ptychographic imaging. The software structure follows
the same logic as sketched in Fig. 1. Once a new scan has been triggered by the experimental control, a frame-grabber continuously receives raw
data packets from the camera, assembles them to a frame and sends raw frames to the back-end. Incoming frames are processed by different (and
independent) workers of the back-end and reduced data are sent back to the front-end and visualized in a graphical user interface (GUI). The pipe-
line includes a dark worker for dark correction, multiple frame workers for pre-processing and data reduction, an image worker for low-resolution
image reconstruction and a SHARP worker for high-resolution ptychographic image reconstruction. A handler is coordinating the data and com-
munication workflow in which different types of control and data plugs (sockets) are used. While most of the components communicate via the
transmission control protocol (TCP), the raw data packets from the camera are sent via the user datagram protocol (UDP)

Page 7 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

ready, the SHARP worker is able to start the iterative
reconstruction process. SHARP initializes and allocates
space to hold all frames in a scan, computes a decompo-
sition scheme, initializes the image and starts the recon-
struction process. Unmeasured frames are either set to a
bright-field frame (measured by removing the sample) or
their weight is set to 0 until real data are received.

Depending on the configuration, data at different states
within the streaming flow can be displayed in the GUI
and/or saved to a CXI file via the nscxiwrite worker
module.

All components of the streaming interface run inde-
pendent event loops and use asynchronous (non-block-
ing) socket communication. To maximize performance,
the front-end operates very close to the actual experi-
ment, while the back-end runs remotely on a powerful
GPU/CPU cluster.

Pre‑processing of FCCD data
We developed the following processing scheme for
denoising and cleaning the raw data from the FCCD and
preparing frames for the ptychographic reconstruction,

1. Define center (acquire some diffraction frames and
compute the center of mass if needed). This is needed
for cropping, and to deal with beamstop transmis-
sion;

2. Average dark frames: we first acquire a sequence of
frames when no light is present, and compute the
average and standard deviation of each pixel and
readout block. We set a binary threshold to define
bad (noisy) pixels or bad (noisy) ADC channels,
when the standard deviation is above a threshold or if
the standard deviation is equal to 0;

3. Remove offset using the overscan linear or quadratic
offset: stretch out the readout sequence in time and
fit a second order polynomial over the overscan;

4. Identify the background by thresholding;
5. Perform a Fourier transform of the readout sequence

of the background for each channel, remove high
frequency spikes by thresholding, and subtract from
data;

6. Threshold signal below 1 photon;
7. Divide by beamstop transmission;
8. Crop image around center;

Fig. 3 Graphical user interface (GUI): for the ptychographic streaming pipeline implemented at the ALS. The interface provides a real-time view of
the ptychographic reconstruction (high resolution), b real-time view of the STXM analysis (low resolution), c current guess of the illumination func-
tion, d current processed data frame, e logging and error messages and f error metrics of the iterative reconstruction process, and other control and
monitoring elements around

Page 8 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

9. Downsample: take a fast Fourier transform (FFT),
crop or multiply by a kernel (e.g., Gaussian) and take
inverse fast Fourier transform (IFFT).

Simulation
For testing the functionality and performance of the
streaming ptychography pipeline as well as exploring
different configurations, we developed a protocol that
simulates an entire ptychography scan. Using a simu-
lated illumination from a Fresnel Zone Plate (FZP)
and basic scan parameters (number of scan points, the
scanning step size, the scanning pattern), diffraction
patterns from a well-known test sample are calculated
in the same raw data format as those generated by the
FCCD. As a last step, Poisson noise and a real back-
ground are added to the data. These raw data packets
together with the simulated metadata are introduced to
the end-to-end streaming pipeline and produce outputs
as shown in Fig. 3.

One major benefit of this feature is the ability to scale
and test the pipeline at different acquisition rates and
therefore be able to provide performance metrics on the
behavior of a sequence of algorithms enabling developers
to further improve their execution pipeline.

In a simple performance test, we simulated a 40 × 40
scan producing 1600 raw data frames which were sent by
a virtual FCCD at a rate of 10 Hz. At the end of the pipe-
line, we observed a complete reconstructed image after
around 5 min. This translates into a streamlining pipe-
line rate of about 2 Hz, with most of the time spent on
filtering and cleaning the individual frames. A significant
portion of the pre-processing time is unique to the FCCD
pipeline. While this rate is still far from ideal, it can be
easily be sped up and scaled by using parallel execution,
load-balancing strategies, and eventually through high-
throughput GPU optimizations. With further improve-
ments on the performance on the individual components
as well as optimization of the network communication,
we expect a substantial increase of the processing rate.

Experimental data
Experimental data produced by the FCCD can involve
missing frames, corrupted frames, and timing issues
between different hardware and software components.
In addition, the correct choice parameter values for the
ptychographic reconstruction might be inherent to the
data itself and can thus carry from experiment to experi-
ment. To make Nanosurveyor more robust for such cases,
it is desirable to expose configuration parameters as a
runtime or heuristic feature rather than determined them
at execution time, and take a more data-based approach
where options are set based on feature detection.

Discussion
Performance considerations and additional limitations
must be understood and considered in integrating such
an execution pipeline in a production environment.
While the following list is not comprehensive, in building
this environment, we have considered the following:

 • Limits (performance, algorithm, memory, disk) to
software and hardware need to be considered. The
Nanosurveyor infrastructure provides logging sup-
port while the ZeroMQ publisher–subscriber model
allows a stuck or crashed process to be replaced with
another. The current solution Nanosurveyor can be
made more robust and this is work that is considered
as active and ongoing;

 • Hardware failures are inevitable in a production
environment involving machinery. Recovery from
these types of issues requires customization for each
beamline environment. Within Nanosurveyor, there
is a heartbeat for each module and a base mechanism
within the framework to inform the user that a fail-
ure (or multiple failures) might have occurred;

 • Interrupting experiments should be a core use case
of any real-time feedback loop when trying to get
an understanding of the data as quickly as possi-
ble. Once information about the material is flow-
ing through the computational pipeline, it is valu-
able to be able to determine if an experiment is, in
fact, failing or uninteresting. This can occur in many
ways such as wrong setup, wrong material, or wrong
region of scanning. For these scenarios, it is prudent
for a working pipeline to be able to abort, clear out
the pipeline, and reset itself;

 • Expensive operations and algorithms executed in a
beamline operating environment may have varying
degrees of performance characteristics. These char-
acteristics can often slow down the overall pipeline
if any one of the operations is inefficient. Nanosur-
veyor attempts to get around this issue in two ways:
first, it allows for a load-balancing approach where
more workers can be added to the expensive stages
of the pipeline. Second, using the ZeroMQ queue,
the beamline can still operate with the slowdown and
backlog while ensuring that the pipeline can continue
to function, at least until hardware memory runs out.
This issue can also be mitigated by evaluating the
performance of the module and if possible optimiz-
ing the algorithm as well;

 • As data rates might increase both in speed and size,
we have several optimization strategies, including
parallelizing computation load across a bigger back-
end, speeding up expensive algorithms, and extract-

Page 9 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

ing or identifying important information earlier to
reduce size and complexity.

 • For current 2D and 3D visualization requirements, it
is sufficient to use PyQtGraph. However, if the data
volume gets large enough such that it would be dif-
ficult to view raw output, visualization frameworks
supporting distributed rendering strategies could be
used. More advanced approaches such as adaptive
downsampling, compression, or other visualization
representations could be swapped into the pipeline if
needed.

Conclusions and future work
This work introduced Nanosurveyor—a framework for
real-time processing at synchrotron facilities. The infra-
structure provides a modular framework, support for
load-balancing operations, the ability to run in a distrib-
uted client–server mode, and gives feedback on each
stage of a complex pipeline.

The framework was adapted to support streamlined
pipelines for ptychography. In this case, expensive stages
such as pre-processing are load-balanced with multi-
ple workers, and image reconstruction are parallelized
over MPI to compute efficiently in a distributed manner.
Results from every stage of the pipeline are then trans-
mitted to the front-end, providing users at the beamline
comprehensive knowledge of the experiment and of how
the data are transformed from start of acquisition to end
output. Although the Nanosurveyor framework provides
several core capabilities that are necessary for operating at
typical beamlines, there are several key advances that we
are currently working on to make the computational pipe-
line complete. A couple of highlights include the following:

Iterative execution, instrument control Adding support
for controlling the beamline itself will complete the cur-
rent pipeline and provide an iterative execution loop
enabling future pipelines to adaptively acquire and ana-
lyze data from the operating beamline, and automati-
cally request more data when necessary. For example, if
the reconstruction detects bad frames, or that the sam-
ple has drifted, then more frames can be automatically
requested on the fly without interrupting the overall
experiment. If the reconstruction determines that part
of the image being acquired is empty or uninteresting it
could request fewer frames and focus on the relevant part
of the sample.

Optimizing pipeline execution Currently, communication
occurs over ZeroMQ providing many benefits, including
dealing with backlog, automated load-balancing, and the
ability to interleave work running different stages of the
execution pipeline. We are also investigating ways to fuse

modules to optimize execution times. Making communi-
cation agnostic by using handles enables efficient use of
memory optimization strategies, socket communication,
or saving on data movement costs, e.g., transferring data
between GPU-based modules by moving a pointer rather
than copying data.

In conclusion, we have presented a framework that is
built to run at modern beamlines, can handle the geo-
graphic considerations between users and experiments
running at synchrotron facilities, and supports real-time
feedback. These features, along with the modular design,
provide a foundation that can be extended and readily
deployed on many of the beamlines in use today.

Authors’ contributions
BJD, HK, TP, FM, and SM designed and implemented the real-time streaming
framework. BJD, HK, TP, JAS, and SM wrote the manuscript with contributions
from all. DAS translated the pre-processing code from matlab to python and
helped us testing the streaming ptychography framework at the ALS. All
authors read and approved the final manuscript.

Author details
1 Laboratory of Molecular Biophysics, Department of Cell and Molecular Biol-
ogy, Uppsala University, Uppsala, Sweden. 2 Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 3 NERSC, Lawrence
Berkeley National Laboratory, Berkeley, CA, USA. 4 Advanced Light Source,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5 Department
of Mathematics, University of California, Berkeley, Berkeley, CA, USA.

Acknowledgements
The authors would like to thank John Joseph, the STXM control team, Susan
James, and the LBL IT group for their support.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Further information about Nanosurveyor is available at http://www.camera.lbl.
gov/software or upon request to camera-nanosurveyor@lists.lbl.gov.

Funding
This work was partially funded by the Center for Applied Mathematics for
Energy Research Applications, a joint ASCR-BES funded project within the
Office of Science, US Department of Energy, under Contract Number DOE-
DE-AC03-76SF00098, by the Swedish Research Council and by the Swedish
Foundation for Strategic Research. The Advanced Light Source is supported
by the Director, Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy under Contract No. DE-AC02-05CH11231.

Received: 23 September 2016 Accepted: 18 January 2017

References
 1. Cavalier, M.C., Pierce, A.D., Wilder, P.T., Alasady, M.J., Hartman, K.G., Neau,

D.B., Foley, T.L., Jadhav, A., Maloney, D.J., Simeonov, A., et al.: Covalent
small molecule inhibitors of ca2+-bound s100b. Biochemistry 53(42),
6628–6640 (2014)

 2. Westphal, A.J., Stroud, R.M., Bechtel, H.A., Brenker, F.E., Butterworth,
A.L., Flynn, G.J., Frank, D.R., Gainsforth, Z., Hillier, J.K., Postberg, F., et al.:
Evidence for interstellar origin of seven dust particles collected by the
stardust spacecraft. Science 345(6198), 786–791 (2014)

 3. Uchiyama, H., Shen, K., Lee, S., Damascelli, A., Lu, D., Feng, D., Shen, Z.-X.,
Tajima, S.: Electronic structure of mgb 2 from angle-resolved photoemis-
sion spectroscopy. Physical Rev. Lett. 88(15), 157002 (2002)

http://www.camera.lbl.gov/software
http://www.camera.lbl.gov/software

Page 10 of 10Daurer et al. Adv Struct Chem Imag (2017) 3:7

 4. Nazaretski, E., Huang, X., Yan, H., Lauer, K., Conley, R., Bouet, N., Zhou, J., Xu,
W., Eom, D., Legnini, D., Harder, R., Lin, C.-H., Chen, Y.-S., Hwu, Y., Chu, Y.S.:
Design and performance of a scanning ptychography microscope. Rev.
Sci. Instrum. 85(3), 033707 (2014). doi:10.1063/1.4868968

 5. Winarski, R.P., Holt, M.V., Rose, V., Fuesz, P., Carbaugh, D., Benson, C., Shu,
D., Kline, D., Stephenson, G.B., McNulty, I., et al.: A hard X-ray nanoprobe
beamline for nanoscale microscopy. J. Synchrotron Radiat. 19(6),
1056–1060 (2012)

 6. Shapiro, D., Roy, S., Celestre, R., Chao, W., Doering, D., Howells, M., Kevan,
S., Kilcoyne, D., Kirz, J., Marchesini, S., et al.: Development of coherent
scattering and diffractive imaging and the cosmic facility at the advanced
light source. In: Journal of Physics: Conference Series, vol. 425, pp. 192011.
IOP Publishing, Bristol (2013)

 7. Doering, D., Chuang, Y.-D., Andresen, N., Chow, K., Contarato, D., Cum-
mings, C., Domning, E., Joseph, J., Pepper, J.S., Smith, B., Zizka, G., Ford,
C., Lee, W.S., Weaver, M., Patthey, L., Weizeorick, J., Hussain, Z., Denes, P.:
Development of a compact fast ccd camera and resonant soft X-ray scat-
tering endstation for time-resolved pump-probe experiments. Rev. Sci.
Instrum. 82(7), 073303 (2011). doi:10.1063/1.3609862

 8. Broennimann, C., Eikenberry, E.F., Henrich, B., Horisberger, R., Huelsen, G.,
Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M., Tomizaki, T., Toyokawa,
H., Wagner, A.: The pilatus 1 m detector. J. Synchrotron Radiat. 13(2),
120–130 (2006). doi:10.1107/S0909049505038665

 9. Dinapoli, R., Bergamaschi, A., Henrich, B., Horisberger, R., Johnson, I.,
Mozzanica, A., Schmid, E., Schmitt, B., Schreiber, A., Shi, X., et al.: Eiger:
next generation single photon counting detector for X-ray applications.
Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc.
Equip. 650(1), 79–83 (2011)

 10. Eriksson, M., Al-dmour, E., Ahlbäck, J., Andersson, Å., Bocchetta, C., Johans-
son, M., Kumbaro, D., Leemann, S., Lilja, P., Lindau, F., et al.: The max iv
facility. In: Journal of Physics: Conference Series, vol. 425, pp. 072008. IOP
Publishing, Bristol (2013)

 11. Almer, J., Chupas, P., Stephenson, B., Tiede, D., Vogt, S., Young, L., Evans, P.,
Parise, J., Suter, B.: Emerging opportunities in high-energy X-ray science:
The diffraction-limited storage ring frontier. Synchrotron Radiat. News
29(1), 12–13 (2016). doi:10.1080/08940886.2016.1124675

 12. Reich, E.S., et al.: Ultimate upgrade for us synchrotron. Nature 501(7466),
148–149 (2013)

 13. Rodenburg, J.M.: Ptychography and related diffractive imaging methods.
Adv. Imag. Electron Phys. 150, 87–184 (2008)

 14. Rodenburg, J.M., Hurst, A.C., Cullis, A.G., Dobson, B.R., Pfeiffer, F., Bunk,
O., David, C., Jefimovs, K., Johnson, I.: Hard-X-ray lensless imaging of
extended objects. Phys. Rev. Lett. 98, 034801 (2007). doi:10.1103/Phys-
RevLett. 98.034801

 15. Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-
resolution scanning X-ray diffraction microscopy. Science 321(5887),
379–382 (2008). doi:10.1126/science.1158573

 16. Nashed, Y.S.G., Vine, D.J., Peterka, T., Deng, J., Ross, R., Jacobsen, C.: Parallel
ptychographic reconstruction. Opt. Express 22(26), 32082–32097 (2014).
doi:10.1364/OE.22.032082

 17. Enders, B., Thibault, P.: A computational framework for ptychographic
reconstructions. Proc. R. Soc. A 472, 2196 (2016)

 18. Marchesini, S., Krishnan, H., Daurer, B.J., Shapiro, D.A., Perciano, T.,
Sethian, J.A., Maia, F.R.N.C.: SHARP: a distributed GPU-based ptycho-
graphic solver. J. Appl. Crystallogr. 49(4), 1245–1252 (2016). doi:10.1107/
S1600576716008074

 19. Hadoop, A. http://hadoop.apache.org (2016). Accessed 9 Sept 2016
 20. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc. ,Sebas-

topol (2009)
 21. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark:

cluster computing with working sets. In: Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, p. 10, Boston, 22–25 June
2010

 22. Apache Flink. http://flink.apache.org (2016). Accessed 9 Sept 2016
 23. Apache Samza. http://samza.apache.org (2016). Accessed 9 Sept 2016
 24. Apache Storm. http://storm.apache.org (2016). Accessed 9 Sept 2016
 25. Jensen, F.V.: An introduction to Bayesian networks vol. 210. UCL press,

London (1996)
 26. Luigi: A workflow engine in Python. https://luigi.readthedocs.io/en/stable

(2016). Accessed 9 Sept 2016
 27. Dask Development Team: Dask: Library for Dynamic Task Scheduling.

http://dask.pydata.org (2016). Accessed 9 Sept 2016
 28. Rocklin, M.: Dask: parallel computation with blocked algorithms and task

scheduling. In: Huff, K., Bergstra, J. (eds.) Proceedings of the 14th Python
in Science Conference, pp. 130–136 (2015)

 29. Apache Kafka. http://kafka.apache.org (2016). Accessed 9 Sept 2016
 30. Apache ZooKeeper. http://zookeeper.apache.org (2016). Accessed 9 Sept

2016
 31. Daurer, B.J., Hantke, M.F., Nettelblad, C., Maia, F.R.: Hummingbird: monitor-

ing and analyzing flash X-ray imaging experiments in real time. J. Appl.
Crystallogr. 49(3), 1042–1047 (2016)

 32. Barty, A., Kirian, R.A., Maia, F.R.N.C., Hantke, M., Yoon, C.H., White, T.A., Chap-
man, H.: Cheetah: software for high-throughput reduction and analysis
of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 47(3),
1118–1131 (2014). doi:10.1107/S1600576714007626

 33. Fernandez-Leiro, R., Scheres, S.: A pipeline approach to single-particle
processing in relion. bioRxiv (2016). doi:10.1101/078352

 34. Eklund, A., Dufort, P., Villani, M., LaConte, S.: Broccoli: software for fast fmri
analysis on many-core cpus and gpus. Front. Neuroinformatics 8, 24
(2014). doi:10.3389/fninf.2014.00024

 35. Riverbank Computing. http://www.riverbankcomputing.com/software/
pyqt (2016). Accessed 9 Sept 2016

 36. Campagnola, L.: http://pyqtgraph.org (2016). Accessed 9 Sept 2016
 37. Hintjens, P.: ZeroMQ: messaging for many applications. “ O’Reilly Media,

Inc.”, Sebastopol (2013)
 38. van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure

for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30
(2011). doi:10.1109/MCSE.2011.37

 39. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools
for Python. [Online]. http://www.scipy.org/ (2001). Accessed 7 April 2016

 40. ECMA international. http://www.ecma-international.org/publications/
standards/Ecma-404.htm (2016). Accessed 9 Sept 2016

 41. Maia, F.R.N.C.: The coherent X-ray imaging data bank. Nat. Methods 9(9),
854–855 (2012). doi:10.1038/nmeth.2110

 42. Denes, P., Doering, D., Padmore, H., Walder, J.-P., Weizeorick, J.: A fast, direct
X-ray detection charge-coupled device. Rev. Sci. Instrum. 80(8), 083302
(2009)

http://dx.doi.org/10.1063/1.4868968
http://dx.doi.org/10.1063/1.3609862
http://dx.doi.org/10.1107/S0909049505038665
http://dx.doi.org/10.1080/08940886.2016.1124675
http://dx.doi.org/10.1103/PhysRevLett.%2098.034801
http://dx.doi.org/10.1103/PhysRevLett.%2098.034801
http://dx.doi.org/10.1126/science.1158573
http://dx.doi.org/10.1364/OE.22.032082
http://dx.doi.org/10.1107/S1600576716008074
http://dx.doi.org/10.1107/S1600576716008074
http://hadoop.apache.org/
http://flink.apache.org/
http://samza.apache.org/
http://storm.apache.org/
https://luigi.readthedocs.io/en/stable
http://dask.pydata.org
http://kafka.apache.org/
http://zookeeper.apache.org/
http://dx.doi.org/10.1107/S1600576714007626
http://dx.doi.org/10.1101/078352
http://dx.doi.org/10.3389/fninf.2014.00024
http://www.riverbankcomputing.com/software/pyqt
http://www.riverbankcomputing.com/software/pyqt
http://pyqtgraph.org
http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://dx.doi.org/10.1038/nmeth.2110

	Nanosurveyor: a framework for real-time data processing
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods: real-time streaming framework
	Terminology primer
	Modular framework
	Software stack
	Communication
	Client–server architecture
	Back-end
	Data tracking
	Logging

	Graphical user interface

	Results: streaming ptychography
	Pre-processing of FCCD data
	Simulation
	Experimental data

	Discussion
	Conclusions and future work
	Authors’ contributions
	References

