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Abstract

Background: The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor
initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy.
CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted
new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating,
collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined
reprogramming factors (Oct4, shp53, Sox2, KIf4, I-Myc and Lin28) into HSC2 tongue cancer cells could transform the
HSC2 into HSC2 with CSCs properties.

Methods: We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors
by electroporation method to generate transfectant cells. We investigated the malignant properties of the
transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay,
chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the
transfectants in vivo.

Results: The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK,
HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK 4+ hUL) displayed a malignant
phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control
HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil,
cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with
HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK+ hUL cell containing all of the
reprogramming factors showed the most aggressive and malignant properties and presented the highest number
of spheres in the culture medium containing human recombinant fibroblast Growth Factor-2 (FGF-2) and epidermal
Growth Factor (EGF).

Conclusion: These findings suggest that artificial cancer stem cells obtained by the induction of cellular
reprogramming may be useful for investigating the acquisition of potential malignancy as well as screening the
CSCs-targeting drugs.
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Background
Head and neck squamous cell carcinoma (HNSCC),
including oral squamous cell carcinoma (OSCC) is a
major health problem throughout the world. Despite
advances in treatment of HNSCC, mortality from this
disease remains high because of local and regional re-
currences of tumors, acquired resistance of patients
to chemotherapy or radiotherapy and high rate of me-
tastases at the advanced stage of the disease [1].
Therefore, understanding the initial steps of the
tumorigenic processes, as well as tumor progression
and metastasis is required for the improvement of
prognosis of OSCC and survival of the patients [2].
There are accumulating evidences that cancer cells are
functionally heterogeneous and they go through prolifer-
ation, differentiation and maturation to a certain extent
[3]. A solid tumor contains a distinct subpopulation of
cells with stem cell properties (CSCs) that play import-
ant roles in cancer initiation, progression, recurrence
and metastasis [4—7]. These CSCs are capable of long-
term self-renewal and can generate phenotypically di-
verse tumor cell populations. In addition, they show re-
sistance to radiation and chemotherapeutic agents [8—
10]. Therefore, the development of new strategies for
CSCs-targeted therapy has attracted attention in these
years. Identification and characterization of CSC popula-
tions are important for the development of novel strat-
egies for cancer treatment. Separation or generation of a
sufficient number of CSCs from tumor tissues and amp-
lification of the CSCs while stably maintaining them in
an undifferentiated state in vitro is a pre-requisite to en-
sure a large-scale drug screening process [11]. CSCs
could be identified and isolated through functional as-
says such as detection of the expression of the cell sur-
face markers specific for CSCs or the sphere body
formation method [12—14]. Until now, a number of CSC
markers are identified in HNSCC, eg - CD44, CD44v4,
CD44v6, ALDH1, CD166, and CD133 [15-19]. There
are several other CSC markers reported in different can-
cer types, eg- CD34, CD133, CD90, CD13, EpCAM,
ABCG, ALDH]I1 etc. [8]. Moreover, Side Population (SP)
cells, which are a subpopulation of tumor cells with in-
creased efflux capacity are also considered as a source of
CSCs specially where CSC molecular markers are un-
known [20, 21]. However, these methods that are
dependent upon the isolation of CSCs from tumor tis-
sues by flow cytometry or generation of spheres bodies
have some real limitations [12—14]. Therefore, the isola-
tion of sufficient number CSCs from tumor tissues is
still difficult. Until now, an easy, cost-saving and optimal
cell culture method for successfully amplifying and
maintaining pure CSC populations is also unknown.
Thus, screening of CSCs-targeting drugs in vitro and in
animal models remain in a difficult situation. The

Page 2 of 14

development of an easy and efficient method to manu-
facture artificial CSCs is crucial to overcome these re-
search obstacles.

It is believed that CSCs undergo differentiation into
non-CSCs (cancer progeny cells), and that CSCs reach
to the top of hierarchical system composed of cancer
cells [22-25]. If non-CSCs can be dedifferentiated, CSCs
may be generated artificially. Like normal pluripotent
stem cells, CSCs are long-lived, and display quiescent
potentials in a dormant state, and are responsible for an-
giogenic induction, apoptotic resistance and differenti-
ation. CSC cells express stem cell marker genes,
including Oct4, Sox2, Nanog, c-kit, ABCG2, and ALDH
[3, 26-28]. Among these genes, Oct4 is the key tran-
scription factor that maintains the pluripotency and self-
renewal in undifferentiated embryonic stem cells [27].
Additionally, the essential role of ¢-Myc and Kif4 in
the regulation and maintenance of the stem cell-like
features of tumor CSCs was reported by Wang et al.
and Yu et al. respectively [29, 30].

The well-known work of generation of induced pluripo-
tent stem cells (iPSCs) by Takahashi and Yamanaka
showed that adult somatic cells can be reprogrammed to
become pluripotent by the introduction of the pluripotent
stem cell genes Oct4, Sox2, Kif4 and c-Myc [31, 32]. Add-
itionally, Okita et al. mentioned the importance Lin28 and
I-myc for the generation of human iPSCs from blood cells
[33, 34]. The iPSCs development process shares many fea-
tures with cancer development. Such similarities indicate
that iPSCs reprogramming processes and carcinogenesis
might be promoted by overlapping mechanisms; during
which, somatic differentiated cell undergoes transcrip-
tional changes and acquires self-renewal and unlimited
proliferation capabilities [35-37]. Ohnishi et al. showed
that, somatic cells that deviated successful reprogramming
failed to develop iPSCs, but behaved similarly to cancer
cells and developed Wilms tumor, a childhood blastoma
in the kidney [38]. Thus, the same reprogramming factors
that generate iPSCs could be also involved in carcinogenic
transformation of normal somatic cells. Additionally, in
neurosphere culture conditions, introduction of Oct4,
Sox2, c-Myc and Kif4 directly induced neural stem cells
(NSCs) properties in somatic cells such as skin fibroblasts,
which suggests that these reprogramming factors might
possess the ability to induce stemness in somatic cells
[39-42].

In this study, we followed the iPSCs-generation protocol
obtained from the Center for iPS cell research and appli-
cation (CiRA) website to reprogram HSC2 tongue cancer
cells into CSCs [43]. We introduced [-Myc instead of c-
Myc and two other factors (shp53 and Lin28) along with
Oct4, Sox2 and Klif4 into HSC2 cells via episomal vector;
instead of using only Oct4, Sox2, KIf4 and c-Myc with
retroviral vectors as initially described by Takahashi and



Harada et al. BMC Cancer (2016) 16:548

Yamanaka [31-33, 43]. The resultant cells possess the
hallmarks of CSCs and could efficiently generate tumors
in a nude mouse model. These results suggest that intro-
duction of defined reprogramming factors can possibly
dedifferentiate oral cancer cells into CSCs and can provide
a potentially valuable system for the study of CSCs.

Methods

Cell culture

HSC2 cells were purchased from Cell Bank, RIKEN
BioResource Center (Ibaraki, Japan). Cells were cultured
in a 1:1 mixture of Dulbecco’s modified Eagle’s medium
(D-MEM)/Ham’s F-12 (Wako Pure Chemical Industries,
Ltd. Osaka, Japan) supplemented with 10 % fetal bovine
serum (FBS) (Thermo Fisher scientific Inc., Waltham, MA,
USA), 100 pg/ml streptomycin, 100 units/ml penicillin
(Thermo Fisher scientific) in a humidified atmosphere con-
taining 5 % CO, at 37 °C. The electroporated cells, ie -
HSC2/EGFP, HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/
hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-
shp53-F + hUL,  HSC2/hSK + hUL, = HSC2/hOCT3/4-
shp53-F + hSK + hUL were cultured in the same culture
medium without any selection agents.

Cell reprogramming and transfection

Episomal vectors (pCXLE-hOCT3/4-shp53-F, pCXLE-
hSK, pCXLE-hUL and pCXLE-EGFP) were obtained

Table 1 Summary of plasmid mixtures for electroporation
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from Addgene (Cambridge, MA, USA) and introduced
into HSC2 cells in various combinations. An expression
plasmid mixture containing one or more of these epi-
somal vectors (1 pg of each vector) were electroporated
into 6 x 10> HSC2 cells with Neon Transfection System
(Thermo Fisher scientific) using a 100 pl kit according
to the manufacturer’s instructions (conditions for elec-
troporation: pulse voltage: 1550 or 1650 V, pulse width:
10 ms, pulse number: 3). In the same way, we inserted
pCXLE-EGEFP only into HSC2 cells to obtain HSC2/
EGFP as a control. The list of expression plasmid mix-
tures used in the experiments and the resultant cells is
shown in Table 1.

Cell proliferation assay

HSC2 or each transfectant (5x 10% cells per well) were
seeded on 96-well plates (Becton Dickinson Labware,
Franklin lakes, NJ, USA) in D-MEM/Ham’s F-12 medium
supplemented with 10 % FBS and 1 % penicillin/strepto-
mycin. After 48 h or 72 h, 3-(4, 5-dimethylthiazol- 2-yl)-2,
5- diphenyltetrazolium bromide (MTT; Sigma-Aldrich, St.
Louis, MO, USA) was added to each well (25 ul/well) and
incubated for 4 h. Then dimethyl sulfoxide (100 pl/well)
was added to each well and a spectrophotometer (BioRad
Laboratories, Hercules, CA, USA) was used to measure
the absorbance at 490 nm (Optical Density 490 or
0D490). All assays were run in triplicate.

Mix-ture Plasmid name Amount (ug) Genes Resultant cell

1 pCXLE-EGFP 1 Egfp HSC2/EGFP

2 pCXLE-hOCT3/4-shp53-F 1 Oct4, shp53, Egfp HSC2/hOCT3/4-shp53-F
pCXLE-EGFP 1

3 pCXLE-hSK 1 Sox2, Kif4, Egfp HSC2/hSK
pCXLE-EGFP 1

4 pCXLE-hUL 1 I-Myc, Lin28, Egfp HSC2/hUL
pCXLE-EGFP 1

5 pCXLE-hOCT3/4-shp53-F 1 Oct4, shp53,Sox2, KIf4, Egfp HSC2/hOCT3/4-shp53-F + hSK
PCXLE-hSK 1
pCXLE-EGFP 1

6 pCXLE-hOCT3/4-shp53-F 1 Oct4, shp53, I-Myc, Lin28, Egfp HSC2/hOCT3/4-shp53-F + huL
pCXLE-hUL 1
pCXLE-EGFP 1

7 pCXLE-hSK 1 Sox2, Kif4, I-Myc, Lin28, Egfp HSC2/hSK + huL
pCXLE-hUL 1
pCXLE-EGFP 1

8 pCXLE-hOCT3/4-shp53-F 1 Oct4, shp53, Sox2, Kif4, I-Myc, Lin28, Egfp HSC2/hOCT3/4-shp53-F + hSK + hUL
pCXLE-hSK 1
pCXLE-hUL 1

pCXLE-EGFP 1
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Cell migration assay

Cell migration assay was performed using a Boyden
chamber according to the manufacturer’s instructions,
(Neuro Probe, Gaithersburg, MD, USA). 5 x 10% cells in
50 pl D-MEM/Ham’s F-12 medium without FBS were
seeded on a gelatin coated polycarbonate membrane. In
the lower chamber, 25 pul D-MEM/Ham’s F-12 with 10 %
FBS was added as chemoattractant. After the cells were
incubated for 24 h at 37 °C in a 5 % CO, atmosphere,
the polycarbonate membrane was washed with PBS, and
cells on the top surface of the polycarbonate membrane
were removed with a cotton swab. Cells adhering to the
lower surface were fixed with methanol, stained with
Hematoxylin solution and counted under a microscope
in five predetermined fields (200x). All assays were inde-
pendently repeated at least three times.

Wound healing assay

Cells (15 x 10% cells per well) were seeded into 24-well
plate (Becton Dickinson Labware) and were cultured in
D-MEM/Ham’s F-12 with 10 % FBS and 1 % penicillin/
streptomycin until a monolayer of cells were formed. A
200 pl pipette tip was used to gently wound cell layer
through the central axis of the plate. The migration of
cells into the wounded area was observed at 24 h by a
microscope (BX-51-33-FLD2, OLYMPUS, PA, USA). The
cell wound closure rate was calculated using the following
equation: Wound closure = [1-(wound area at Tt/
wound area at T0) x 100, where Tt is the time passed
since wounding (24 h) and TO is the time of initial wound-
ing. The experiments were performed in triplicate.

Tumor sphere formation assay

Cells were placed at a density of 1000 cells/well in
sphere-culture medium consisting of serum-free
DMEM/F-12 (Ham) 1:1 (Prototype) medium (Thermo
Fisher scientific), N2 supplement (Thermo Fisher scien-
tific), 10 ng/ml FGF-2 (Thermo Fisher scientific), and
10 ng/ml EGF (Thermo Fisher scientific) in a ultra-low
attachment 96-well plate (Corning, New York, NY, USA)
to generate primary sphere bodies. Every four days,
50 pL of the fresh growth medium was added. The num-
bers of spheres larger than 20 pm in diameter were
counted after two weeks of culture.

Western blotting

Whole cell lysates were prepared using Radioimmuno-
precipitation assay (RIPA) buffer (Thermo Fisher scien-
tific) and were subjected to electrophoresis on 10 %
SDS-polyacrylamide gels (Thermo Fisher scientific), and
then transferred to a PVDF membrane (Thermo Fisher
scientific). After blocking, the membranes were incu-
bated with the anti-HCAM (CD44) mouse monoclonal
antibody (Santa Cruz Biotechnology, Inc., Santa Cruz,
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CA, USA) and anti-CD13 rabbit monoclonal antibody
(Epitomics Inc., Burlingame, CA, USA) followed by
Novex® alkaline-phosphatase conjugated (goat) anti-
rabbit or (goat) anti-mouse immunoglobulin G (IgG)
secondary antibody (Thermo Fisher scientific). The anti-
bodies were detected using a chromogenic immunode-
tection system, WesternBreeze (Thermo Fisher
scientific) according to the manufacturer's instructions.
Also, anti- o- tubulin monoclonal antibody (Santa Cruz
Biotech.) was used for normalization of Western blot
analysis.

Chemosensitivity and radiosensitivity assessment

Cells (5x10% cells per well) were seeded on 96-well
plates (Becton Dickinson Labware) in D-MEM/Ham’s F-
12 with 10 % FBS and 1 % penicillin/streptomycin.
Twenty four hours later, cells were either remained un-
treated or were treated with any one of the following
drugs: 2 pg/ml 5-fluorouracil (5-FU), 1 pg/ml cisplatin
(CDDP), 100 pg/ml docetaxel (DOC), 50 pg/ml trifluor-
othymidine (TFT), 1 ug/ml cetuximab, 5 ng/ml bortezo-
mib or 10 pg/ml zoledronic acid. Cells were also
exposed to 15 Gy radiation in an X-ray irradiator (MBR-
1505R2, 150 kV, 5 mA, filter: 1.0 mm aluminum, Hitachi
Medico, Tokyo, Japan). After 48 h, 25 pul MTT was
added to each well. After 4 h, dimethyl sulfoxide
(100 upl/well) was added and the absorbance was mea-
sured with a spectrophotometer (BioRad Laboratories)
at 490 nm. All assays were run in triplicate.

In vivo tumor formation assay

Cells (1x10*~1x10% were washed twice with
antibiotic-free and serum-free D-MEM/Ham’s F-12
medium and finally re-suspended in 0.1 ml of saline.
The cell suspension was injected subcutaneously into 5-
week-old BALB/c nude mice (CLEA, Tokyo Japan).
Tumor size was monitored and measured weekly for
4 weeks. The estimated tumor volume was calculated as
0.5 x length x width® All mice were sacrificed at the end
of 4 weeks/28 days. The tumors were dissected out, fixed
in neutral-buffered formalin, embedded in paraffin and
stained with hematoxylin and eosin. The mice were
housed in a pathogen-free environment under a 12 h
light/dark cycle, and provided with sterile water and
food ad libitum. All studies and experiments conformed
to the Guidelines for Animal Experimentation of
Yamaguchi University (Ube, Japan).

Results

Establishment of transfectants by defined reprogramming
factors

We successfully introduced the reprogramming factors
(Oct4, shp53, Sox2, Kif4, I-Myc and Lin28) and Egfp genes
via the plasmid vectors (pCXLE-hOCT3/4-shp53-F,
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pCXLE-hSK, pCXLE-hUL and pCXLE-EGFP) into HSC2
cells by electroporation in order to obtain HSC2/EGFP,
HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/
hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F +
hUL, HSC2/hSK + hUL and HSC2/hOCT3/4-shp53-F +
hSK + hUL cells. Fluorescence microscopic observation of
EGFP expression in transfectant cells showed the vector
transplantation efficiency was about 50 % when the pulse
voltage of the electroporator was 1650 V, and that about
30 % at 1550 V (data not shown). Therefore, the optimum
condition for electroporation was set as; pulse voltage:
1650 V, pulse width: 10 ms, pulse number: 3. The trans-
fectants were cultured in D-MEM/Ham’s F-12 medium
supplemented with 10 % FBS, 1 % penicillin/streptomycin.
In this study, we did not use any selection methods to
identify stable transfectants. The transfected cells were
bigger and spindle-shaped compared to HSC2 parental
cells which had cobblestone morphology (Fig. 1) More-
over, each transfectant cells showed slightly different
morphology than the other (Fig. 1).

Cell proliferation ability

MTT assay was used to measure the growth rate of the
transfectants. The HSC2/hOCT3/4-shp53-F + hSK +
hUL had higher proliferative ability than that of parental
cell (HSC2) and HSC2/EGFP. At 48 h and 72 h of cul-
ture, the growth rate of HSC2/hOCT3/4-shp53-F + hSK
+hUL was significantly higher than that of HSC2 and
HSC2/EGFP, while the growth rate among parental
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HSC2 cell, HSC2/EGFP and the other transfectants was
not significantly different (Fig. 2).

Migration ability

CSCs are endowed with high migratory ability. There-
fore, we measured the migration activity of the transfec-
tants using migration assay with Boyden chamber. The
HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-
shp53-F + hUL, HSC2/hSK + hUL and HSC2/hOCT3/4-
shp53-F + hSK + hUL had significantly higher migration
ability than that of parental cell (HSC2) and HSC2/
EGEFP. Especially, the HSC2/hOCT3/4-shp53-F + hSK +
hUL showed highest migration ability (Fig. 3).

Wound healing ability

Wound healing assay was performed to examine the mi-
gration capability of the transfectants. HSC2/hOCT3/4-
shp53-F + hSK + hUL cell showed highest would healing
capacity (wound closure: 85 %) compared to HSC2/
EGFP (60 %), all the other transfectants (50—-80 %) and
the parental HSC2 cell (35 %). Interestingly, all the
transfectant cells showed higher wound healing ability
than that of parental HSC2 (Fig. 4a, b). HSC2/hUL +
hSK cells showed second highest migration and wound
healing capacity (80 %) which suggests that Sox2, Kif4, [-
Myc, Lin28 factors are essential to increase the migration
capacity of the transfectants.

50 pm 50 pm

HSC2 parental

50 pm 50 pm

HSC2/hSK

50 pm

HSC2/hOCT3/4-shp53-F+hUL

HSC2/EGFP

HSC2/hUL

HSC2/hSK+hUL

Fig. 1 Cell morphology. All transfectants are morphologically distinct from their parental cell line (HSC2) and from each other. All transfectants
have shown the loss of cell-cell adhesion (except HSC2/EGFP) and showed spindle-shaped morphology

50 pm

HSC2/hOCT3/4-shp33-F

50 um

HSC2/hOCT3/4-shp53-F+hSK

50 pm

HSC2/hOCT3/4-shp53-F+hSK+hUL
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Optical Density
(OD49%0)
1.5 4

1.0 4

0.5 4

0.0 4

#*; p < 0.01 when compared to that of HSC2 parental and HSC2/EGFP (Mann-Whitney's U test)

Fig. 2 Cell proliferation assay. Cells (5 x 10° cells per well) were seeded on 96-well plates, and cultured for 48 and 72 h. Cell growth was evaluated
by MTT assay (OD490; absorbance at 490 nm). The growth rate of HSC2/hOCT3/4-shp53-F + hSK + hUL was significantly higher than that of HSC2
and HSC2/EGFP at 48 and 72 h after seeding. Error bars represent the standard deviation of the mean of three independent experiments

Migrated cell number

80 Boyden chamber (24h)

60

40

20

0

#: p < 0.01 when compared to that of HSC2 parental and HSCZEGFP (Student’s t- test)

Fig. 3 Migration assay. To evaluate the migration activity for the transfectants, migration assay was performed with Boyden chamber. The HSC2/
hOCT3/4-shp53-F + hSK+ hUL showed highest migration ability. Error bars represent the standard deviation of the mean of three
independent experiments
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% of wound area: 65% % of wound area: 40% % of wound area:

50 pm 50 pm 50 pm

HSC2 parental HSC2/EGFP HSC2/hOCT3/4-shp53-F
D e —— o —

% of wound area: 45% % of wound area: 40%

% of wound area: 50%

50 pm

50 pm 50 pm

HSC2/hSK HSC2/hUL HSC2/hOCT3/4-shp53-F+hSK
e — ©

% of wound area: 30% % of wound area: 15%

50 pm

sl 50 pm
HSC2/hOCT3/4-shp53-F+hUL HSC2/hSK+hUL ~ HSC2/hOCT3/4-shp53-F+hSK+hUL
(24h after scratch)
b Wound closure

(%)
100 -

75 4

50 4

#: p <001 when compared to that of HSC2 parental and HSCZEGFP (Mann-Whitney's U test)

Fig. 4 Wound healing assay. The wound healing ability for the transfectants was measured by wound healing assay. A. The HSC2/hOCT3/4-
shp53-F + hSK+ hUL had higher wound healing ability than that of HSC2 and HSC2/EGFP. Arrows show the width of uncovered scratch mark.
The wound area was calculated according to the following formula: (wound area at Tt/wound area at T0) x 100, where Tt is the time passed
since wounding and TO is the time of initial wounding. B. The wound healing capacity for each cell type was calculated using the following
equation: Wound closure = [1-(wound area at Tt/wound area at T0) x 100. Error bars represent the standard deviation of the mean of three
independent experiments
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10 o

0«

#; p < 0.01 when compared to that of HSC2 parental and HSC2/EGFP (Student’s - test)

b

50 pm 50 pm

50 pm

HSC2 parental HSC2/EGFP HSC2/hOCT3/4-shp53-F

50 pm 50 pm

HSC2/hSK HSC2/hUL HSC2/hOCT3/4-shp53-F+hSK

50 pm 50 pm 50 pm

HSC2/hOCT3/4-shp53-F+hUL HSC2/hSK+hUL HSC2/hOCT3/4-shp53-F+hSK+hUL

( 2 weeks from culture)

Fig. 5 Sphere formation assay. The transfectants and HSC2 cells were cultured in a sphere-culture medium. a The number of spheres was
significantly higher in the HSC2/hOCT3/4-shp53-F + hSK+hUL than HSC2 and HSC2/EGFP. Error bars represent the standard deviation of
the mean of three independent experiments. b Representative images of sphere (s) generated from each cell types (Bar = 50 pum). The
HSC2/hOCT3/4-shp53-F + hSK+ hUL could also form bigger spheres
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Sphere formation

The transfectants, HSC2/EGFP and HSC2 cells were
cultured in tumor sphere-culture medium. All cells were
able to grow and form primary spheres within 2 weeks
of culture; however, the HSC2/hOCT3/4-shp53-F + hSK
+hUL cells could form spheres burly and numerously.
Briefly, the number of spheres was significantly higher in
the HSC2/hOCT3/4-shp53-F + hSK + hUL cell than
HSC2 and HSC2/EGFP cell (Fig. 5a). HSC2/hOCT3/4-
shp53-F + hSK + hUL cells also developed comparatively
bigger spheres than other cell types (Fig. 5b).

Expression of CSC markers

The expression pattern of CSC markers (CD44 and
CD13) in the transfectants and HSC2 cells was analyzed
by Western blotting. The protein expression of CD44
was significantly higher in HSC2/hOCT3/4-shp53-F +
hSK + hUL than in HSC2/EGFP and HSC2, whereas
CD13 expression was higher in all transfectant cells
compared to HSC2 parental cell (Fig. 6).

Chemosensitivity and radiosensitivity (in vitro)

CSCs show resistance to anticancer drugs and radiation.
Therefore, we evaluated the resistance ability of the
transfectants to several chemotherapeutic drugs and ra-
diation. The HSC2/hOCT3/4-shp53-F + hSK + hUL cell
showed increased resistance to 5-FU, CDDP, DOC, TFT,
zoledronic acid, cetuximab, bortezomib and X-ray radi-
ation than other transfectants and HSC2 cells (Fig. 7).

Tumorigenesis (in vivo)

The tumorigenic capacity of the transfectants was
assessed using a mouse model. We injected each trans-
fectant, HSC2 or HSC2/EGFP subcutaneously into
BALB/c nude mice and monitored them for 4 weeks.
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While 1 x 10* cells of HSC2/hOCT3/4-shp53-F + hSK +
hUL were enough to generate tumor in mice within
2 weeks, the same number of cells did not produce any
HSC2 or HSC2/EGFP tumors. The minimum number of
cells required for generating HSC2 or HSC2/EGFP
tumor in mice was 1 x 10° (data not shown), which was
100-fold higher than the number of HSC2/hOCT3/4-
shp53-F + hSK + hUL required for tumor seeding. In
addition, HSC2/hOCT3/4-shp53-F + hSK + hUL showed
higher tumorigenic potential (Fig. 8a—c). Histological
analysis of these tumors showed squamous cell carcin-
oma tissues including from highly to poorly differenti-
ated areas, but teratomas were not observed (Fig. 9).

Discussion

In this study, we demonstrated that the introduction of
defined reprogramming factors (Oct4, shp53, Sox2, Klf4,
I-Myc and Lin28) could generate cells with CSC-like
properties from a tongue cancer cell line, HSC2. These
artificial CSCs showed resistance to anticancer drugs,
molecular target drugs and radiation. Moreover, these
artificial CSCs could be maintained in a cost-effective
way. D-MEM medium supplemented with 10 % FBS was
sufficient to maintain these cells with CSC properties.
These artificial CSCs could be handled easily and also
managed to produce spheres in sphere-culture medium.
Therefore, we may be able to develop a new strategy for
generating and maintaining artificial CSCs.

We used HSC2 cell line in our present study, as it has
neither invasive nor metastatic potential and showed
low expression of the stem cell markers, ie- CD44 and
CD13 (Fig. 6). In this study we also examined the ex-
pression of CD44v6, ALDH1, CD133 and podoplanin/
D2-40, but their expression patterns in transfectant cells
were not different compared to that of HSC2 parental
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Fig. 6 Expression of CSC markers. Western blotting was performed to investigate protein levels of CSC markers (CD44 and CD13). CD44
expression was significantly higher in HSC2/hOCT3/4-shp53-F + hSK+ hUL than other transfectants and HSC2. CD13 expression was higher in all
other transfectant cells than HSC2/EGFP and parental HSC2. a-tubulin was used as an internal control
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Fig. 7 Chemosensitivity and radiosensitivity assay. To evaluate the
resistance of the transfectants to various chemotherapeutic drugs,
molecular-targeted agents, and radiation, MTT assay was performed
(OD490; absorbance at 490 nm). The HSC2/hOCT3/4-shp53-F + hSK
+ hUL was significantly more resistant to 5-FU, CDDP, DOC, TFT,
zoledronic acid, cetuximab, bortezomib and X-ray radiation than
HSC2 and HSC2/EGFP. Error bars represent the standard deviation of
the mean of three independent experiments

cells (data not shown). After introduction of the repro-
gramming factors, most of the transfectants showed
higher invasion and migration ability than HSC2 or
HSC2/EGFP. Interestingly, HSC2/hOCT3/4-shp53-F +
hSK + hUL cell containing all the reprogramming factors
had acquired highest malignant properties in migration
assay (Fig. 3), wound healing assay (Fig. 4) and sphere
formation assay (Fig. 5) compared to the other transfec-
tants, while demonstrating high expression of CD44.
Moreover, our in vivo study showed that tumors devel-
oped from HSC2/hOCT3/4-shp53-F + hSK + hUL cells
containing all the reprogramming factors (Oct3/4, shp53,
Sox2, Klf4, I-Myc or Lin28) exhibited higher tumorigenic
potential than parental HSC2 cells. Additionally, these
tumors were not teratomas which suggest that our
transfectant cells are not iPSCs.

CSCs may be derived from tissue stem cell, however,
most of CSCs may be generated from non-tumorigenic
differentiated epithelial cells by reprogramming. Nishi et
al. reported that the introduction of defined reprogram-
ming factors (Oct4, Sox2, Kif4 and c-Myc) into MCEF-
10A nontumorigenic mammary epithelial cells, followed
by partial differentiation, transforms the bulk of cells
into tumorigenic cells with CSC properties [44]. Miyoshi
et al. reported that introduction of defined reprogram-
ming factors (Oct4, Sox2, Klf4 and c-Myc) into human
gastrointestinal cancer cell lines resulted improved sensi-
tivity of the induced cells to chemotherapeutic agents
and differentiation-inducing treatment [45]. Moreover,
Oshima et al. reported the generation of CSCs with
lineage specificity directly from colon cancer cells by
introducing same defined factors (except c-Myc), not via
an induced pluripotent stem cell state [46].

There are many attempts to generate iPSCs from ma-
lignant tumor cells by the ectopic expression of repro-
gramming factors. Carette et al. reported to generate the
iPS cells derived from human chronic myeloid leukemia
cells by using the reprogramming factors (Oct4, Sox2,
Klf4 and c-Myc) [47]. Similarly, Utikal et al. reported that
they attempted to create iPSCs from melanoma by using
the reprogramming factors [48]. However, it seems to
achieve only limited success. It may be selected whether
the ectopic expression of reprogramming factors in ma-
lignant tumor cell lines can induce cells with CSC-like
properties or iPSCs during the reprogramming step.
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(See figure on previous page.)

Fig. 8 In vivo tumor formation assay. Each transfectant, HSC2 or HSC2/EGFP (1 x 10%) were inoculated into BALB/c nude mice subcutaneously
and tumor volume was measured once a week for 4 weeks. a Change of tumor volume. Error bars represent the standard error of the mean from
three mice results (n = 3). b Nude mice tumor at 2 weeks after 1 x 10* cells injection. ¢ Nude mice tumor at 4 weeks after 1 x 10% cells injection

(Bar = 10 mm). Arrows show the tumor mass

CSCs are known to have high proliferation potency in
some cancer types (eg - leukemia), whereas other reports
describes CSCs as a slowly dividing cell population (eg-
melanoma) and it has also been suggested that as CSCs
divide slowly, the CSC population is responsible for
tumor resistance to treatment [49]. However, our HSC2/
hOCT3/4-shp53-F + hSK + hUL cell had higher prolifer-
ative activity though it showed resistance to various che-
motherapeutic drugs, molecular-targeted agents, and
radiation (Figs. 2 and 7). It is the general idea that,
higher proliferation potency may lead to higher intake of
anticancer agents inside the cancer cell. One proposed
model that explains the origin of CSC’s ability to survive
conventional chemotherapeutic regimens describes that,
only the CSCs overexpressing ATP-binding cassette
(ABC) transporters are able to repopulate the tumor
after exposure to the chemotherapeutic agents [50]. The
multidrug efflux pump ABCG2 has roles in cytotoxic
drug efflux and has been described as one of the reason
of the “side population” which helps define adult stem
cells of tumors [51]. So, we examined the expression of

ABCG2 between the transfectants and HSC2/EGFP or
HSC2 to investigate the reason why the HSC2/hOCT3/
4-shp53-F + hSK + hUL showed resistance to various
chemotherapeutic drugs in spite of its higher prolifera-
tion potency. However, we could not detect any differ-
ences of ABCG2 expression between the transfectants
and HSC2/EGFP or HSC2 (data not shown).

The CSC markers differ in different cancer types.
Until now, a number of markers have been discov-
ered, ie - CD44, CD44v4, CD44v6, CD34, CD133,
CD166, CD90, CD13, EpCAM, ABCG2, ALDH1 etc.
[8, a,b,c]. However, in this present study we reported
the expression pattern of only a few. Further experi-
mentation is necessary to understand the expression
of other CSC markers in HSC2 and in the transfec-
tants. The reprogramming factors (Oct4, Sox2, Kif4, I-
Myc or Lin28) we used in this study might be a few
of the key molecules that can trigger the conversion
of non-CSCs into CSC in oral tumors. Therefore, it is
necessary to identify the other key molecules that are
required for the development of CSCs.

HSC2/hOCT3/4-shp53-F+hUL

differentiated areas, but teratomas were not observed (Bar =

HSC2/hSK+hUL

Fig. 9 Histological analysis of nude mice tumors. HSC2 or HSC2/EGFP (5 x 10°) were inoculated into BALB/c nude mice subcutaneously to
make each tumor mass. Each tumor was dissected out, fixed in neutral-buffered formalin, embedded in paraffin and stained with
hematoxylin and eosin. Histological analysis of these tumors showed squamous cell carcinoma tissues including from highly to poorly

50 pm)

HSC2/hOCT3/4-shp53-F+hSK+hUL
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Conclusion

In summary, we here describe the possibility of repro-
gramming non-CSCs by the introduction of defined re-
programming factors and the consequent generation of
artificial CSCs. These findings may provide a valuable
model system for the study of CSCs, which might help
in the development of new therapeutic strategies target-
ing CSCs in oral tumors.
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