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the Higher Relative Bioavailability of the OROS® Formulation of Oxybutynin
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Abstract. A new minimal Segmented Transit and Absorption model (mSAT) model has
been recently proposed and combined with intrinsic intestinal effective permeability (Peff,int)
to predict the regional gastrointestinal (GI) absorption (fabs) of several drugs. Herein, this
model was extended and applied for the prediction of oral bioavailability and pharmacoki-
netics of oxybutynin and its enantiomers to provide a mechanistic explanation of the higher
relative bioavailability observed for oxybutynin’s modified-release OROS® formulation
compared to its immediate-release (IR) counterpart. The expansion of the model involved
the incorporation of mechanistic equations for the prediction of release, transit, dissolution,
permeation and first-pass metabolism. The predicted pharmacokinetics of oxybutynin
enantiomers after oral administration for both the IR and OROS® formulations were in
close agreement with the observed data. The predicted absolute bioavailability for the IR
formulation was within 5% of the observed value, and the model adequately predicted the
higher relative bioavailability observed for the OROS® formulation vs. the IR counterpart.
From the model predictions, it can be noticed that the higher bioavailability observed for the
OROS® formulation was mainly attributable to differences in the intestinal availability (FG)
rather than due to a higher colonic fabs, thus confirming previous hypotheses. The predicted
fabs was almost 70% lower for the OROS® formulation compared to the IR formulation,
whereas the FG was almost eightfold higher than in the IR formulation. These results provide
further support to the hypothesis of an increased FG as the main factor responsible for the
higher bioavailability of oxybutynin’s OROS® formulation vs. the IR.
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INTRODUCTION

In recent years, there has been an increase in the use of
physiologically based pharmacokinetics (PBPK) models in
drug development, particularly in the pre-clinical and early
clinical stages. Numerous articles coming from academia,

industry and regulatory agencies have highlighted the benefits
of applying such models in the drug discovery and develop-
ment arena (1–6). By incorporating some of the mechanisms
driving the pharmacokinetics of a drug, PBPK models allows
one to distinguish between drug-related and the physiological
factors controlling drug absorption, distribution, metabolism
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and elimination (ADME). This characteristic enables one to
integrate measured in vitro or in silico drug properties into
the model in the so-called in vitro–in vivo extrapolation
(IVIVE) approach, enabling the use of such models in a truly
prospective fashion (6). PBPK models have been increasingly
applied in oral absorption and biopharmaceutics. This has
been partly due to the development and availability of
mechanistic absorption models such as the ones included in
commercial software packages like SimCYP® (ADAM) (7),
GastroPlus™ (ACAT) (8) and PK-Sim® (9,10), as well as
some in-house developments coming from academia and
industry (11–14).

Oral absorption and bioavailability are dependent upon
numerous physiological and drug-related factors interacting
simultaneously. These factors are the key to defining the
different steps of the oral absorption process, i.e. transit,
dissolution, release, permeation, transport and metabolism
(15,16). Given the complex nature of these drug–physiology
interactions, prospective predictions of oral bioavailability
within the PBPK framework are still a challenging task (17–
19). Nevertheless, significant efforts have recently been made
in order to improve our understanding of such a complex
interplay. For instance, the Innovative Medicines Initiative
(IMI) OrBiTo project has amongst its goals to enrich our
knowledge of the physiological and biopharmaceutical prop-
erties that define in vivo drug absorption and to provide new
in vitro and in silico tools that can help to make better
predictions of the in vivo drug product performance (20).

One of the key biopharmaceutical factors defining oral drug
absorption are formulation characteristics. In a recent study, we
investigated the impact that modified/controlled release (MR/
CR) formulations might have on the oral bioavailability of
substrates of the cytochrome P450 (CYP) 3A4 enzymes using a
prospective PBPK modelling and simulation (M&S) approach
(21). By employing this approach, we were able to evaluate the
interplay between drug and physiological-related factors
governing intestinal absorption and first-pass metabolism, and in
particular to identify the possible scenarios where MR formula-
tions of a CYP3A substrate might display higher relative
bioavailability (Frel) compared to its immediate released (IR)
counterparts (21). In our previous study, it was shown that highly
cleared CYP3A-substrates belonging to Class 1 within the
biopharmaceutics classification system (BCS) are more likely to
display higher Frel when formulated as MR (21). The mechanism
proposed for this phenomenon is an increased intestinal avail-
ability (FG) due to a decreased intestinal first-pass metabolism as
a result of the lower abundance of CYP3A enzymes in the distal
gastrointestinal (GI) tract, where most of the drug contained in
theMR formulation is likely to be released and absorbed (21–24).
Another interesting outcome of the study was the observed trend
to over predict fabs ofMR formulations belonging to BCS Classes
2 and 3 (21,25). This over prediction was attributed to an
overestimation of the colonic absorption due to the PBPK
approach employed for the study. That is, intestinal effective
permeability (Peff) was assumed to be same for all intestinal
segments implemented in the absorption model, including the
colon (21). In an attempt to address this issue, and given the lack
of an implementation of regional intestinal (passive) permeability
within in the PBPK framework, two novel approaches to
implement regional Peff for prospective PBPK simulations were
recently proposed (26). The approaches were based on the

translation of regional intestinal variations in the available
mucosal surface area (mSA) into segment-dependent permeabil-
ity and absorption (26). When the approaches were combined
with a novel simplified absorption PBPK model, or minimal
Segmented Absorption and Transit (mSAT) model, they showed
a potential to decrease the observed overestimation of the colonic
fabs (26), especially when applying the so-called Method 3 (M3)
which was based on the intestinal mSAvalues derived recently by
Helander and Fändriks (26,27).

One of the limitations of the prospective PBPK analysis of
the bioavailability differences between IR andMR formulations
of CYP3A substrates was the lack of drug-specific simulations
necessary to provide stronger support for the prospective
modelling and simulation study outcome (21). Therefore, the
present work was designed as a continuation of the work
performed in the previous studies, with the main aim to provide
a drug-specific example to support the hypothesis of a reduced
first-pass metabolism as the main driving mechanism of the
higher Frel of CYP3A substrates formulated as MR (21).

In particular, this study investigated the bioavailability
differences observed for the MR formulation of oxybutynin
(OXY). OXY is a highly cleared antimuscarinic drug with
anticholinergic, spasmolytic and local anaesthetic properties
employed for the treatment of urge urinary incontinency due to
over activity of the detrusor muscle (28). OXY is a highly
permeable and soluble compound (BCSClass 1) (21).After oral
administration, OXY is rapidly absorbed and undergoes exten-
sive first-pass metabolism in both the intestinal wall and the
liver, mainly mediated by CYP3A4 (28–30). When formulated
as a once a day (MR) OROS® formulation, the relative
bioavailability of OXY was around 153% compared to its IR
tablet, while the exposure of its main metabolite, N-
desethyloxybutynin (DEOB) was reduced by almost 30% (28).
This reduction in exposure was translated into an improved
safety profile due to a reduction in the incidence of dry mouth
episodes, OXY’s main side-effect, which is mainly attributed to
its active metabolite, yet keeping the same efficacy (31,32).

In this study, OXY’s bioavailability differences were inves-
tigated by means of a PBPK modelling and simulation approach,
combining in vivo, in vitro and in silico data together with an
extended version of the previously developed mSAT model. The
model was expanded to prospectively predict OXY’s oral
bioavailability for both IR and MR formulations (26).

MATERIALS AND METHODS

PBPK Model Development

The PBPK model employed for the mechanistic pharma-
cokinetic prediction of OXY was developed using a two-step
approach. Firstly, a compound-specific semi-physiological
PBPK model was developed and optimized with intravenous
(IV) data to describe OXY’s disposition. Secondly, the opti-
mized OXY’s disposition model was coupled with an extended
version of the generic mSAT model to predict oral absorption
and bioavailability using an in vitro–in vivo extrapolation
(IVIVE) approach. The two-stage approach was chosen as it
reduces the confounding issues that can arise when drug’s
disposition is not properly considered in the prediction of oral
pharmacokinetics, thus providing better information about the
predictive performance of the oral absorption model (mSAT).
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The details of the different steps of the model development are
described in the following sections:

Development of OXY’s Disposition Model

The semi-physiological PBPK model employed to describe
OXY’s disposition was developed based on the approach
proposed by Cao and Jusko, whereby the model structure
represents a hybrid between a whole-body PBPK model and a
compartmental or mammillary pharmacokinetic model (33).
The advantage of employing such an approach, compared to the
use of traditional compartmental models, is that the former
allows the use of prior physiological and anatomical knowledge
to define the model structure. Therefore, under this approach,
the model parameters are constrained between physiologically
plausible limits (33). This approach appropriately distinguishes
between drug-related and system-specific parameters, as the
model can be informed from known drug-related properties,
such as plasma protein binding and/or metabolic routes (33). It
should be noted however that the model structure was not the
product of the reduction of a whole-body PBPK model using
formal reduction techniques such as Bproper lumping^ (34–36).
In contrast, the model development was data driven, whereby
the number of tissue compartments was defined based on the
best description of the observed clinical data.

The selected structure of the disposition model is shown in
Fig. 1a. The model is comprised of two anatomically defined
compartments, systemic blood and liver, and three additional
empirical tissue compartments, necessary to describe OXY’s
disposition after an intravenous (IV) infusion (30). All of the
aforementioned compartments were assumed to be well-mixed,
where drug transport into and from the tissues was assumed to
occur by means of perfusion-limited processes.

The drug’s concentration in the ith non-eliminating
empirical tissue was described by Eq. 1,

Vtissue;i � dCtissue;i

dt
¼ Qtissue; i � Cblood−

Ctissue;i

Kb;tissue

� �
ð1Þ

where Vtissue,i represents the tissue volume (L), Ctissue,i is the
drug’s concentration in the tissue (mg/L), Qtissue,i is the tissue
blood flow (L/h) and Kb,tissue is an empirical tissue to blood
partition coefficient necessary to describe the extent of
OXY’s distribution into the tissue compartment. The dynam-
ics in the blood compartment were described by Eq. 2,

Vblood � dCblood

dt
¼ Rin þ 1

Kb;tissue

�
X3
i¼1

Qtissue; i � Ctissue;i

0
@

1
A

þQHV � Cliver

Kb;liver

−
X3
i¼1

Qtissue; i þQliver

0
@

1
A� Cblood

ð2Þ

where Vblood is the systemic blood volume (L), Rin is the
drug’s infusion rate after IV administration (mg/h), QHV is
the hepatic vein’s blood flow, Cliver is the concentration in

the liver tissue, Kb,liver is the drug’s liver tissue to blood
partition coefficient and Qliver is the combined hepatic and
non-villous splanchnic blood flow (37–39). The latter
parameter was defined the sum of the arterial blood
supply to the liver and the non-villous portal blood flow
(i.e. oesophagus, stomach, gut tissue, pancreas, upper large
intestine, lower large intestine and spleen) (37–39). Given
that the observed clinical data is usually reported as
plasma concentrations rather than blood concentrations,
the concentration represented by Eq. 2 (blood) was later
expressed as plasma concentration by dividing Cblood by
the blood to plasma ratio (BP). OXY’s systemic elimina-
tion was assumed to occur exclusively through hepatic
metabolism, given that only less than 0.02% of the
administered dose was found unchanged in the urine after
IV administration (30). The dynamics of the liver com-
partment were described by Eq. 3,

Vliver � dCliver

dt
¼

X4
n¼1

Qent;n � Cent;n

0
@

1
A

þ Qliver � Cbloodð Þ

− QHV þ f up � CLliver

� �
� Cliver

Kb;liver

ð3Þ

where Qent,n and Cent,n are the villous blood flow and
concentration entering the liver from the nth enterocyte
compartment, respectively (these values were assumed
zero for IV administrations), fup is the drug’s fraction
unbound in plasma and CLliver is the OXY’s hepatic
clearance (L/h). CLliver was scaled from the drug’s
unbound intrinsic microsomal clearance (CLint(u), L/h/
mg of microsomal protein) using the following equation
(40)

CLliver ¼ CLint uð Þ � LW �MPPGL ð4Þ

where LW is the liver weight (g) and MPPGL is the amount
of microsomal protein per gram of liver (mg/g).

Disposition Model Parameters and Parameter Estimation

The majority of the system-related parameters
employed in OXY’s semi-physiological disposition model
were derived from the literature and are summarized in
Table I. The parameters were intended to represent those
of a Breference individual^, i.e. Caucasian male, 70 kg and
1.70 m. The remaining model parameters were obtained
by fitting the model shown in Fig. 1a to OXY’s plasma
concentration-time profile obtained after a 5 mg IV
infusion to four healthy volunteers published by
Douchamps and co-workers (30). The data was digitized
using GetData Graph Digitizer v2.26 (http://getdata-graph-
digitizer.com/). The estimated parameters were CLint(u),
Qtissue,i, Vtissue,I (for tissues 1 to 3) and an empirical
unbound tissue to plasma partition coefficient (Kpu,tissue).
Kpu was assumed to be the same for all the empirical

(2)

(3)
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tissues. The Kpu was converted into a Kb value, needed
for the model equations, using the following equation
(41),

Kb;i ¼
Kpu;i � f up

BP
ð5Þ

where BP is the OXY’s blood to plasma ratio.
One of the main requisites for the disposition model

was that the sum of the blood flows and tissue weights
should be equal to the cardiac output (CO) and body
weight (BW), respectively (33). To implement these

constraints, Qtissue,i and Vtissue,i were defined by Eqs. 6
and 7, respectively,

Qtissue;i ¼ f CO;i � 1− f CO; liver

� �
� CO ð6Þ

Vtissue;i ¼
f BW;i � 1− f BW; liver

þ f BW;blood

� �� �
� BW

ρtissues
ð7Þ

where fco,i and fBW,i are the fractions of CO and BW for the ith
empirical tissue, respectively, fCO,liver is the fraction of the
cardiac output corresponding to the blood flow entering the liver

Fig. 1. Schematic representation of the PBPK model employed for OXY predictions. a Semi-physiological PBPK model employed to describe
OXY’s distribution. b Extended minimal segmented absorption and transit (mSAT) model for oral bioavailability predictions. Vtissue,i volume of
the ith tissue, Qtissue,i blood flow entering and leaving the ith tissue, QHV hepatic vein blood flow, Qliver blood flow entering the liver, CLliver

total liver clearance, kGE gastric emptying rate constant. For the nth intestinal segment: kdiss,n dissolution rate constant, ka,n absorption rate
constant, CLn intestinal clearance, kt,n transit rate (constant or time varying). More details with respect to the parameters can be found in the
BMaterials and Methods^ section
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(Table I), fBW,liver and fBW,blood are the fractions of the BW
corresponding to the weight of the liver and blood, respectively,
and ρtissues is the tissue density (kg/L). The aforementioned
fractions were parameterized using a logistic-normal transfor-
mation as suggested by Tsamandouras and co-workers (42). An
example of this parameterization is shown in Eq. 8,

f 1 ¼
eθ1

eθ1 þ eθ2 þ 1

f 2 ¼
eθ2

eθ1 þ eθ2 þ 1

f 3 ¼
1

eθ1 þ eθ2 þ 1

ð8Þ

where θ1 and θ2 are the parameters needed to be estimated (on the
logistic scale). This approach not only constrains the individual
fractions to be between 0 and 1 but also imposes the constraint that
the sum of the fractions should be equal to 1 (42). The selected
parameterization also contributed to the structural identifiability of
the model, as the parameters needed to be estimated for the
empirical tissues (fractions of volumes and blood flows) were also
reduced from six to four. The assumption of a single uniqueKpu to
describe the extent of tissue distribution in all the empirical tissues
was also based on identifiability grounds, due to the fact that an
independent Kpu for each tissue could not be uniquely identified
given the model structure (43,44). The latter was corroborated by
performing a model structural identifiability analysis prior to the

Table I. System-Related Parameters Used in the mSAT Model

Parameter [units] Value Ref.a

Reference body weight (BW) [kg] 70 S3
Reference height (HT) [m] 1.70 S3
Reference body surface area (BSA) [m2] 1.81 S3
Tissue density (ρtissue) [kg/L] 1.040 S3
Cardiac output (CO) [L/h] 350.37 S3
Blood weight [kg] (fraction of BW) 5.53 (0.079) S3
Blood volume (Vblood) [L] 5.32 S3

Liver-specific parameters
Liver weight [kg] (fraction of BW) 1.82 (0.026) S3
Liver density (ρliver) [kg/L] 1.080 S3
Liver volume (Vliver) [L] 1.69 S3
Liver blood flow (Qliver) [L/h] (fraction of CO) 68.32 (0.195) S3
Hepatic vein blood flow (QHV) [L/h] (fraction of CO) 89.34 (0.255) S3
MPPGL [mg/g] 40 S3
CYP abundances (ACYPj(liver),n) [pmol/mg] S3
ACYP3A4liver 137 S3
ACYP2C9liver 73 S3
ACYP2C19liver 14 S3
ACYP2D6liver 8 S3

GI tract parameters
Gastric emptying rate constant (kGE) [h

−1] 4 S3
Mean intestinal transit time (SITT) 3.32 S3
Ascending colon transit rate constant (kt,col) [h

−1] 0.098 S3
Degrees of flatness coefficient (DF) 1.7 S3
Small intestinal length (LSI) [cm] 670.7 S3

Segment
Regional intestinal parameters DUO JEJ ILE COL
Radius (rn) [cm] 2.37 1.75 1.5 2.42 S3
Length (Ln) [cm] 53.7 248.2 368.9 16.7 S3
Fractional length (fLSI,n) 0.08 0.37 0.55 – S3
Cylindrical volume [mL] 9.47 × 102 2.39 × 103 2.61 × 103 3.07 × 102 S3
Mucosal surface area (mSAn) [cm

2] 7.50 × 104 5.19 × 105 3.86 × 105 1.62 × 103 S3
Surface area scaling factor ratio (SAEFn) 0.49 1.00 0.58 0.033 S3
Enterocyte height [μm] 32.2 32.2 32.2 35.1 S3
Enterocyte compartment volume (Vent,n) [L] 0.0262 0.119 0.079 8.9 × 10−4 S3
Enterocyte compartment blood flow (Qent,n) [L/h] (fraction of CO) 1.33 (0.0038) 6.24 (0.0178) 9.25 (0.0264) 4.20 (0.012) S3

Intestinal CYP abundances (ACYPj(ent),n) [pmol]
ACYP3A4ent,n 9110 36,060 21,030 0 S3
ACYP2C9ent,n 1770 7030 4100 0 S3
ACYP2C19ent,n 210 820 480 0 S3
ACYP2D6ent,n 110 440 240 0 S3

Segment
Regional mSAT luminal parameters ST DUO JEJ ILE COL
pH 1.5 6.4 6.6 7.1 6.5 S3
Baseline water volume (Vlum,n) [mL] 35 6 13 24 5 S3

aMore details and references for the system-related parameters can be found in Sect. 3 of the Supplementary Material (Table S.3)
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parameter estimation procedure (43,44). The analysis was done
using the BIdentifiabilityAnalysis^ package for Mathematica
(Wolfram Research, Inc., Champaign, IL, USA) (45,46), where
themodel was shown to be at least locally identifiable, i.e. there is a
finite set of solutions leading to the same input/output relationship
(43,45,46). For details on the IdentifiabilityAnalysis procedure and
the Mathematica Package, readers are referred to (45,46). Finally,
the model parameters were estimated in NONMEM version 7.3
(ICON Development Solutions, Hanover, Maryland, USA). The
model was implemented using the LSODA differential equation
solver (ADVAN13) subroutine inNONMEM(47). The estimation
was performed using the first-order conditional estimation with
interaction method (FOCE-I), assuming no random effects on the
model structural parameters given that only mean data was
available for the IV plasma concentration profile (30). For the
estimation, both the data and model output were transformed into
natural logarithms (transform both sides) and an additive error
model (on the log scale) was assumed for the residual unexplained
variability (RUV). CLint(u) and Kpu,tissues were also logged for the
purposes of parameter estimation. The latter was done to stabilize
the estimation and to prevent the model parameters taking
negative values in the differential equations (48,49).

Expansion of the mSAT Model for Mechanist ic
Bioavailability Predictions

ThemSATmodel is amulti-compartmental absorptionmodel
that has been recently proposed and used for the prediction of the
fraction absorbed using different intestinal permeability ap-
proaches (26). The model structure was based on the original
Compartmental Absorption and Transit (CAT) model developed
in the late 1990s by Yu and co-workers (50–52). The main
difference with respect to the CAT model, however, was that the
new model describes the small intestine with only three anatom-
ically defined compartments, duodenum, jejunum and ileum,
instead of seven in theCATmodel. In order to adequately describe
the mean small intestinal transit time (SITT) with a reduced
number of compartments, themSATmodel was implementedwith
aWeibull transit function that was optimized based upon the same
SITT data used for the development of the CATmodel (26,52). As
in the first version of the CAT model, the mSAT model structure
was kept relatively simple as the initial goal was only to predict the
fraction absorbed based on permeability data (26).

For this study, the mSAT model was expanded for the
mechanistic prediction of oral absorption and bioavailability
following a similar structure to that of the ACAT and ADAM
models implemented within GastroPlus™ and the SimCYP®
simulator, respectively (8,53).

The expanded mSAT model structure is shown in Fig. 1b.
The main segments of the mSAT model are stomach (ST),
duodenum (DUO), jejunum (JEJ), ileum (ILE) and ascending
colon (COL) (26). For each nthGI segment, the drug amount can
be modelled either in the solid (Asolid,n) state or the dissolved
state (Adiss,n), where no explicit compartments were implemented
for the drug contained in the formulation. The model assumes
that all the GI compartments are well mixed (50–52), only
dissolved drug can be absorbed (54), absorption can only occur
by means of non-saturable process, no significant absorption can
occur from the stomach compartment (50), no drug degradation
can occur in the luminal portions of theGI compartments and the
lengths of the GI segment are representative of their anatomical

lengths (37,55). The model was implemented inMATLAB 2014a
(The MathWorks Inc., Natick, MA, USA), and the ordinary
differential equations (ODE) were numerically evaluated using
the ode15s solver for stiff ODEs. The equations describing the
drug’s dynamics within the compartments of the mSAT model
are summarized below (Eqs. 9–18), and the model details are
given in the following sections.

Stomach

dAsolid;st

dt
¼ STEPst � INPUT tð Þ−kGE �Asolid;st−DRst ð9Þ

dAdiss;st

dt
¼ DRst−kGE �Adiss;st ð10Þ

Duodenum

dAsolid;duo

dt
¼ STEPduo � INPUT tð Þ þ kGE

�Asolid;st−DRduo−w tð Þduo �Asolid;duo ð11Þ

dAdiss;duo

dt
¼ kGE �Adiss;st þDRduo− w tð Þduo þ ka;duo

� ��Adiss;duo ð12Þ

Jejunum and Ileum (n = 2, 4)

dAsolid;n

dt
¼ STEPn � INPUT tð Þ þ w tð Þn−1

�Asolid;n−1−DRn−w tð Þn �Asolid;n ð13Þ

dAdiss;n

dt
¼ w tð Þn−1 �Adiss;n−1 þDRn− w tð Þn þ ka;n

� ��Adiss;n ð14Þ

w tð Þn ¼ β
f LSI;n � SITT � γ

� t
f LSI;n � SITT � γ

 !β−1

ð15Þ

Ascending Colon

dAsolid;col

dt
¼ STEPcol � INPUT tð Þ þ w tð Þile �Asolid;ile−DRcol−kt;col �Asolid;col

ð16Þ

dAdiss;col

dt
¼ w tð Þile �Adiss;ile þDRcol− kt;col þ ka;col

� ��Adiss;col ð17Þ
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All the Intestinal Segments

Vent;n � dCent;n

dt
¼ ka;n �Adiss;n− Qent;n þ CLent;n

� �� Cent;n ð18Þ

Drug Transit

Drug mass in the stomach compartment (solid and
dissolved) was transferred to the adjacent segment by
means of a first-order process controlled by the gastric
emptying rate constant, kGE (56–58). In the case of
disintegrating solid immediate-release (IR) dosage forms
(or suspensions), the initial conditions (at t = 0) in the
stomach compartment (Eq. 9) were set to the adminis-
tered dose (Asolid,st(0) = dose). However, in the case of
non-disintegrating solid dosage forms, the solid drug was
transferred to the adjacent segment by means of a discrete
process depending upon the mean residence time (MRT)
in the stomach (1/kGE); this also applied to the rest of the
GI compartments.

For non-disintegrating solid dosage forms, transfer of the
solid mass was implemented with a step function (STEP)
following the method described by Hénin and co-workers
(59). When the STEP function is used, the initial conditions of
the stomach compartment are set to zero and an input
function (INPUT(t)) for the solid mass needs to be used.
This INPUT(t) function can take any form, for example a
zero order input rate, simulated release profile, an in vitro
release profile, etc. More details about the implementation of
the STEPn function in the mSAT model can be found in Sect.
1 of the Supplementary Material. For the small intestinal
compartments, the transit of the drug particles to the adjacent
segment (solid and dissolved) was implemented by a time-
varying Weibull function, w(t)n (Eq. 15), where β and γ are
dimensionless coefficients with a value of 2.01 and 1.57,
respectively (26), fLSI,n is the fractional length of the nth small
intestinal segment (with respect to the total length of the
small intestine, LSI), fLSI,n was assumed as 0.08, 0.37 and 0.55
for duodenum, jejunum and ileum, respectively (55). For the
ascending colon, the drug transit was assumed as a first-order
process depending upon the ascending colon transit rate
constant (kt,col). The use of a linear transit model and rate
constant for the colon segment was based on the fact that the
transit time in the whole colon (from cecum to deciding
colon) has been successfully described by using such a model
by Bouchoucha and co-workers, where they described transit
of markers using three transit compartment, representing
ascending, transverse and descending colon or right, left and
recto-sigmoid colon, respectively (60,61)

Dissolution and Solubility

The segment-dependent dissolution rate (DRn) can be
either inputted from in vitro dissolution studies or
predicted using derivations of the Noyes-Withney/Nernst-
Brunner equation for drug dissolution (62). Particularly
for OXY, the dissolution rate was predicted by using a
modification of the model proposed by Wang and

Flanagan for spherical particles dissolving over time
(53,63,64) as shown in Eq. 19,

−DRn ¼ dAsolid;n

dt
¼ −

3�Daq �A
1=3
solid 0ð Þ;n �A

2=3
solid;n

ρp � r0

� Sn−
Adiss;n

Vlum;n

� �
1

heff tð Þ þ
1
r tð Þ

� �
ð19Þ

where Asolid(0),n is the initial amount of solid drug in the given
GI segment, this mass was calculated in MATLAB by
integrating the cumulative amount of solid drug entering
each intestinal segment at each iteration, whereas for the
stomach compartment, this mass was assumed equals to the
dose, Daq is the aqueous diffusion coefficient (cm2/h), r0 is the
initial particle radius (cm), ρp is the particle density (mg/mL),
Sn is the segment-dependent aqueous solubility (mg/mL),
Vlum,n is the segment-dependent luminal fluid volume (mL),
heff(t) is the effective diffusion layer thickness (cm) (65,66)
and r(t) is the particle radius (cm) at a given time. The main
assumptions of Eq. 19 are that the spherical particles are in a
well-stirred media, the particles dissolve isotopically, that the
total number of particles remains constant across the system,
there is an immediate precipitation when the dissolution rate
takes positive value (i.e. no super-saturation was allowed in
the model) and all the particles have the same initial radius
(r0) (63). The time-varying radius for the dissolving spherical
particles was calculated using Eq. 20 (63,64,67). When the
particle radius reached a critical value of 10−9 cm, the
dissolution was assumed complete and the dissolution rate
was assumed to be zero. heff(t), on the other hand, was
assumed to be equal to r(t) in the case of particles with radius
smaller than 30 μm; otherwise, it was assumed equal to an
empirical maximum value of 30 μm (53,66–69).

r tð Þ ¼ r0 � Asolid;n

Asolid 0ð Þ;n

� �1=3 ð20Þ

OXY’s segmental solubility (Sn) was calculated accord-
ing to its intrinsic solubility (S0), pKa and segment-depended
pH with the use of the Henderson–Hasselbalch equation for
monoprotic bases (70). Details of such calculations can be
found in Sect. 4 of the Supplementary Material.

Luminal fluid volumes (Vlum,n) were determined using an
empirical fluid dynamics model with similar characteristics to
the model proposed by Jamei and co-workers (53). The
model assumes that fluid movements along the GI tract are
driven by gastric emptying and intestinal transit time, taking
into account volume fluctuations due to fluid intake, intestinal
fluid secretion and reabsorption (53). The empirical nature of
the model is due to the fact that the GI fluid secretion and
reabsorption parameters were obtained by fitting the model
to free intestinal water data (71). This data was obtained by
magnetic resonance imaging (MRI) after the intake of
240 mL of water in 12 healthy volunteers under fasting
conditions (71). The details of the model and the fitting can
be found in Sect. 2 of the Supplementary Material.
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Intestinal Absorption

Absorption of the dissolved drug was modelled as a first-
order process depending upon a segment-specific first-order
absorption rate constant (ka,n) as shown by Eq. 21

ka;n ¼ 2� Peff �DF � SAEFn � Iratio;n
rn

ð21Þ

where Peff is the drug’s effective intestinal permeability, rn is
the radius of the intestinal segment, DF is the degree of
flatness coefficient that accounts for changes in surface area
to volume ratio due to the elliptical shape of the human
intestine (compared to a cylinder) and was assumed to be 1.7
as suggested by Sugano (2009) (72), and SAEFn is the ratio
between surface area amplification factors of the nth intesti-
nal segment with respect to that of the jejunum, where Peff is
measured (26,73). This ratio takes into account regional
variations in drug absorption due to changes in the available
mucosal surface area (mSA), and it is necessary for the
implementation or segment-dependent intestinal permeation
(26). SAEFn differences were implemented using the Method
3 (M3) proposed by Olivares-Morales and co-workers (2015),
where SAEFn takes values of 0.49, 1.00, 0.58 and 0.033 for the
duodenum, jejunum, ileum and ascending colon, respectively,
and Iratio,n is the ratio between the fraction of unionized drug
at the segment’s pH with respect to that in the jejunum
(Iratio,n = funionized,n/funionized,jejunum). This ratio takes into ac-
count regional differences in intestinal permeability due to
changes in ionization compared to that of the upper jejunum,
where Peff is measured (73,74). Iratio,n was calculated using the
Henderson–Hasselbalch equation based on the segment’s
luminal pH and OXY’s pKa (Sect. 4.1 of the Supplementary
Material).

Enterocyte Compartments and Intestinal Metabolism

Mechanistic enterocyte compartments were implemented
in the mSAT model to predict OXY’s regional intestinal
metabolism. Equation 18 shows the general structure of such
compartments where Cent,n is the OXY’s concentration in the
nth enterocyte compartment (mg/L) and Vent,n is the volume
of the enterocyte compartment (L). These volumes were
calculated by multiplying the mSAn of the give intestinal
segment by the respective enterocyte height (without ac-
counting for the surface area expansion due to microvilli)
(9,27), Qent,n is the villous blood flow of the nth enterocyte
compartment (L/h) and CLent,n is the segment-dependent
enterocyte clearance. This clearance was calculated according
to Eq. 22

CLent;n ¼
Xm
j¼1

fmCYPj � CLint uð Þ �ACYPj entð Þ;n
ACYPj liverð Þ

� �
ð22Þ

where fmCYPj is the fraction of the total intrinsic clearance
(CLint(u)) associated to the jth CYP isoform. This value was
derived from the in vitro data reported by Mizushima and co-
workers (75), and the details of such calculations can be
found in Sect. 4.2 of the Supplementary Material. ACYPj(liver)

is the mean liver abundance of the jth CYP isoform (pmol/mg
microsomal protein) (76), and ACYPj(ent),n is the absolute
abundance of the jth CYP isoform in the nth enterocyte
compartment (pmol) (22,77,78). Equation 22 assumes that the
intrinsic clearances (per pmol of enzyme) are equal in both
the liver and the intestinal wall (40,79) and that there is no
binding of the drug in the enterocyte compartments (fugut = 1)
(11,80). All the system-related parameters for the mSAT
model were derived from the literature, and they are
summarized in Table I.

Finally, the model was implemented with mass balance
equations that allowed the estimation of the extent of drug
dissolution, absorption (fabs) and availability in the intestine
and the liver (FG and FH). The extended model was
combined with the disposition model developed in the
previous section and implemented together in MATLAB.

OXY’s Oral PK Simulations and Relative Bioavailability
Predictions

OXY oral pharmacokinetic profile was mechanistically
predicted using the combined mSAT absorption and disposi-
tion model (Fig. 1). For the predictions, OXY’s drug-specific
input parameters were either derived from literature or
calculated using in silico equations. A summary of the
parameters and their values are provided in Table II. More
details about the parameter selection and/or calculations can
be found in Sect. 4 of the Supplementary Material.

Two different oral pharmacokinetic studies were pre-
dicted using the mSAT model. In the first study, the
pharmacokinetics of OXY was investigated after the admin-
istration of three 5-mg IR tablets (every 5 h) to eight healthy
volunteers, four of them participating in the IV study used for
the optimization of the disposition model (30). The tablets
were administered under fasting conditions together with
100 mL of water, and blood samples were collected up to 15 h
post-dose. OXY plasma concentrations were measured using
a validated assay (30). This study was simulated with the
intention to evaluate the model capacity to mechanistically
predict OXY’s oral pharmacokinetic, particularly given the
fact that some of the study participants were also part of the
IV study used for the development of OXY’s disposition
model (30). The model prediction were evaluated graphically
and contrasted with observed mean clinical data in terms of
accuracy of the prediction of mean pharmacokinetic param-
eters such as absolute bioavailability (F), area under the
curve (AUC) and maximum plasma concentration (Cmax).

The second study was a relative bioavailability study
between OXY’s IR tablet and its controlled-release
(OROS®) formulation. The clinical data of this study was
kindly provided by Janssen Pharmaceutica. The study was
conducted in 41 healthy volunteers, males and females, where
each subject received three 5-mg IR release tablets (every
8 h) and one 10-mg controlled-release (OROS®) formulation
in a cross-over fashion. The formulations were administered
in the morning under fasted conditions together with a
240-mL glass of water. Blood samples were collected up to
48 h post-dose and were analysed for OXY using a validated
LC-MS/MS assay (81). In contrast to the previous study, a
stereo-selective assay was employed for the determination of
OXY plasma concentrations and the concentrations of OXY
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enantiomers, R and S-oxybutynin, were reported (81). It has
been shown that OXY enantiomers display stereo-selective
pharmacokinetics, mainly attributable to differences in vol-
ume of distribution and clearance between the enantiomers
(75). To overcome this issue, the aforementioned differences
were accommodated into the mSAT model predictions,
adapting OXY’s parameters with the observed in vitro
parameters for each enantiomer (75,82). For instance,
changes in volume of distribution between enantiomers were
mainly attributed to plasma protein-binding differences
(75,82). Hence, stereo-selective plasma protein binding was
implemented in the model by employing the reported fup for
each enantiomer (Table II). This led to changes in the volume
of distribution as the Kb,tissue is related to fup by Eq. 5. The
clearance differences, on the other hand, were accommodated
assuming that the CLint,(u) of the racemic mixture represented
an average between the intrinsic clearances of the enantio-
mers. Thus, the enantiomer-specific CLint(u) was calculated by
multiplying the CLint(u) value of the racemic mixture by the
CLint(u) ratio between the enantiomers (R/SCLint,ratio). The
latter parameter was defined for each enantiomer as the ratio
between the observed in vitro CLint(u) of the given enantio-
mer and the average in vitro CLint(u) between them. More
details on the derivation of the aforementioned parameters
can be found in Sect. 4.4 of the Supplementary Material.

For the relative bioavailability predictions, both IR and
OROS® formulations were simulated as per the study
protocol, whereas an additional IV profile was simulated to
estimate the absolute bioavailability of each formulation. The
drug was assumed to be administered as a racemic mixture
for prediction of the luminal processes (i.e. dissolution,
release). However, once the drug entered the intestinal wall

compartments of the mSAT model, the dose was divided into
enantiomer fractions. The compartments within the mSAT
model were used to prospectively estimate bioavailability
fractions for each formulation (fa, FG and FH). In the case of
the OROS® formulation, the observed mean in vitro release
profile was used as the INPUT function (Eq. 9). The in vitro
release profile was digitized from the literature (81,83). This
profile was measured in a USP apparatus VII in different
dissolution media such as water, simulated gastric fluid (SGF)
and simulated intestinal fluid (SIF) (83). Given the results of
the release study, it was assumed that OXY’s release rate
from the OROS® formulation was not affected by luminal
changes in pH and/or fluid volumes (83). The INPUTn profile
can be found in the Sect. 4.3 of the Supplementary Material.
Since OXY content in the OROS® is released as a
suspension (84,85), the dissolution rate of the suspended
drug was calculated using Eq. 19.

Lastly, an additional simulation was conducted for the
OROS® formulation using the classical approach for intestinal
permeability, i.e. Method 1 (M1) in (26), and SAEFn ratio was
assumed 1 in all segments. This was done in order to evaluate
the benefits of implementing the segment-dependent perme-
ability approach for the prediction of OXY’s pharmacokinetics
when administered as an OROS® formulation (26).

RESULTS

OXY’s Disposition Parameter Estimation

The estimation of the parameters for the semi-
physiological disposition model was successfully completed,
and the parameters estimates are summarized in Table III.

Table II. OXY’s Drug-Related Parameters Employed for the Simulations (Racemic Mixture and Isomers)

Parameter [units] OXY racemic R-OXY S-OXY Ref.a

Molecular weight (MW) [g/mol] 357.5 – – S5
pKa (base) 8.04 – – S5
LogD7.4 2.98 – – S5
LogP 3.71 – – S5
Intrinsic solubility(S0) [mg/mL] 0.012 – – S5
Particle density (ρp) [mg/mL] 1.20 × 103 – – S5
Initial particle radius (r0) [cm] 1.00 × 10−3 – – S5
Aqueous diffusion coefficient (Daq) [cm

2/h] 0.025 – – S5
Blood to plasma ratio (BP) 0.686 0.71 0.682 S5
Fraction unbound in plasma (fup) 3.40 × 10−3 4.70 × 10−3 2.75 × 10−3 S5
Apparent permeability (Papp) [×10

−6 cm/s] 21.9 – – S5
Jejunal effective permeability (Peff) [×10

−4 cm/s] 4.31 – – S5
Kpu(liver) 1.18 × 103 1.00 × 103 1.53 × 103 S5
Kpu,tissues Estimated – – See methods
CLint(u) Estimated – – See methods
R/SCLint,ratio 1 0.89 1.1 S5
fmCYP3A4 0.80 0.79 0.81 S5
fmCYP2C9 0.12 0.13 0.11 S5
fmCYP2C19 0.07 0.08 0.05 S5
fmCYP2D6 0.01 0.00 0.03 S5

Segment
Regional luminal parameters ST DUO JEJ ILE COL
Segmental solubility (Sn) [mg/mL] 12 0.54 0.34 0.12 0.43 S5
Luminal ionization ratio (Iratio,n) n/a 0.64 1.00 2.94 0.80 S5

B–^ indicates that the parameter was the same as for racemic oxybutynin
aDetails and the sources of each parameter value can be found in Sect. 4.5 of the Supplementary Material (Table S5)
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The structural model parameters were obtained with relative
good precision; all the relative standard errors (RSE) were
below 25%. The model provided a good fit to the infusion
data as shown in Fig. 2 (30). The NONMEM code for the
estimation can be found in Sect. 6 of the Supplementary
Material.

Mechanistic Prediction of OXY’s Oral Pharmacokinetics

The predicted oral pharmacokinetic profile of OXY’s IR
tablet (3 doses, every 5 h) is shown in Fig. 3. There was a
good agreement between the observed clinical data and the
mSAT model prediction (30). The predicted AUC0-15h was
32.5 ng*h/mL, comparable with the reported value (mean ±
SEM) of 33.7 ± 7.9 ng*h/mL (30). Cmax, on the other hand,
was predicted to be 6.24 ng/mL, whereas the reported Cmax

for the third dose on day 1 was 7.55 ± 2.22 ng/mL (30). The
estimated absolute bioavailability for the racemic OXY was
5.94%, whereas the reported absolute bioavailability was 6.2
± 1.2% (30).

Relative Bioavailability Between IR and OROS®
Formulation

The mSAT model was able to predict the pharmacoki-
netics of OXY enantiomers when formulated as IR and
OROS®. The pharmacokinetic predictions of the R isomer
(R-OXY) are shown Fig. 4, whereas the predictions of S-
OXY can be found in the Supplementary Material (Fig. S6).
Table IV summarizes the observed and predicted relevant
pharmacokinetic parameters, stratified by formulation and
enantiomers. There was a good agreement between the

observed clinical data and the mSAT predictions (Fig. 4a
and Fig. S6). Nevertheless, a general trend towards the
underestimation of the oral pharmacokinetics of the IR
formulation could be observed for both enantiomers (Fig. 4a
and Fig. S6A). This underestimation tended to be more
prominent for the S enantiomer than for the R enantiomer,
both in terms of Cmax and AUC0–48 (Table IV). The predicted
Cmax and AUC0–48 were within ±20% of the observed values
for R-OXY, whereas the bias for the S enantiomer was −51
and −37% for Cmax and AUC0–48, respectively. For the
OROS® formulations, underestimation of the pharmacoki-
netic parameters was also observed, though to a lesser extent
than for the IR formulation. The latter was particularly
observed for the R enantiomer (Fig. 4b) where both AUC0–48

and Cmax were within 6% of the observed values
The parameters for the S enantiomer, on the other hand,

showed a bias between 20 and 28% for AUC0–48 and Cmax,
respectively.

The relative bioavailability (Frel) predictions of the
OROS® formulation were consistent with those of the
observed values; both enantiomers displayed higher Frel when
formulated as OROS® compared to the IR. The Frel

predictions tended to be overestimated by a factor of 20%.
Mechanistic predictions of the intestinal processes driv-

ing oral absorption and bioavailability are shown in Fig. 5,
and the parameters are summarized in Table IV. Both
enantiomers IR were predicted to be well absorbed from
the IR formulation, and the fabs values were close to 1. For
the OROS® formulation, this fraction was predicted to be
reduced by almost a 70% (Table IV). The predicted intestinal
first-pass metabolism for the IR formulation was high (FG≤
0.13), whereas for the OROS® formulations, the FG was
predicted to be almost eightfold higher. For the IR formula-
tion, the majority of the absorption and intestinal elimination
was predicted to occur in the jejunum segment (Fig. 5), while
for the OROS® formulation, the absorption was predicted to
occur mainly in the distal ileum and ascending colon, with a
limited intestinal first-pass only in the ileal segment. The
predicted hepatic availability (FH) for both formulations was
practically the same.

Finally, Fig. 6 shows the simulated pharmacokinetic
profile obtained employing the two different permeability
approaches (R-OXY). It can be noticed that when using the
classical approach for permeability, i.e. employing the same
Peff values for all the intestinal segments, a significant
overestimation of the distal absorption would have been
predicted for OXY. Therefore, the use of the newly proposed
regional permeability approach (M3) gives rise to a much
more accurate prospective prediction (26), particularly im-
portant given the type of nature of the drug (BCS class 1) and
the prolonged release from the OROS® formulation (24 h).

DISCUSSION

The recently proposed mSAT model was successfully
expanded and applied to the mechanistic prediction of the
oral bioavailability differences between OXY’s IR and
OROS® formulation in a purely prospective fashion. The
approach employed herein involved several steps that were
necessary to appropriately distinguish between OXY’s dispo-
sition and absorption processes in the model predictions.

Table III. Estimated OXY Disposition Parameters from the IV
Infusion Fit

Parameter Estimate RSE (%)

CLint(u) [μL/min/mg] 3944 5.0%
Qtissue,1(fCO,1) [L/h]

a 9.76 (0.0346) 23%
Qtissue,2(fCO,2) [L/h]

a 253 (0.897) 1.9%
Qtissue,3(fCO,3) [L/h]

a 19.4 (0.0688) 16%
Vtissue,1(fBW,1) [L]

a 50.8 (0.775) 3.1%
Vtissue,1(fBW,1) [L]

a 6.42 (0.098) 19%
Vtissue,1(fBW,1) [L]

a 8.33 (0.127) 8.9%
Kpu,tissues 469 10%
RUV [%CV]b 6.54 35%

The relative standard errors (RSE) were calculated as: 100×
(standard error/estimate). For CLint(u) and Kpu,tissue, the RSE are
reported in the normal scale, and these were calculated using normal/
log-normal reverse algebra. The estimates of the fractions of the CO
and BW (hence blood flows and volumes) were obtained on the
logistic scale. These values were transformed back to fractions, in the
logistic-normal scale, using Eq. 8. The RSE for such fractions were
obtained by simulations: 1 × 107 random samples were drawn from a
multivariate-normal distribution and then transformed back to the
logistic-normal scale, where summary statistics (mean and standard
deviations) of the resulting vectors were calculated using MATLAB
2014a. More details of the approach are given in (42)
aValues in parenthesis represent the estimated fractions of CO and
BW
bRUV is expressed as a coefficient of variation (%CV) calculated as:
100�

ffiffiffiffiffiffiffiffiffiffiffiffi
eσ2−1

p
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The first step consisted in the development of a
disposition model capable of describing OXY’s distribution
and elimination processes as well as to mechanistically
account for its pre-systemic extraction when combined with
the absorption model. Several structures were evaluated for
the disposition model, from a three-compartment model with
a mechanistic liver compartment to a whole body PBPK
model. The chosen model was that of Fig. 1a. This model
represents a hybrid between the full PBPK model and the
compartmental model, providing the flexibility of the

compartmental model for the fitting purposes, yet retaining
the mechanistic nature of the PBPK model where it was
needed, such as in the liver compartment. As previously
described, the model was constrained in terms of the volumes
of the empirical tissues and their blood flows following the
approach suggested by Cao and Jusko (33). These constraints
were implemented during the estimation process in
NONMEM with the help of the logistic-normal transforma-
tions proposed by Tsamandouras and co-workers (2015). As
shown in Fig. 2, the fitted model provided an accurate

Fig. 2. OXY’s disposition model fit to the 5-mg IV infusion data. The solid black line
represents the mSAT model prediction, whereas the solid grey circles and error bars are the
respective mean and standard error of the mean (SEM) of the observed clinical data
(digitized from (30)). The insert shows the same plot on the semi-logarithmic scale

Fig. 3. Model predictions of OXY oral pharmacokinetics (racemic) after a multiple dose
administration. The solid black line represents the mSAT model prediction, whereas the
solid grey circles and error bars are the respective mean and standard error of the mean
(SEM) of the observed clinical data (digitized from (30))
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description of the observed IV infusion data (30) and the
model parameters were precisely estimated (Table III). It is
worth mentioning that given the model structure and its local
identifiability properties (43,45,46), an exchange between the

parameters, Qtissue,1 and Qtissue,2, and Vtissue,1 and Vtissue,2, can
be made without affecting either fit or the input–output
relationship of the model (Table III). The selected modelling
approach required the fitting of both the intrinsic microsomal

Fig. 4. mSAT model prediction of the pharmacokinetic of R-OXYafter the
administration of three 5-mg IR formulations (a) and one 10 mg OROS®
formulation (b). The solid black line represents the mSAT model
prediction, whereas the solid grey circles and lines represent the individual
observed clinical data (kindly provided by Janssen Pharmaceutica). The
insert shows the same plot in the semi-logarithmic scale

Table IV. Summary of the mSAT Predicted vs. Observed Pharmacokinetic Parameters for OXY Formulations (IR and OROS®)

Isomer Formulation Observed values (mean ± SD) mSAT model predictions

AUC0–48

[ng×h/mL]
Cmax

[ng/mL]
C10h

a

[ng/mL]
Frel

b,c AUC0–48

[ng×h/mL]
Cmax

[ng/mL]
C10h

a

[ng/mL]
Frel

c F fabs FG FH

R-OXY IR 21.7 ± 13.0 3.28 ± 2.16 – n/a 17.3 2.71 – n/a 0.078 1.00 0.13 0.61
OROS® 18.6 ± 10.5 0.99 ± 0.59 0.65 ± 0.42 1.39 ± 0.44 19.5 0.93 0.84 1.70 0.13 0.28 0.80 0.58

S-OXY IR 31.6 ± 15.8 6.58 ± 3.71 – n/a 20.2 3.24 – n/a 0.075 1.00 0.10 0.71
OROS® 34.4 ± 17.3 1.84 ± 0.97 1.18 ± 0.71 1.72 ± 0.49 27.4 1.32 1.19 2.04 0.15 0.28 0.79 0.69

SD standard deviation
aConcentration at 10 h
bThe observed Frel is the mean of the individually calculated Frel
c
The relative bioavailability was calculated as: Frel ¼ AUC0−48OROS

AUC0−48IR
� DoseIR

DoseOROS
≈FOROS

FIR
, where the dose for the IR formulation was 15 mg (3 × 5 mg)

and 10 mg for the OROS formulation
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clearance and an empirical Kpu value. The former could have
been informed purely from the reported in vitro data, where the
unbound in vitro formation CLint in HLM has been reported to
be 225 and 278 μL/min/mg for R-OXYand S-OXY, respectively
(75). However, there were indications that suggested that the
use of such in vitro value would have led to under-predictions in

both the systemic clearance and first-pass metabolism of OXY
(21). This underestimation has been previously reported in the
literature, particularly for highly cleared and highly protein-
bound substrates similar to OXY (86,87). For these reasons,
fitting the microsomal clearance to the IV infusion data seemed
to be a reasonable choice. This was supported by the estimated

Fig. 5. mSAT predicted segmental and oral bioavailability fractions for R-OXY IR and OROS® formulations. a Predicted fabs; dark blue bars
represent the IR formulation and the light blue bars represent the OROS® formulation. b Predicted fraction of the administered dose
metabolized in the intestinal segments (EG); dark green bars represent the IR formulation and the light green bars represent the OROS®
formulation

Fig. 6. mSAT model prediction of the pharmacokinetic of R-OXY after the administration of a 10-mg
OROS® formulation using two different permeability approaches. The solid black line represents the
mSAT model prediction using segment-dependent permeability (M3 method), whereas the solid blue line is
the model prediction using the same Peff value in all the intestinal segments (M1 method) (26). Circles and
lines represent the individual observed clinical data (kindly provided by Janssen Pharmaceutica)
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CLint of 3944 μL/min/mg for racemic OXY (Table III). How-
ever, this estimate assumes that only the CYP-mediated
metabolismwas responsible forOXY’s elimination, whichmight
not be necessarily true as there is evidence of the formation of
an inactive metabolite, 2-cyclohexyl-2-phenylglycolic acid
(CPGA), which is mediated by carboxylesterases (mainly
CES1) that can be found in both predominantly in the liver
and in the intestinal wall to a smaller extent (88,89). Neverthe-
less, the CPGA formation was assumed to contribute minimally
to OXY’s overall elimination, given that the reported in vitro
CPGA formation CLint in HLM was 5.9 μL/min/mg, a value
considerably smaller than the reported formation CLint of
OXY’s main metabolite, NDEO (75,89).

The fitted Kpu value was assumed to be the same for all
the empirical tissues. This assumption was mainly based on
model structural identifiability grounds that otherwise would
have deemed the model as unidentifiable (43,44). The
decision to estimate a Kpu value, instead of directly estimating
the Kb needed in the model equations, was made to allow for
the prediction of the pharmacokinetics of OXY enantiomers.
While there is a difference in plasma binding between the two
enantiomers, we have assumed that the Kpu value was the
same for both the racemic OXY and its enantiomers (R and
S-OXY). This assumption was based on the fact that OXY, a
strong base (pKa > 7), is predominantly bound to α1-
acidglycoprotein (AGP), which is mainly located in the
circulating plasma. Thus, the impact of OXY’s binding to
AGP within tissues was assumed to be minimal (82,90).
Consequently, differences in OXY’s volume of distribution
can be mainly attributed to plasma protein-binding differ-
ences between the enantiomers (and racemic mixture), rather
than to tissue binding (75,82,90). These differences were
accommodated in the disposition model by using the
enantiomer-specific fup value in the calculation of the Kb,
which in turn affects the volume of distribution (Eq. 5). The
latter also highlights the usefulness of the chosen hybrid-
PBPK model structure employed in this work, as this
extrapolation could have not been possible when using a
traditional three-compartment model to describe OXY’s
disposition.

The second step in the modelling approach involved the
expansion of the mSAT model for the mechanistic prediction
of OXY oral bioavailability in a purely prospective manner.
As previously described in the BMaterials and Methods^
section, the model was expanded by incorporating mechanis-
tic equations for the prediction of the most relevant
absorption processes using MATLAB: transit, release, disso-
lution, permeation and intestinal metabolism. Using the
expanded mSAT model, the predictions of the oral pharma-
cokinetic profile of the racemic OXY after the administration
of three 5 mg IR tables in the reference individual were in
good agreement with the mean observed data (Fig. 3).
Similarly, the predicted absolute bioavailability of the racemic
OXY was within 5% of the reported mean value of 6.2% for
the IR tablets (the oral solution was shown to be bioequiv-
alent with the tablets) (30). Since OXY’s disposition was
already accounted by the model in the previous step, the
predictions of oral bioavailability were mainly attributed to
the mechanistic nature of the mSAT model and the use of the
appropriate system-related and drug-specific parameters for

such predictions (Tables I and II); the latter provided further
support for the use of this model for mechanistic oral
absorption predictions (26). Since OXY belongs to Class 1
within the BCS (highly permeable and soluble), there were
no major difficulties in terms of the prediction of the
dissolution and permeation processes for the IR formulation
within the mSAT model (21). These processes were not
considered to be the rate-limiting step for OXY’s absorption
(30). In contrast, prediction of OXY’s first-pass metabolism
was considered the key step for the bioavailability predictions
of OXY’s IR formulation. Judging by the outcome of the
bioavailability predictions, the expanded mSAT model did a
reasonable job for such predictions. The latter also highlights
the importance of having good disposition data available for
the purpose of judging mechanistic bioavailability predictions,
particularly due to the possible confounding issues that can
arise from the use of the oral data to calibrate some of the
absorption parameters in the model, particularly when the
predictions are not in agreement with the observed clinical
data. The latter might lead to biased estimates of the
absorption parameters due to the fact that the disposition
parameters were biased in the first instance (42,91).

Once the ability of the mSAT model to prospectively
predict the oral pharmacokinetic profile was established,
the third and final step of the modelling approach was the
mechanistic investigation of the relative bioavailability
between OXY’s IR and OROS® formulations. The
pharmacokinetic profiles of both formulations were suc-
cessfully predicted by the model for the reference
individual as shown in Fig. 4 and summarized in Table IV.
However, as seen in Fig. 4, there is a large inter-
individual variability (IIV) in the observed pharmacoki-
netic profiles. This IIV was not captured by the mSAT
model as it can only provide predictions for the Btypical
individual^. This is in contrast to available software
packages that can include such variability in the model
predictions such as SimCYP® and PK-Sim®.

In terms of relative bioavailability, the model predictions
were consistent with the observed trend of higher exposure
when using theOROS® formulation compared to the IR tablets
(Table IV) (28,31). However, the model slightly overestimated
the magnitude of the relative bioavailability of the OROS®
formulation, mainly due to a 40% underestimation of the
exposure of the IR formulations (particularly for the S-OXY).
This underestimation could be due to the assumptions made
with regard to the intrinsic clearances of each isomer in the
model predictions, such as the use of the in vitro R/SCLint,ratio to
derive the isomer-specific CLint(u) employed in the mSAT
model. However, considering that these predictions were based
purely on available literature data and no further optimization
were made in any of absorption model parameters, this bias was
considered acceptable.

From amechanistic perspective, themodel predictions with
regard to the bioavailability fractions were consistent with the
previousmulti-factorial simulation study (21). The predicted fabs
of R-OXY and S-OXY were close to the unity, in agreement
with the mass balance studies suggesting the complete absorp-
tion of the racemic mixture (30). Due to the use of the
differential permeability approach employed in the model, the
segmental contribution to the overall absorption can be
estimated for the different formulations (26). Most of the drug
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content from the IR formulation was predicted to be absorbed
in the upper GI segments (Fig. 5a). Similarly, predictions can be
made with regard to the fate of the drug in the enterocyte
compartments (Fig. 5b) where most of the drug content was
expected to be eliminated by the CYP enzymes located in the
upper regions of theGI segments (21–24).As shown inTable IV,
the predicted FG of the IR formulation was approximately 0.13
for both isomers. This value was in close agreement with the
observed FG of 0.11 to 0.14, calculated from the reported
absolute bioavailability and the in vivo clearance using the
standard formulae (30,92). The model predicted an FH close to
0.61 and 0.71 for IR formulation of R-OXY and S-OXY,
respectively. These values were slightly higher than the esti-
mated FH between 0.44 and 0.58 for the racemicmixture (30,92).
The segmented structure of the mSAT model was necessary for
the bioavailability predictions of the OXY’s OROS® formula-
tion, particularly when the model structure was combined with
the regional permeability approach (M3) (26). Otherwise, the
absorption of the OROS® formulation would have been
considerably overestimated when using the same Peff value for
all the segments of the mSAT model, as shown in Fig. 6. This
highlights the importance of accounting for the segmental
permeability difference in the PBPK framework (26,73,93).

Even though there is no available clinical data regarding
to the regional absorption and/or intestinal first-pass metab-
olism of the OXY’s OROS® formulations. The model
outcome can be used to explain the mechanism proposed
for the higher relative bioavailability of OXY’s OROS®
formulation. It was clear from Fig. 5 and Table IV that the fabs
for the OROS® formulation was considerably reduced
compared to the IR formulation. However, the predicted FG

was almost eight times higher in the OROS® formulation
compared to the IR. Since the predicted FH remained almost
the same for both formulations (IR and OROS®), the model
provided strong support for the hypothesis that the main
factor responsible for the higher relative bioavailability
observed for OXY’s OROS® formulation was an increased
intestinal availability (21,28). This increased availability was
mainly due to release of the majority of the drug content from
the OROS® formulation in the distal regions of the GI tract,
where the abundance of CYP is reduced compared to the
upper GI tract (22–24). This outcome not only corroborates
the findings from previous work but also can be seen as a
further support to the fact that there is an interesting
interplay between absorption and metabolism along the GI
that can be explored in formulation development. This
phenomenon could be of importance for substrates similar
to OXY, where a MR release formulation can be developed
to either increase or maintain exposure levels observed with
the IR counterparts.

One of the main limitations of this study was the lack of
predictions including variability and uncertainty. This vari-
ability might be incorporated in the model through the model
parameters either from literature sources or estimated from
data, and it can be of importance to understand the possible
differences in OXY’s FG to its full extent. Another important
aspect that was not accounted for in this work was the fate of
OXY’s main metabolite, DEOB. This metabolite has clinical
implications as it has been associated with the occurrence of
OXY’s side effects (28,31,32). However, there was a paucity
of data available in the literature regarding the metabolite

and did not allow its incorporation in the current model using
a Bbottom-up^ approach. Another aspect that was not
considered in this work was the impact that OXY’s anticho-
linergic activity could have had on gastric emptying and
intestinal transit time. This was mainly due to the lack of a
pharmacodynamic link for its implementation in the model.
However, we did not expect differences in terms of relative
bioavailability predictions as this effect is related to OXY’s
therapeutic activity (i.e. smooth muscle relaxant) which has
been shown to be similar between the two formulations (32).

Finally, the results highlighted the usefulness of the
newly proposed mSAT model for oral pharmacokinetic
predictions. However, these result should be considered
carefully as more compounds need to be tested with this
particular model.

CONCLUSION

A newly proposed mechanistic absorption model was
expanded and employed for the bottom-up predictions of
oral bioavailability of oxybutynin IR and OROS® formu-
lations. The new model was able to capture the bioavail-
ability differences observed between OXY formulations,
where the OROS® formulation displayed higher relative
bioavailability than its IR counterpart. The model predic-
tions suggest that this higher bioavailability was mainly
due to an increased intestinal availability (FG) product of
the decreased intestinal first-pass metabolism in the distal
regions of the GI tract, where the abundance of the CYP
enzymes is decreased.
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