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The Huashanguan rapakivi pluton in Zhongxiang, Hubei Province, China, is the first discovered Proterozoic rapakivi pluton in the 
Yangtze block. Based on field and petrographical observations, a typical rapakivi texture was found in the northern portion of the 
Huashanguan granitic pluton. Almost all the K-feldspar phenocrysts were round to oval in shape and most had plagioclase coat-
ings known as rapakivi phenocrysts. Alkali feldspars and quartz had two or more generations. Petrochemically, the Huashanguan 
rapakivi granites were characterized as having high values of Si, K, Fe, Th, U, La, Ga, Ce, Sm and LREE, low values of Ca, Mg, 
Sr, Nb, Y and HREE, and a negative Eu anomaly. These geochemical characteristics of the Huashanguan granites were concor-
dant with typical rapakivi granites, and had an affinity to A-type granites. LA-ICP-MS U-Pb zircon dating also was conducted. 
The dating yielded a 207Pb/206Pb weighted mean age of 1851±18 Ma (MSWD =1.2), which represents the age of the pluton em-
placement. The age of 803±170 Ma at the lower intercept in the concordia diagram corresponds to the age of a later deformation 
event which affected the pluton, and suggests that the Huashanguan pluton was influenced by Neoproterozoic thermo-tectonic 
events after its formation. The discovery of Paleoproterozoic Huashanguan rapakivi granites indicates continental rifting or a 
post-orogenic extensional event that took place in the Paleoproterozoic in the Yangtze block. These events may be related to the 
breakup of the Paleoproterozoic Columbia supercontinent. 

Yangtze block, rapakivi, Paleoproterozoic, A-type granite, zircon U-Pb dating 

 

Citation:  Zhang L J, Ma C Q, Wang L X, et al. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological 
significance. Chinese Sci Bull, 2011, 56: 306−318, doi: 10.1007/s11434-010-4236-7 

 

 
 
Rapakivi granite is a special rock type (typical A-type gran-
ite) in the crust that shows rapakivi texture [1]. Rapakivi 
granites are indicative of large-scale extensional tectonic 
settings, and usually are associated with the breakup of a 
supercontinent [1–7]. Rapakivi granites are exposed on the 
interiors and edges of all Proterozoic cratons worldwide, 
especially in the Northern Hemisphere. They form a near 
east-west giant rapakivi granite-anorthosite belt, which ex-
tends from the southwest of North America to the North 
China Platform, via Labrador in Canada, South Greenland, 
the Baltic Shield and the Sciberian Platform [1–8]. The ori-
gin of the belt is considered to be related to the breakup of 
the Columbia supercontinent [9–14]. Thus, rapakivi granites 
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are important for understanding the evolution of the Pro-
terozoic lithosphere. 

The North China block and the Yangtze block are the 
two largest Precambrian cratons in China. Archean rocks 
are widely exposed in the North China block, and there are 
many records of the Proterozoic tectonothermal events re-
lated to the amalgamation and breakup of the Columbia 
supercontinent [10,15–24], including the Miyun Proterozoic 
typical rapakivi granites in Beijing [5–7,10]. However, out-
crops of Archean basement rocks (e.g. Kongling Complex) 
are rare in the Yangtze block [25–28]. Even so, recent stud-
ies have shown that there are chronological records of 1.8– 
2.1Ga tectonothermal events in the Yangtze block [29–38]. 
Some of these studies indicates that these events may be 
related to the amalgamation and breakup of the Columbia 
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supercontinent [34–38]. However, there have been no re-
ports of any Paleoproterozoic rapakivi granites within the 
Yangtze block. Thus, in this paper, we present the newly 
identified Huashanguan rapakivi granitic pluton in Zhong- 
xiang, Hubei Province. In addition, we provide a study of 
petrography, LA-ICP-MS zircon U-Pb geochronology, and 
major and trace element geochemistry and discuss the sig-
nificance of the discovery for understanding Paleoprotero-
zoic crustal evolution of the Yangtze block. 

1  Regional geological setting and intrusive  
geology  

Huashanguan granitic intrusions are, with the total area of 37 
km2, located in Zhongxiang, Hubei Province, on the northern 
margin of the Yangtze block (Figure 1). The intrusions con-
sist of four granitic bodies of variable sizes. They are the 
Huashanguan, Wangjiapeng, Huachong and Xiaojiawan in-
trusions, and their areas are 22, 12, 2 and 1 km2, respectively. 
And the intrusions are distributed nearly north-south in the 
core of an anticline and secondary small anticline in Lengshui 
town. According to the survey of regional geology [39], the 
pluton intruded into the Paleoproterozoic Yangpo Formation, 
equivalent to the upper lithologic formation of the Archean 
Kongling Complex. Thus, the contact between the intrusions 
and the overlying Nanhua-Sinian strata is an unconformity, 
and xenoliths from the Yangpo Formation are visible in the 
pluton. The main rock types of the Huashanguan and Wang-
jiapeng intrusions are porphyraceous syenogranite and me-
dium grained biotite adamellite with a few feldspar 
phenocrysts, and there is a gradual transition between the two 
rock types. While there is only medium grained biotite 
adamellite in the Huachong intrusion, and that of the Xiao-
jiawan intrusion is only porphyraceous syenogranite. Xeno-
liths with schist, gneiss and plagioclase amphibolite remnants 
also can be seen in the four intrusive bodies. As a result of 
dynamic metamorphism, the intrusions and the country rocks 
suffered a certain degree of deformation1). 

The rapakivi granites reported in this paper are exposed 
in the porphyraceous syenogranite unit in the northern por-
tion of the Huashanguan pluton. The sample used for zircon 
dating was collected at 31°17.261′N, 112°24.607′E (Figure 
1(b). The rock had a porphyraceous texture, and the matrix 
was medium to coarse grained. The phenocryst was a 
microcline perthite with a plagioclase rim, and the matrix 
was microcline perthite, quartz, plagioclase, biotite and 
other components. The main mineral components were: 
microcline perthite 65%, plagioclase 10% (mostly changed 
to sericite), quartz 23%, and biotite 2%. As the scale of the 
Huashanguan rapakivi granites was limited (<1 km2), we 
only collected two samples (ZX21-1 and 09ZX03) for 

 

Figure 1  Geological map of Huashanguan area rock mass. 1, Porphyrac-
cous syenogranite and medium grained biotite adamellite; 2, basic dikes; 3, 
faults: 4, sedimentary strata (Nh-Z: Nahuaian-Sinian; Є: Cambrian; O-Si: 
Ordovician-Lower Silurian; K2: Upper Cretaceous; P-T1: Permian-Lower 
Triassic; Q: Quatemary); 5, collection site of zircon dating sample; 6, un-
conformaity boundary. (a) is modified from [36]; (b) is a modified drawing 
based on the 1:200000 geological map of the Zhongxiang area, drawn by 
the Survey Geological Team of the Hubei Provincial Geological Bureau. 

analysis. For comparison, we also collected a porphyritic 
biotite adamellite sample (09ZX01-1) near the Huashanguan 
rapakivi granite pluton. The porphyritic biotite adamellite  

                      
1) Modified from reports of the 1:200000 regional geological survey of Zhongxiang and the 1:50000 regional geological survey of Shu anghekou, Hubei Province. 
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was medium grained, and had a few phenocrysts. The main 
minerals were: microcline perthite 49%, plagioclase 27%, 
quartz 22%, and biotite 2%. 

2  Rapakivi texture and its petrography 

The rapakivi texture was first introduced into the interna-
tional geological literature in 1980 by Jakob J. Sederholm, a 
famous Finnish geologist [40]. The name “rapakivi granite” 
is derived from the Finnish word “rapakivi”, which means 
“crumbly rock” and refers to the distinctive weathering be-
haviour. The Huashanguan rocks with rapakivi textures are 
grey white to flesh red with porphyraceous textures. These 
granites are characterized by the ovoidal shape of their al-
kali feldspar megacrysts, mantling of many ovoids by oli-
goclase-andesine shells, and some the ovoids remaining 
unmantled. The ovoids show two generations of alkali feld-
spar and quartz, which is consistent with the definition of 
rapakivi granites [1–3,6,7]. These characteristics show that 
Huashanguan rocks with rapakivi textures belong to typical 
rapakivi granites. The diameter of the ovoids generally was 
between 1 cm and 5 cm, with some individuals were over 8 
cm, but the most common size range was 2–3 cm (Figure 
2). The percent volume of alkali feldspar phenocrysts ac-
counted for about 45% of the rock. Most of the phenocrysts 
consist of 3–5 K-feldspar crystals (Kfs), whose optical ori-
entation differed and the single particle size is 5–10 mm 
with a flabellate shape. They grew poikiliticly to ovoid 
shape, from the core outward to the rims (Figure 3(a)). Few 
of the phenocrysts consisted of single K-feldspar crystals. 
Plagioclase (pl), quartz (Qtz), biotite (Bi), magnetite (Mt) 
and other small crystals often were wrapped in the ovoidal 
K-feldspar phenocrysts. These minerals were embedded 
unevenly in the host crystal (Figure 3(b)), and showed a 
tendency toward sphericity. Between the joint surface of the 
fan-shaped K-feldspar crystals, there were vein fillings of 
biotite, magnetite, quartz and others (Figure 3(a)). Perthitic 
structure and cross hatched twins were developed in 

K-feldspar phenocrysts, which belonged to microcline 
perthite. Most K-feldspar and quartz coexisted, and some 
showed micrographic textures (Figure 3(c)). Matrix compo-
sitions mainly were alkali feldspar, plagioclase, quartz and 
biotite. Alkali feldspar and quartz could be divided clearly 
into two or more generations. The particles of early crystal-
lization were larger, and the later generation crystals were 
smaller. Figure 3(d) indicates that the quartz sizes were sig-
nificantly different, and the larger crystals were mostly 
rounded. Accessory minerals mainly were fluorite, apatite, 
magnetite, and zircon. These features were similar to that of 
typical Proterozoic rapakivi granites from Finland, Miyun 
(Beijing) and other places [1–10,41,42]. 

During dynamic metamorphism, most of the rocks suf-
fered from deformation and alteration to different degrees. 
A few of biotite changed to chlorite, and plagioclase mostly 
changed to sericite. In the deformation zone, wavy extinc-
tions of quartz, kink deformation of biotite, and brittle frac-
tures and intragranular changes of feldspar were obvious 
(Figure 3(d)–(f)). 

3  Analytical methods 

Samples for major and trace element analyses were crushed 
to less than 200 microns. The analysis of major elements 
was conducted with X-ray fluorescence spectrometry (XRF) 
with a Regaku3080E1-type spectrometer at the Geological 
Experiment Center of Hubei Province. The accuracy of the 
sample analysis was 1% [43]. Trace elements were analyzed 
with an inductively coupled plasma mass spectrometer 
(ICP-MS, Agilent7500a) at the State Key Laboratory of 
Geological Processes and Mineral Resources in China Uni-
versity of Geosciences (Wuhan). The accuracy of the rare 
earth element analyses was higher than 5%, and the ana-
lytical precision of the other trace elements was 5% to 15%. 
Details of the analytical methods and apparatus are reported 
in a previous literature report [44]. The zircons in sample 
ZX21-1 were separated by standard heavy mineral separation 

 

Figure 2  Field photographs of Huashanguan rapakivi granites. (a) and (b) reveal that the K-feldspar ovoids are rimmed by the plagioclase. 
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Figure 3  Photomicrographs of Huashanguan rapakivi granites (orthogonal). (a) Phenocrysts consist of three K-feldspar crystals (Kfs1–3), with different 
light crystal orientations, and the shapes are flabellate. They grew poikiliticly from the core outward to the rim to ovoid shape. The outside of the 
phenocrysts was characterized by plagioclase (Pl) shells (sericite). (b) K-feldspar (Kfs) ovoid example with plagioclase (Pl) and quartz (Qtz) within. Plagio-
clase (pl) and quartz (Qtz) are wrapped in an ovoid K-feldspar phenocryst. (c) Microscopic structure of K-feldspar (Kfs) and quartz (Qtz) in a phenocryst. (d) 
Rounded quartz (Qtz) and its wavy extinction in the matrix. (e) Kink deformation of biotite (Bi) in the matrix. (f) Kink deformation of plagioclase (Pl) twins 
in the matrix. 

techniques, including magnetic and heavy liquid separation. 
Then, representative zircon grains, transparent and no 
cracks, were selected and imbedded into epoxy resin sample 
targets under a binocular microscope. The samples were 
polished after grinding to the center of the zircon particles, 
and then Cathodoluminescence (CL) microstructures were 
observed. On that basis, suitable particles and regions for 
zircon U-Pb age determination were selected. Zircon CL 
imaging were done using a Hitachi S3000-N scanning elec-
tron microscope, equipped with external Chroma cathodo-
luminescence made in the GATAN company at the Beijing 

SHRIMP Centre. Micro-area analysis of zircon for U-Pb 
isotopic and REE composition analyses was completed us-
ing an LA-ICP-MS at the State Key Laboratory of Geo-
logical Processes and Mineral Resources in China Univer-
sity of Geosciences (Wuhan). The laser ablation system was 
a GeoLas 2005 equipped with a 193-nm laser. The spot size 
of the laser was 32 μm, and the pulse was 10 Hz, with en-
ergy of 110 mJ. The ICP-MS was an Agilent7500a, which 
was produced by the Agilent Company, United States. We 
used helium as the carrier gas of the erosion material in the 
experiment, zircon 91500 as external standard for isotope 
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component corrections, and we calibrated elemental content 
with an NIST610 as the external standard and 29Si as the 
internal standard. The original data were analyzed with 
ICPMSDATACAL (ver 5.8) software processing [45]. 
Common lead was corrected with the method of Andersen 
[46]. The weighted mean age of the zircons and the calcula-
tion of concordia diagrams were undertaken using the 
ISOPLOT_3.23 process [47]. 

4  Results 

4.1  Major and trace elements 

The major and trace elemental analyses of the Huashanguan 
rapakivi granites (sample ZX21-1 and 09ZX03) and por-
phyritic biotite adamellite (sample 09ZX01-1) are listed in 
Table 1. 

As can be seen from Table 1, the Huashanguan rapakivi 
granites were rich in silicon (SiO2= 69.92%–74.42%), alkali 
(Na2O + K2O = 8.84%–9.23%), potassium (K2O/Na2O = 

1.92%–2.52%) and iron (FeO*/(FeO*+ MgO) = 0.876%– 
0.88%) (FeO* is total iron), and poor in calcium (CaO = 
0.22%–1.15%) and magnesium (MgO=0.21%–0.42%). 
The Al saturation index (A/CNK was close to 1.1, which 
places the study samples into the category of peraluminous 
rock. The Miyun rapakivi granites were metaluminous to 
peraluminous, and the A/CNK of Huashanguan porphyritic 
biotite adamellite equaled 1. All samples were within the 
composition region of the Finnish typical rapakivi granites 
(Figure 4(a)). The FeO*/(FeO*+MgO)-SiO2 diagram 
(Figure 4(b)) shows that the Huashanguan rapakivi gran-
ites had high Fe/Mg ratios, which is similar to that of Mi-
yun typical rapakivi granites, and both of the sample sets 
fall into the Finnish typical rapakivi granite compositional 
area. Conversely, the Fe/Mg ratio of Huashanguan por-
phyritic biotite adamellite was relatively lower, outside the 
Finnish region. 

The Ce contents of the Huashanguan rapakivi granites were 
123–256 μg g–1, Ga was 19.1–23 μg g–1, 10000 Ga/Al was 
2.8–3.0, and (La/Sm)N was greater than 5.76, which belonged  

Table 1  The major (%) and trace element (μg g–1) compositions of Huashanguan rapakivi granites and porphyritic biotite adamellite and related parameters 

Sample ZX21-1 09ZX01-1 09ZX03 Sample ZX21-1 09ZX01-1 09ZX03 

SiO2 69.92 75.48 74.42 Er 6.32 7.66 2.68 

TiO2 0.45 0.17 0.38 Tm 0.87 1.14 0.43 

Al2O3 14.50 12.35 13.02 Yb 5.69 7.99 3.05 

Fe2O3 2.06 1.12 1.31 Lu 0.83 1.16 0.48 

FeO 1.25 0.70 0.30 ΣREE 676.38 762.36 268.29 

MnO 0.03 0.01 0.01 δEu 0.35 0.07 0.63 

MgO 0.42 0.13 0.21 Li 6.89 5.23 4.94 

CaO 1.15 0.89 0.22 Be 5.31 3.24 2.88 

Na2O 3.03 2.95 2.62 Sc 6.99 2.49 4.42 

K2O 5.81 5.43 6.61 V 15.70 1.90 11.90 

P2O5 0.07 <0.01 0.03 Cr 3.18 2.08 3.05 

H2O
+ 0.97 0.48 0.61 Co 3.07 0.94 0.57 

CO2 0.13 0.16 0.02 Ni 2.48 1.70 1.53 

LOI  0.87 0.62 Cu 6.27 3.46 6.41 

Total 99.79 100.74 100.38 Zn 67.40 24.00 14.8 

A/CNK 1.085 1.00 1.097 Ga 23.00 22.20 19.10 

K2O/Na2O 1.92 1.84 2.52 Rb 294.00 458.00 249.00 

FeO*/MgO 7.39 13.14 7.04 Sr 132.00 27.60 140.00 

K2O+Na2O 8.84 8.38 9.23 Y 69.5 80.80 22.00 

La 183.00 190.00 63.00 Zr 467.00 254.00 397.00 

Ce 256.00 351.00 123.00 Nb 33.00 49.60 25.90 

Pr 40.50 38.80 13.20 Cs 2.61 1.82 0.90 

Nd 129.00 115.00 44.50 Ba 915.00 86.20 1228.00 

Sm 20.00 18.00 6.66 Hf 14.00 9.69 11.30 

Eu 2.11 0.39 1.19 Ta 2.03 3.89 1.80 

Gd 15.40 13.90 4.57 Pb 28.50 31.30 82.40 

Tb 2.24 2.19 0.68 Th 61.80 93.80 40.00 

Dy 12.20 12.70 4.04 U 3.18 5.53 3.43 

Ho 2.22 2.43 0.81 10000 Ga/Al 3.00 3.40 2.77 
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Figure 4  The major element discrimination diagram of Huashanguan 
rapakivi granites. (a) A/CNK-SiO2 diagram, showing that the data points 
cluster in the region of peraluminous rocks; (b) FeO*/(FeO*+MgO)-SiO2 
diagram, showing high Fe/Mg ratios. Literature comparisons for Figure 4 
include the Finnish rapakivi granite [5], and data for Miyun typical ra-
pakivi granites [7]. The diagram is adapted from [48]. 

to an LREE-enriched pattern. Eu showed a negative anom-
aly (δ Eu = 0.35–0.63). However, the δEu of the Huashan-
guan porphyritic biotite adamellites was only 0.07, which 
was strongly depleted. Huanshanguan rapakivi granites had 
a feature of high Th (40.0–61.8 μg g–1), Rb (249–294 μg g–1), 
Ba (915–1228 μg g–1) and other trace elements. Conversely, 
the Ba content of Huashanguan porphyritic biotite adamel-
lites was very low, only 86.2 μgg–1. In addition, from the 
trace element spider diagram (Figure 5(a)), we also can see 

that Huashanguan rapakivi granites were similar to Finnish 
and Miyun typical rapakivi granites. Ba, Th, U, La, Ce, Nd 
and Sm were relatively enriched, and Nb, Sr, Zr and Y were 
relatively depleted. However, the Ba content of the 
Huashanguan porphyritic biotite adamellites was extremely 
low, indicating the chemical composition of Huashanguan 
porphyritic biotite adamellites differed from that of 
Huashanguan rapakivi granites. From the diagram of chon-
drite-normalized REE patterns (Figure 5(b)), we can see 
that the two samples of Huashanguan rapakivi granites dis-
played similar chondrite-normalized REE patterns with sig-
nificantly-enriched light REE, fractionated heavy REE, and 
weakly negative Eu anomalies. These characteristics are 
very similar to those of Finnish and Miyun typical rapakivi 
granites. 

4.2  Zircon U-Pb age and characteristics of rare earth 
element content 

The zircons (sample ZX21-1) of the Huashanguan rapakivi 
granites mainly were light yellow. The shape of most zir-
cons was semi-cylindrical columnar and fragmentation, and 
a minority were equant grains. Their lengths ranged from 80 

and 200 μm, with aspect ratios of 1.5:1 to 2:1. The zircon 
CL images (Figure 6) show that most of the zircons had 
magmatic oscillatory zoning, but since Th, U contents of 
part of the zircons were high, the CL images were relatively 
dark. Zircon Th/U ratios varied from 0.78 to 1.64, which 
also is consistent with characteristics of magmatic zircons 
[51]. 

Twenty-one individual U-Pb spots were done on 21 zir-
con grains using LA-ICP-MS, and the results are shown in 
Tables 2 and 3. Among the 21 points, the signal of point 10 
showed fluctuations, and the reverse was not harmonic. 
Thus, these data were not used. The unharmonious ages of 
the remaining 20 points gave a concordia line with upper 
intercept at 1901±45 Ma and lower intercept at 803±170 Ma 
(MSWD = 2.9) (Figure 7). The unharmonious degree and 

 

Figure 5  Diagrams of chondrite-normalized trace element spider and chondrite-normalized REE distribution patterns of Huashanguan rapakivi granites. 
Literature comparisons in (a) and (b) include Finnish rapakivi granite components [49], and Miyun rapakivi granites [6]. Chondrite-normalized values are 
from [50]. 
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Figure 6  Representative zircon CL images of Huashanguan rapakivi granites. 

Th and U contents of points 9, 12, 18 and 19 were higher 
than others, and 207Pb/206Pb concordia ages were signifi-
cantly lower, which indicates a possible variable proportion 
of grains that had lost some 207Pb and 206Pb. Point 8 was 
relatively harmonic, while the age was significantly lower. 
From the CL image, we can see the analysis point was at the 
edge of the zircon, which may be due to post-recrystalliza- 
tion. After removing points 8, 9, 10, 12, 18 and 19, the 15 
remaining higher harmonic degree analyses yielded a 
207Pb/206Pb weighted mean age of 1851±18 Ma (95% confi-
dence limits, MSWD = 1.2; Figure 7), which is consistent 
with the upper intercept age, representing the emplacement 
age of Huashanguan rapakivi granite intrusions. 

CL images (Figure 6) show that the zircon oscillatory 
zoning of the Huashanguan rapakivi granites is vague. It is 
unknown if this due to the fluids. From the chondrite nor-
malized REE distribution patterns of zircon (Figure 8), we 
can see that the LREE contents of zircons from Huashan-
guan rapakivi granites were low, and the Ce positive 
anomalies were obvious, which indicates an apparently 
magmatic origin. However, zircons of hydrothermal origin 
generally are characterized by high LREE content and weak 
Ce positive anomalies [52,53]. Thus, the zircon REE char-
acteristics of the Huashanguan rapakivi granites were dif-
ferent from that of a fluid origin. The phenomenon of vague 
zircon oscillatory zoning may be related to metamorphic 
recrystallization. However, the zircon U-Pb concordia curve 
(Figure 7) shows that the analyses all plot on or near the 
concordia line, which indicates that the U-Pb systems of 
most zircons remained closed. These results indicate that we 
can obtain reliable 207Pb/206Pb ages for these samples. From 
the zircon U-Pb ages we can see that the lead of some zir-
cons was lost. This may be mainly related to metamorphic 

recrystallization caused by later thermal events (especially 
the strong Neoproterozoic magmatism), and this process 
also can cause vagueness of the oscillatory zoning. The 
lower intercept age (ca. 800 Ma) may represent the time 
when the rock suffered a later thermal event, which also is 
consistent with the time of Neoproterozoic tectonothermal 
events in the Yangtze block, or even over the entire South 
China area [54–63]. 

5  Discussion 

5.1  Rapakivi textures  

The origin of rapakivi textures has been a long, contentious 
geological issue lasting more than 100 years. Haapala et al. 
[2] and Rämö et al. [3] have ever discussed this problem. In 
short, the origin can be divided into two categories: mag-
matic model and post-magmatic exsolution-component ad-
justment mode. Current studies have shown that a magma 
mixing mode and sub-isothermal decompression mode of 
crystal saturated granitic magma (magma mode) are possi-
ble. The magma mixing mode stresses the disequilibrium of 
the texture resulted by the mixing process of felsic and ma-
fic magmas [64]. The sub-isothermal decompression mode 
stresses partial resortion of alkali feldspar and quartz, and 
continued crystallization of plagioclase around the alkali 
feldspar resulted by magma decompression and slow cool-
ing [65]. This origin model has been confirmed by Eklund 
et al. [66]. According to petrographic observations, the ori-
gin of Huashanguan rapakivi textures also should be that of 
magma crystallization. For example, from the relationship 
between minerals, it is evident that K-feldspar phenocrysts 
enwrap almost all the minerals in the rocks. The small  
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Table 2  Results of zircon U-Pb isotopic data obtained by LA-ICP-MS from sample ZX21-1 of Huashanguan rapakivi granite. 

 Ratios and error 
Analyses Pb (μg g–1) 

total 

232Th 
(μg g–1) 

238U 
(μg g–1)  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 232Th/238U 

ZX21-1-1 48 117 109  0.1153 0.0021 5.2586 0.0948 0.3260 0.0037 0.0993 0.0016 0.9955 

ZX21-1-2 32 78 76  0.1099 0.0021 4.9315 0.1081 0.3200 0.0045 0.0896 0.0015 0.9767 

ZX21-1-3 45 96 113  0.1146 0.0016 5.0553 0.0860 0.3133 0.0031 0.0866 0.0011 0.7807 

ZX21-1-4 101 348 209  0.1125 0.0013 5.1109 0.0734 0.3231 0.0033 0.0935 0.0011 1.5740 

ZX21-1-5 24 60 58  0.1135 0.0023 4.8500 0.1065 0.3041 0.0037 0.0896 0.0014 0.9699 

ZX21-1-6 14 37 33  0.1149 0.0034 4.9347 0.1378 0.3080 0.0048 0.0931 0.0034 1.0579 

ZX21-1-7 57 137 120  0.1122 0.0020 5.5081 0.1222 0.3489 0.0063 0.1080 0.0017 1.0959 

ZX21-1-8 190 511 426  0.1139 0.0020 5.0954 0.0981 0.3182 0.0054 0.0992 0.0014 1.1541 

ZX21-1-9 407 1549 1362  0.1052 0.0021 3.2469 0.0685 0.2207 0.0050 0.0721 0.0012 1.1123 

ZX21-1-10 209 478 426  0.1071 0.0024 5.4578 0.1425 0.3626 0.0085 0.1094 0.0023 1.0775 

ZX21-1-11 41 94 97  0.1097 0.0027 5.2298 0.1452 0.3370 0.0073 0.0926 0.0021 0.9321 

ZX21-1-12 303 1022 1096  0.1073 0.0021 3.2228 0.0715 0.2136 0.0041 0.0698 0.0013 0.9391 

ZX21-1-13 46 123 105  0.1130 0.0024 5.4106 0.1197 0.3402 0.0061 0.0946 0.0018 1.1347 

ZX21-1-14 407 1363 994  0.1114 0.0021 4.3713 0.1029 0.2793 0.0052 0.0947 0.0018 1.3444 

ZX21-1-15 165 337 386  0.1153 0.0025 5.6289 0.1395 0.3485 0.0065 0.1022 0.0023 0.8279 

ZX21-1-16 185 362 431  0.1169 0.0025 5.8087 0.1598 0.3559 0.0081 0.1032 0.0023 0.8074 

ZX21-1-17 64 215 144  0.1158 0.0026 5.1443 0.1520 0.3174 0.0072 0.0953 0.0019 1.4489 

ZX21-1-18 397 1707 1687  0.0995 0.0019 2.4924 0.0571 0.1783 0.0030 0.0623 0.0012 0.9875 

ZX21-1-19 255 1436 851  0.1150 0.0023 3.1790 0.0715 0.1991 0.0039 0.0620 0.0013 1.6388 

ZX21-1-20 675 2086 1537  0.1251 0.0022 5.3561 0.1111 0.3061 0.0043 0.0959 0.0017 1.3173 

ZX21-1-21 211 626 500  0.1140 0.0023 4.8861 0.1079 0.3088 0.0052 0.0930 0.0017 0.8319 

Discordant age (Ma)  Concordant age (Ma) 
Analyses 

207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 

ZX21-1-1 1885 26 1862 15 1819 18 1914 30  1810 62 1807 26 1805 20 1804 20 

ZX21-1-2 1798 31 1808 18 1790 22 1734 28  1798 31 1808 18 1790 22 1734 28 

ZX21-1-3 1874 25 1829 14 1757 15 1678 20  1874 25 1829 14 1757 15 1678 20 

ZX21-1-4 1839 19 1838 12 1805 16 1807 21  1839 19 1838 12 1805 16 1807 21 

ZX21-1-5 1856 34 1794 18 1712 18 1735 27  1856 34 1794 18 1712 18 1735 27 

ZX21-1-6 1878 43 1808 24 1731 23 1800 63  1878 43 1808 24 1731 23 1800 63 

ZX21-1-7 1836 24 1902 19 1930 30 2073 30  1836 24 1902 19 1930 30 2073 30 

ZX21-1-8 1862 17 1835 16 1781 26 1911 26  1727 90 1744 36 1759 30 1762 29 

ZX21-1-9 1719 19 1468 16 1285 26 1407 23  1456 127 1336 44 1262 30 1248 28 

ZX21-1-10 1751 22 1894 22 1995 40 2099 41  1751 22 1894 22 1995 40 2099 41 

ZX21-1-11 1795 32 1857 24 1872 35 1791 39  1795 32 1857 24 1872 35 1791 39 

ZX21-1-12 1754 22 1463 17 1248 22 1364 25  1555 102 1352 36 1228 24 1207 22 

ZX21-1-13 1848 24 1887 19 1887 29 1826 34  1848 24 1887 19 1887 29 1826 34 

ZX21-1-14 1822 27 1707 19 1588 26 1828 33  1822 27 1707 19 1588 26 1828 33 

ZX21-1-15 1884 30 1921 21 1927 31 1967 42  1884 30 1921 21 1927 31 1967 42 

ZX21-1-16 1909 28 1948 24 1963 39 1985 43  1909 28 1948 24 1963 39 1985 43 

ZX21-1-17 1893 35 1843 25 1777 35 1840 35  1893 35 1843 25 1777 35 1840 35 

ZX21-1-18 1616 30 1270 17 1058 16 1221 23  1202 117 1087 37 1030 18 1021 17 

ZX21-1-19 1881 20 1452 17 1170 21 1216 24  1641 145 1332 53 1149 26 1119 22 

ZX21-1-20 2031 27 1878 18 1721 21 1851 31  1846 88 1762 37 1692 25 1678 24 

ZX21-1-21 1864 26 1800 19 1735 26 1797 32  1864 26 1800 19 1735 26 1797 32 
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Table 3  Results of zircon rare earth element (REE) values (μg g–1) from sample ZX21-1 of Huashanguan rapakivi granite 

Analyses La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

ZX21-1-1 0.10 18.27 0.13 1.68 2.99 0.14 13.72 4.39 51.15 18.56 90.85 20.3 196.08 36.20 

ZX21-1-2 0.04 14.66 0.06 0.77 2.07 0.12 8.79 3.2 38.87 13.9 68.99 14.99 138.47 25.34 

ZX21-1-3 0.01 14.15 0.04 1.18 2.23 0.08 10.57 3.52 43.08 15.25 78.32 17.1 162.6 28.29 

ZX21-1-4 0.22 24.37 1.46 18.42 19.76 0.82 73.87 20.43 229.26 76.54 345.76 65.74 579.56 97.57 

ZX21-1-5 0.02 12.8 0.06 1.24 1.83 0.13 10.25 2.99 37.34 13.72 66.18 14.33 138.95 23.34 

ZX21-1-6 0.01 10.82 0.08 1.33 1.83 0.17 9.16 2.8 35.08 12.13 61.11 13.35 131.29 24.15 

ZX21-1-7 0.14 18.4 0.25 4.07 6.19 0.27 23.38 7.35 83.35 28.52 137.02 28.34 259.46 44.21 

ZX21-1-8 0.12 21.79 0.45 7.28 9.48 0.29 48.49 15.42 184.28 65.75 314.68 68.63 652.98 109.16 

ZX21-1-9 0.14 42.04 0.79 9.09 15.18 0.37 68.85 23.35 297.38 110.41 542.13 119.3 1111.18 174.92 

ZX21-1-10 0.25 24.58 0.58 8.66 13.4 0.26 58.99 18.49 219.62 75.1 344.31 71.43 656.49 104.78 

ZX21-1-11 0.01 16.97 0.07 1.02 1.94 0.09 9.87 3.4 41.02 15.17 75.99 16.57 160.91 27.81 

ZX21-1-12 0.06 29.84 0.6 11.04 15.08 0.47 59.07 20.87 259.79 95.49 469.03 103.9 997.69 152.85 

ZX21-1-13 0 20.11 0.11 1.41 3.33 0.17 16.01 4.88 59.49 20.26 99.43 21.24 201.15 33.12 

ZX21-1-14 0.1 37.93 0.82 11.65 19.54 0.47 82.4 25.95 307.78 109.35 513.86 112.61 1035.74 156.4 

ZX21-1-15 0.01 20.98 0.15 2.34 5.23 0.1 26.5 8.93 105.83 38.68 185.71 41.08 393.83 61.47 

ZX21-1-16 0.16 25.71 1.14 16.13 18.05 0.83 64.56 18.76 205.02 67.68 311.02 63.38 570.73 87.56 

ZX21-1-17 0.08 22.41 0.64 10.11 14.79 0.7 56.61 15.14 166.7 54.23 240.5 49.48 475.23 75.32 

ZX21-1-18 0.92 37.32 0.94 12.79 16.41 0.56 79.93 27.89 366.61 133.99 664.96 150.28 1401.19 215.1 

ZX21-1-19 0.92 52.16 1.02 10.78 13.72 0.36 50.34 15.92 190.99 66.21 324.01 70.1 681.78 110.6 

ZX21-1-20 0.75 45.52 1.42 18.85 24.08 0.53 113.56 36.25 450.87 159.76 758.62 161.83 1507.12 224.2 

ZX21-1-21 0.18 29.41 0.47 6.81 11.02 0.37 47.59 13.91 172.47 60.22 292.87 63.08 610.78 92.31 

 

 

Figure 7  Zircon U-Pb concordia curve of Huashanguan rapakivi granites. 

wrapped minerals show a spherical distribution, which is 
parallel to the surface of the megacrysts. This indicates that 
during the growth process of K-Feldspar phenocrysts, the 
slowly growing minerals congregate at the top of the 
K-feldspar phenocrysts while they are rotating. Only the 
convection of magma can meet this condition [67]. This 
means that rapakivi feldspars of Huashanguan are products 
of magmatic crystallization. 

Haapala et al. [1] defined rapakivi granites as A-type 
granites characterized by the presence, at least in the larger 
batholiths, of granite varieties showing the rapakivi textures. 
S-type or I-type granites with this texture are not within the   

 

Figure 8  Zircon chondrite-normalized REE distribution patterns of 
Huashanguan rapakivi granites (chondrite-normalized values from [50]). 

range of rapakivi granites [2,3]. In fact, rapakivi granites 

from Late Archaean to Tetiary, including intermediate-  
felsic to felsic rocks. However, according currently avail-
able information, the overwhelming majority of occurrences 
represent granitic rocks of Proterozoic AMCG assemblages 
(anorthosite, monzonite, charnockite and rapakivi granites). 
AMCG assemblages are formed in extensional tectonic set-
tings. It is emphasized that they are related to mantle up-
welling, melting and decompression of the upper mantle, 
and magmatic underplating after cratonization of continen-
tal crust [3,7]. 

Petrographic and geochemical studies indicate that 
Huashanguan rapakivi granites not only have the typical 
rapakivi textures, but also can be correlated with A-type 
granites in their chemical composition, which is consistent 
with the definition of rapakivi granites [1]. Figure 9 shows 
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Figure 9  Major and trace element discriminant diagrams of Huashanguan 
rapakivi granites. (a) (Na+K)/Al-10000 Ga/Al diagram. Data points of the 
Huashanguan rapakivi granites plot in the subalkaline A-type granite area; 
(b) Zr-10000 Ga/Al diagram. The points fall within A-type granite areas. 
Finnish rapakivi granite components of Figure 8(a) and (b) are from [49, 
68]. Miyun typical rapakivi granite data are from [7]. The diagrams are 
from [48]. 

that Huashanguan rapakivi granites belong to A-type granites 
of sub-alkaline series. They fall within the Finnish typical 
rapakivi granite composition field, and are similar to the 
Miyun rapakivi granites. The major elements of Huashan-
guan rapakivi granites are rich in silicon, alkalis (especially 
rich in K) and iron, with high FeO*/MgO ratios, and low 
calcium and magnesium content. The rocks are rich in Th, 
U, La, Ga, Ce and Sm, and poor in Sr, Nb and Y, and char-
acterized by LREE enrichment, HREE depletion and a 
negative Eu anomaly, which also are consistent with the 
affinity of rapakivi granites. Although we have not found 
the equivalent of AMCG assemblages in this district yet, 
there is evidence of contemporary mafic magmatic activity 
near the Huashanguan rapakivi granites. For example, Peng 
et al. [37] found contemporary (~1.85 Ga) mafic dikes in 
the Kongling high-grade metamorphic terrain, not far from 
the Huashanguan rapakivi pluton in the Yangtze block. This 
finding indicates the existence of bimodal magmatic asso-
ciations. 

However, Rämö et al. [3] noted that “each rapakivi plu-
ton has its own peculiarities.” It is important to understand 
how these granites differ from the typical rapakivi granites 

of Finland, Miyun and other places, and why it appears that 
the Huashanguan rapakivi granitic intrusions are smaller 
and with

 
few appearance of amphibole. Instead, these gran-

ites contain mainly biotite, reflecting a higher water fuga-
city in the magma chamber than that of other rapakivi gran-
itic plutons. This may be the reason why rapakivi granites in 
this area have a limited distribution. In addition, Rb/Sr and 
Rb/Ba ratios of Huashanguan rapakivi granites were rela-
tively higher, which means that the intrusions had experi-
enced a high degree of magma crystallization differentia-
tion.

 

5.2  Tectonic significance of Paleoproterozoic rapakivi 
granites in the Yangtze block 

A series of global super-events took place during the Paleo-
proterozoic. These events may match the global collisional 
orogenic and amalgamation events in relation to the forma-
tion of the Columbia supercontinent [13,69,70], the rapid 
growth of continental crust [71,72], and activities of su-
per-mantle plumes [73]. Studies on Paleoproterozoic tec-
tonic magmatic events are relatively few in the Yangtze 
block, but in recent years, more Paleoproterozoic records of 
geological events have been described and discussions 
about the evolution of the geological events, global tectonic 
setting and their significance have been taken place. 

The existence of the Paleoproterozoic Columbia super-
continent has been widely recognized. There are many re-
cords of Paleoproterozoic large-scale tectonothermal events 
associated with amalgamation and breakup of the Columbia 
supercontinent in the North China block [10,15,24]. The 
latest research shows that there are many chronological re-
cords of the widespread 2.1–1.8 Ga tectonothermal events 
in the Yangtze block. 

(1) 2.1–2.0 Ga magmatic events. Magmatic bodies of this 
period have not been found in the Yangtze block so far. 
However, detrital zircon geochronology shows that the 
Yangtze block has produced a wide range of 2.1–2.0 Ga 
zircons in the Neoproterozoic sedimentary rocks. They 
show oscillatory zoning and have high Th/U ratios (~1.0). It 
is clear that they are of magmatic origins [74,75]. In addi-
tion, researchers have obtained ca. 2000 Ma zircon 
xenocryst ages (using LA-ICPMS, the majority of zircons 
have Th/U>1) in the lamproite around the Yangtze block 
[30]. Furthermore, 2091–2025 Ma old zircon ages were 
measured in Mesozoic zircons of the Tongling district, An-
hui Province (SHRIMP method, Th/U is 0.15–0.46, with 
oscillatory zoning) [76]. These all indicate 2.1–2.0 Ga 
magmatic events are widely represented in the Yangtze 
block. 

(2) 2.0–1.9 Ga metamorphic events. Examples of events 
of this age range can be found in the Huangtuling granulite 
of the Dabie Mountains (1992 Ma, zircon evaporation [77]; 
1998±35 Ma, garnet dissolving gradually [78]; 2052±100 
Ma, LA-ICPMS [79]; 2002±17 Ma, SIMS [80]); gneiss and 
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amphibolites of the Kongling Group in the Kongling meta-
morphic terrain (1939±44 and 1958±15 Ma, Sm-Nd 
isochron) [81]; trondhjemite and metamorphic pelitic rocks 
(1990±16 Ma and 1930±50 Ma, SHRIMP [27]; 1992±16 Ma 
and 1928±18 Ma, SHRIMP [82]; metamorphic pelitic rocks 
and amphibolites (1950±50 Ma, 1980±20 Ma and 1940±40 
Ma, LA-ICPMS) [34] and mixed rocks (1980–2013 Ma, 
SHRIMP) [83]. These chronological records are distributed 
across the northern margin of the Yangtze block, and may 
represent a collisional orogenic events [34] related to the 
amalgamation of the Columbia supercontinent [29,34,35]. 

(3) ~1.85 Ga extensional rifting events. Rapakivi granites 
were formed in an anorogenic or post-orogenic tectonic 
environment, and are considered to be one of the exten-
sional environmental indicators [1]. The Huashanguan gran-
ites reported in this paper belong to the typical rapakivi 
granites. Dating results show that the pluton was formed at 
about 1850 Ma in the late Paleoproterozoic. Conversely, the 
orogenic events related to the amalgamation of the Colum-
bia supercontinent took place at 2.0–1.9 Ga, just before the 
formation time of Huashanguan rapakivi granite intrusions. 
In addition, the formation time of mafic dikes, marking re-
gional extension found in the Kongling high-grade meta-
morphic terrain, also were about 1.85 Ga [37]. Besides, the 
formation age of the Quanyishang A-type granites recently 
reported is about 1.85 Ga. Zircon Hf isotopic studies show 
that the source of Quanyishang A-type granites may come 
from the Archean crust deep in the Yangtze continent, and 
that this source may be related to the extension and collapse 
of the deep crust with Archean ages, in response to the tran-
sition stage of the assembly and breakup of the Columbia 
supercontinent [36]. While the source of the Huashanguan 
rapakivi granites reported in this paper is unknown, it is 
possible that it may be from the deep Archean continental 
crust. Further isotope studies may confirm this assertion. 
However, the Huashanguan rapakivi granites, Quanyishang 
A-type granites and mafic dikes in the Kongling high-grade 
metamorphic terrain were all formed in the extensional tec-
tonic setting, which indicates that they occurred in the tec-
tonic transformation from collision to extension at about 
1.85 Ga in the Yangtze block, and may be associated with 
breakup of the Columbia supercontinent. 

In summary, there are many chronological records of the 
widespread 2.1–1.8 Ga tectonothemal events in the Yangtze 
block. These may represent the evolutionary history of su-
percontinent amalgamation to breakup. In other words, they 
may belong to part of the amalgamation and breakup pro- 
cess of the Paleoproterozoic Columbia supercontinent. The 
discovery of 1.85 Ga Huashanguan rapakivi granites pro-
vides important evidence for the formation and cratoniza-
tion of the Yangtze block in the Paleoproterozoic, and for 
its later tectonic transformation from collision to extension. 
Recently, there have been reports on orogenic events of 
1.89–1.83 Ga [84], and breakup events of 1.80–1.76 Ga 
[85–87] in the Cathaysian block. These events took place a 

little later than those in the Yangtze block, which indicates 
that the two blocks may have been located in different posi-
tions in the supercontinent system. Therefore, they had dif-
ferent evolution histories. 

6  Conclusions 

(1) Huashanguan rapakivi granites have typical rapakivi 
textures. They are characterized by the ovoidal shapes of 
their alkali feldspar megacryst, being mantled with oligo-
clase-andesine shells, and both the alkali feldspar and quartz 
generally show two or more generations. Minerals wrapped 
in K-feldspar phenocrysts mostly show a spherical distribu-
tion. Huashanguan rapakivi granites belong to A-type gran-
ites of sub-alkaline, peraluminous, high Fe/Mg ratios and 
with typical rapakivi texture. 

(2) Zircon U-Pb dating shows that the emplacement age 
of the Huashanguan rapakivi granite pluton was 1851±18 
Ma. The lower intercept U-Pb age of 803±170 Ma may rep-
resent the time that the intrusion was affected by the later 
Neoproterozoic tectonic events. 

(3) The research shows that there may have been wide-
spread late Paleoproterozoic (ca. 2000 Ma) magmatic and 
metamorphic events associated with the amalgamation and 
breakup of supercontinent masses in the Yangtze block. The 
later development of 1.85 Ga Huashanguan rapakivi gran-
ites indicates that the Yangtze block was in a continental 
breakup or post-orogenic extensional tectonic setting at 1.85 
Ga, which may be related to the breakup of the Paleopro-
terozoic Columbia supercontinent. 
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