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Abstract Recently, extended phase space thermodynamics
of Lovelock AdS black holes has been of great interest. To
provide insight from a different perspective and gain a uni-
fied phase transition picture, the non-extended phase space
thermodynamics of (n + 1)-dimensional charged topologi-
cal Lovelock AdS black holes is investigated in detail in the
grand canonical ensemble. Specifically, the specific heat at
constant electric potential is calculated and the phase transi-
tion in the grand canonical ensemble is discussed. To probe
the impact of the various parameters, we utilize the con-
trol variate method and solve the phase transition condition
equation numerically for the cases k = 1,−1. There are
two critical points for the case n = 6, k = 1, while there
is only one for the other cases. For k = 0, there exists no
phase transition point. To figure out the nature of the phase
transition in the grand canonical ensemble, we carry out an
analytic check of the analog form of the Ehrenfest equa-
tions proposed by Banerjee et al. It is shown that Lovelock
AdS black holes in the grand canonical ensemble undergo a
second-order phase transition. To examine the phase struc-
ture in the grand canonical ensemble, we utilize the thermo-
dynamic geometry method and calculate both the Weinhold
metric and the Ruppeiner metric. It is shown that for both
analytic and graphical results that the divergence structure
of the Ruppeiner scalar curvature coincides with that of the
specific heat. Our research provides one more example that
Ruppeiner metric serves as a wonderful tool to probe the
phase structures of black holes.

1 Introduction

In our recent paper [1], P–V criticality of topological AdS
black holes in Lovelock–Born–Infeld gravity has been inves-
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b e-mail: wbliu@bnu.edu.cn

tigated in the extended phase space and some unique phe-
nomena have been found. It was shown that P–V criticality
exists not only for the spherical topology but also for k = −1.
This result is really intriguing, so that it has attracted fur-
ther investigation [2–5]. On the other hand, it would also
be interesting to probe this issue in the non-extended phase
space to search for some more unique characteristics due to
Lovelock gravity. Lovelock gravity [6] is a particular higher
curvature gravity theory which successfully solves the prob-
lem of fourth-order field equations and ghosts. In Lovelock
gravity, the field equation is only second order and the quan-
tization is free of ghosts [7]. Both the black holes and their
thermodynamics in Lovelock gravity [8–36] have attracted
considerable attention. Concerning the thermodynamics of
Lovelock black holes in the non-extended phase space, some
efforts have been made. Topological black hole solutions in
Lovelock–Born–Infeld gravity were proposed in Ref. [8].
Both the thermodynamics of asymptotically AdS rotating
black branes with flat horizon and of asymptotically flat black
holes for k = 1 were investigated there in detail. For charged
topological AdS black holes, Ref. [8] presented the expres-
sion of the temperature. References [23,24] further studied
their entropy and specific heat at constant charge. Refer-
ence [35] studied their specific heat and critical exponents
in the canonical ensemble. The above research was carried
out in the canonical ensemble, leaving the grand canonical
ensemble unexplored. In this paper, we would like to com-
plete the phase transition research of Lovelock charged topo-
logical AdS black holes in the grand canonical ensemble.

In traditional thermodynamics, one can utilize Clausius–
Clapeyron–Ehrenfest’s equations to probe the nature of phase
transitions. The Clausius–Clapeyron equation holds for a
first-order phase transition, while Ehrenfest’s equations are
satisfied for a second-order phase transition. Recently, Baner-
jee et al. introduced a novel Ehrenfest scheme to investigate
phase transitions of black holes in the grand canonical ensem-
ble [37–42]. We utilized this scheme in the case of charged
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topological black hole in Hořava–Lifshitz gravity [43] and
also generalized it to the extended phase space [44,45]. Ref-
erence [46] further generalized it to the full phase space.
The original Ehrenfest equations in traditional thermody-
namics were utilized in the extended space of black holes
in Lovelock–Born–Infeld gravity to study the nature of the
phase transition at the critical point [2]. However, in this
paper, we would like to utilize the analog form of Ehrenfest
scheme proposed by Banerjee et al. to investigate the nature
the phase transition points of Lovelock AdS black holes in
the grand canonical ensemble.

Different from the traditional thermodynamic method,
thermodynamic geometry has served as an alternative way to
investigate phase transitions of black holes. The well-known
examples are Weinhold geometry [47] and Ruppeiner geom-
etry [48]. Weinhold defined metric structure in the energy
representation as gWi, j = ∂i∂ j M(U, Na). Here,U is the inter-
nal energy U , while Na represents the extensive thermody-
namic variables. Ruppeiner proposed the metric structure as
the Hessian of the entropy. Namely, gR

i, j = −∂i∂ j S(U, Na).
Recently, Quevedo et al. [49] proposed another thermody-
namic geometry method named geometrothermodynamics
(GTD). For a profound interpretation of the physical mean-
ing, Ruppeiner’s metric has been applied to various thermo-
dynamic systems, including black holes. For a nice review
of Ruppeiner geometry, see Ref. [50]. For recent papers,
see Refs. [51–61]. However, the thermodynamic geometry
of Lovelock AdS black holes in the grand canonical ensem-
ble is still absent in the literature. In this paper, we would like
to explore the Ruppeiner geometry of (n + 1)-dimensional
topological AdS black holes in Lovelock gravity in the grand
canonical ensemble.

In Sect. 2, the thermodynamics of charged topological
AdS black holes in Lovelock–Born–Infeld gravity will be
briefly reviewed and the phase transition in the grand canon-
ical ensemble will be investigated in detail. To probe the
nature of the phase transition in the grand canonical ensem-
ble, an analytic check of the analog form of the Ehrenfest
equations will be carried out in Sect. 3. In Sect. 4, thermody-
namic geometry will be studied to examine the phase struc-
ture of topological AdS black holes. Concluding remarks will
be presented in Sect. 5.

2 Phase transition in the grand canonical ensemble

The action of third-order Lovelock–Born–Infeld gravity
reads [8]

IG = 1

16π

∫
dn+1x

√−g(−2� + L1 + α2L2

+α3L3 + L(F)), (1)

where

L1 = R, (2)

L2 = Rμνγ δR
μνγ δ − 4RμνR

μν + R2, (3)

L3 = 2Rμνσκ Rσκρτ R
ρτ

μν + 8Rμν
σρR

σκ
ντ R

ρτ
μκ

+ 24Rμνσκ RσκνρR
ρ
μ + 3RRμνσκ Rσκμν

+ 24Rμνσκ RσμRκν + 16RμνRνσ R
σ
μ

− 12RRμνRμν + R3, (4)

L(F) = 4β2

⎛
⎝1 −

√
1 + F2

2β2

⎞
⎠ . (5)

β, α2, and α3 are Born–Infeld parameter, the second- and
third-order Lovelock coefficients, respectively. L(F) denotes
the Born–Infeld Lagrangian with Fμν = ∂μAν − ∂ν Aμ,
where Aμ is electromagnetic vector. The (n+1)-dimensional
static solution was derived in Ref. [8] as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2, (6)

where

f (r) = k + r2

α
(1 − g(r)1/3), (7)

g(r) = 1 + 3αm

rn
− 12αβ2

n(n − 1)

×
[

1 − √
1 + η − �

2β2 + (n − 1)η

(n − 2)
�(η)

]
. (8)

k and m are parameters related to the curvature of hypersur-
face and the mass, respectively. d�2 denotes the line element
of (n−1)-dimensional hypersurface with constant curvature
(n − 1)(n − 2)k and �(η) denotes the hypergeometric func-
tion as follows:

�(η) = 2F1

([
1

2
,
n − 2

2n − 2

]
,

[
3n − 4

2n − 2

]
,−η

)
, (9)

where

η = (n − 1)(n − 2)q2

2β2r2n−2 . (10)

Note that the above solution was derived for the special case
that

α2 = α

(n − 2)(n − 3)
, (11)

α3 = α2

72
(n−2

4

) . (12)

When β → ∞, the Born–Infeld Lagrangian reduces to
the Maxwell form and the solutions become Lovelock AdS
black holes. To concentrate on the effects of the third-order
Lovelock gravity, we will mainly consider Lovelock AdS
black holes in this paper.
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When β → ∞, one can obtain

g(r) → 1 + 3αm

rn
+ 6α�

n(n − 1)
− 3αq2

r2n−2 . (13)

The horizon radius r+ can be derived from the largest root
of the equation f (r) = 0. One can express m as a function
of r+ as

m= 3n(n−1)q2r8++r2n+ [kn(n−1)(3r4++3kr2+α+k2α2)−6r6+�]
3n(n−1)rn+6+

.

(14)

Then the mass of (n+1)-dimensional topological AdS black
holes can be derived:

M = (n − 1)�k

16π
m = �k

48nπrn+6+
{3n(n − 1)q2r8+

+ r2n+ [kn(n − 1)(3r4+ + 3kr2+α + k2α2) − 6r6+�]},
(15)

where �k denotes the volume of the (n − 1)-dimensional
hypersurface. The Hawking temperature has been derived in
Ref. [8] as

T = (n − 1)k[3(n − 2)r4+ + 3(n − 4)kαr2+ + (n − 6)k2α2] + 12r6+β2(1 − √
1 + η+ ) − 6�r6+

12π(n − 1)r+(r2+ + kα)2
. (16)

Taking the limit β → ∞, Eq. (16) reduces to

T = (n − 1)k[3(n − 2)r4+ + 3(n − 4)kαr2+ + (n − 6)k2α2] − 6�r6+ − 3(n − 2)(n − 1)q2r8−2n+
12π(n − 1)r+(r2+ + kα)2

. (17)

In the non-extended phase space, the first law of thermody-
namics reads

dM = T dS + �dQ. (18)

So the entropy can be derived as

S =
∫ r+

0

1

T

(
∂M

∂r+

)

dr = �k(n − 1)rn−5+
4

(
r4+

n − 1
+ 2kr2+α

n − 3
+ k2α2

n − 5

)
. (19)

The above result is derived for n > 5, while the integra-
tion is divergent for n � 5. The charge Q is related to the
parameter q by

Q = �k

4π

√
(n − 1)(n − 2)

2
q. (20)

Then the expression of the mass can be reorganized as

M= 96nπ2Q2r8++r2n+ (n−2)[kn(n−1)(3r4++3kr2+α+k2α2)−6r6+�]�2
k

48n(n−2)πrn+6+ �k
. (21)

Utilizing Eqs. (18) and (21), the electric potential can be
calculated as

� =
(

∂M

∂Q

)
S

= 4πQ

(n − 2)rn−2+ �k
. (22)

To study the phase transition in the grand canonical ensem-
ble, it is more convenient to express the mass as a function
of the electric potential � as follows:

M = 6n(n − 2)2�2r2n+4+ �3
k + r2n+ (n − 2)�k[kn(n − 1)(3r4+ + 3kr2+α + k2α2) − 6r6+�]

48n(n − 2)πrn+6+
, (23)

T = (n − 1)k[3(n − 2)r4+ + 3(n − 4)kαr2+ + (n − 6)k2α2] − 6�r6+ − 6(n − 2)2�2r4+
12π(n − 1)r+(r2+ + kα)2

. (24)

The specific heat at constant electric potential can be
obtained as

C� = T

(
∂S

∂T

)
�

= A(r+,�)

B(r+,�)
, (25)

where

A(r+,�) = (n − 1)rn−5+ (r2+ + kα)3�k

×[3k(n − 2)(n − 1)r4+ + 3k2(n − 4)(n − 1)

× r2+α + k3(n − 6)(n − 1)α2 − 6r6+�

− 6(n − 2)2r4+�2], (26)

B(r+,�) = −24�r8+ − 12[k(2 + n2 − 3n + 10α�)

− 2(n − 2)2�2]r6+ + 72kαr4+[k(n − 1)

− (n − 2)2�2] − 8k3(n − 9)(n − 1)α2r2+
− 4k4(n − 6)(n − 1)α3. (27)

One can easily draw the conclusion that the specific heat at
constant electric potential may diverge when
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B(r+,�) = 0, (28)

implying the existence of the phase transition.
The above equation can be solved numerically and the

results for k = 1,−1 are presented in Tables 1 and 2, respec-
tively, where the impact of the various parameters are stud-
ied thoroughly via control variate method. It is quite inter-
esting to note that there are two critical points for the case
n = 6, k = 1, while there is only one for the other cases. The
distance between the two phase transition points becomes
larger with the increasing of � and �, while it first becomes
larger and then becomes smaller with the increasing of α. The
case n = 6, k = 1 is shown graphically in Fig. 1. Both the
behaviors of the specific heat and the Hawking temperature
are depicted. It is easy to find that the two phase transition
points where the specific heat diverges are physical when
the Hawking temperature is positive. The black holes can be
divided into three phases, namely the small stable (C� > 0)
black hole, the medium unstable (C� < 0) black hole, and
the large stable (C� > 0) black hole. For a more comprehen-
sive picture, we also plot the three-dimensional figure for the
case n = 6, k = 1 in Fig. 2 and for the case n = 6, k = −1
in Fig. 3.

Table 1 The location the phase transition points for k = 1

n α � � r+1 r+2

6 1 1 −2 0.406 1.248

6 1 1 −4 0.420 0.964

6 1 1 −6 0.440 0.794

6 0.5 1 −2 0.283 1.076

6 2 1 −2 0.595 1.363

6 1 2 −2 0.169 1.592

6 1 3 −2 0.110 1.666

7 1 1 −2 1.503 –

8 1 1 −2 1.680 –

9 1 1 −2 1.812 –

Table 2 The location the phase transition points for k = −1

n α � � r+

6 1 1 −2 0.279

6 1 1 −4 0.281

6 1 1 −6 0.282

6 0.5 1 −2 0.197

6 2 1 −2 0.397

6 1 2 −2 0.155

6 1 3 −2 0.106

7 1 1 −2 0.353

8 1 1 −2 0.374

9 1 1 −2 0.386

The case k = 0 is quite simple. When k = 0, Eq. (27) can
be simplified as

B(r+,�) = −24�r8+ + 24(n − 2)2�2 > 0. (29)

So there exists no phase transition for k = 0.

3 The nature the phase transition in the grand
canonical ensemble

In the extended space, it is convenient to utilize the classical
Ehrenfest equations to study the nature the phase transition at
the critical point. However, here, in the non-extended phase
space, we would like to introduce the novel analog form of
the Ehrenfest equations proposed by Banerjee et al. [37] as
follows:

−
(

d�

dT

)
S

= C�2 − C�1

T Q(α2 − α1)
= �C�

T Q�α
, (30)

−
(

d�

dT

)
Q

= α2 − α1

κT2 − κT1

= �α

�κT
, (31)

where α = 1
Q (

∂Q
∂T )�, κT = 1

Q (
∂Q
∂�

)T are the analog of vol-
ume expansion coefficient and isothermal compressibility,
respectively. Their explicit forms can be calculated as fol-
lows:

α = 48(n − 1)(n − 2)πr+(r2+ + kα)3

B(r+,�)
, (32)

κT = 48(n − 2)3r6+(r2+ + kα)�

B(r+,�)
. (33)

α, κT may also diverge at the phase transition point because
they share the same factor as C� in their denominators. It
can be clearly seen in Fig. 4.

From the definitions of α and C�, one can obtain

Qα=
(

∂Q

∂T

)
�

=
(

∂Q

∂S

)
�

(
∂S

∂T

)
�

=
(

∂Q

∂S

)
�

(
C�

T

)
.

(34)

So the R.H.S. of Eq. (30) can be derived as

�C�

T Q�α
=

(
∂S

∂Q

)
�

= (n − 1)π(r2+ + kα)2

(n − 2)2r3+�
. (35)

On the other hand, the L.H.S. of Eq. (30) can be derived as

−
(

∂�

∂T

)
S

= (n − 1)π(r2+ + kα)2

(n − 2)2r3+�
. (36)

So the first equation of the Ehrenfest equations has been
proved to be valid.
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(a) (b)

Fig. 1 a C� vs. r+ for k = 1, n = 6, α = 1,� = 1,� = −2. b T vs. r+ for k = 1, n = 6, α = 1,� = 1,� = −2

Fig. 2 a C� vs. r+ for k = 1, n = 6,� = 1,� = −2. b T vs. r+ for k = 1, n = 6, α = 1,� = −2. c C� vs. r+ for k = 1, n = 6, α = 1,� = 1

The L.H.S. of Eq. (31) can be obtained as

−
(

∂�

∂T

)
Q

= −1(
∂T
∂�

)
Q

= −1(
∂T
∂�

)
r+ +

(
∂T
∂r+

)
�

(
∂r+
∂�

)
Q

= −1(
∂T
∂�

)
r+

= (n − 1)π(r2+ + kα)2

(n − 2)2r3+�
. (37)

Note that we have utilized the phase transition condition
( ∂T
∂r+ )� = 0. From the thermodynamic identity [41]

(
∂Q

∂�

)
T

(
∂�

∂T

)
Q

(
∂T

∂Q

)
�

= −1, (38)
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Fig. 3 a C� vs. r+ for k = −1, n = 6,� = 1,� = −2. b T vs. r+ for k = −1, n = 6, α = 1,� = −2. c C� vs. r+ for k = −1, n = 6,

α = 1,� = 1

(a) (b)

Fig. 4 a α vs. r+ for k = 1, n = 6, α = 1,� = 1,� = −2. b κT vs. r+ for k = 1, n = 6, α = 1,� = 1,� = −2

we can derive that

QκT =
(

∂Q

∂�

)
T

=−
(

∂T

∂�

)
Q

(
∂Q

∂T

)
�

=−
(

∂T

∂�

)
Q
Qα.

(39)

Note that in the above derivation we have also utilized both
the definitions of κT and α. We obtain

�α

�κT
= −

(
∂�

∂T

)
Q

= (n − 1)π(r2+ + kα)2

(n − 2)2r3+�
. (40)
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From Eqs. (37) and (40), one can easily draw the conclu-
sion that the second equation of the Ehrenfest equations also
holds. The Prigogine–Defay ratio can be calculated as

� = �C��κT

TcQ(�α)2 = 1. (41)

Equation (41) and the validity of the Ehrenfest equations
show that Lovelock AdS black holes in the grand canonical
ensemble undergo second-order phase transition.

4 Thermodynamic geometry of Lovelock AdS black
holes

Weinhold’s metric [47] and Ruppeiner’s metric [48] are
defined, respectively, as

gWi j = ∂2U (xk)

∂xi∂x j
, (42)

gR
i j = −∂2S(xk)

∂xi∂x j
. (43)

They are conformally connected to each other through the
map [62]

dS2
R = dS2

W

T
. (44)

Utilizing Eqs. (19) and (21), one can obtain the compo-
nents of Weinhold’s metric as

gWSS = D(r+, Q)

3(n − 1)2πr3n−4+ (r2+ + kα)5�3
k

, (45)

gWQQ = 4π

(n − 2)rn−2+ �k
, (46)

gWSQ = gWQS = −16πQ

(n − 1)r2n−7+ (r2+ + kα)2�2
k

, (47)

where

D(r+, Q) = 96π2Q2r8+[(2n − 3)r2+ + k(2n − 7)α] − r2n+
× {k(n − 1)[3(n − 2)r6+ − 18kr4+α

+ 2k2(n − 9)r2+α2 + k3(n − 6)α3]
+ 6r6+�(r2+ + 5kα)}�2

k . (48)

Utilizing Eqs. (17), (44), (45), (46), and (47), the components
of Ruppeiner’s metric can be derived as

gR
11 = 4r5−3n+ D(r+, Q)

(n−1)(r2++kα)3{k(n−1)
[
3(n−2)r4++3k(n−4)r2+α+k2(n−6)α2

]
�3

k −6r6+��3
k −96π2Q2r8−2n+ �k}

, (49)

gR
22 = 48(n − 1)π2rn+3+ (r2+ + kα)2�k

(n − 2){−96π2Q2r8+ + r2n+ (n − 1)k
[
3(n − 2)r4+ + 3k(n − 4)r2+α + k2(n − 6)α2

]
�2

k − 6r2n+6+ ��2
k }

, (50)

gR
12 = gR

21 = −192π2Qr8−2n+
k(n − 1)[3(n − 2)r4+ + 3k(n − 4)r2+α + k2(n − 6)α2]�2

k − 6r6+��2
k − 96π2Q2r8−2n+

. (51)

Utilizing Eqs. (49)–(51), we can obtain the Ruppeiner
scalar curvature as

R = E(r+,�)

F(r+,�)
, (52)

where

F(r+,�) = −(n − 1)rn+(r2+ + kα)3�k

×{−6�r8+ − 3r6+[k(2 + n2 − 3n + 10α�)

− 2(n − 2)2�2] + 18kαr4+[k(n − 1)

− (n − 2)2�2] − 2k3(n − 9)(n − 1)α2r2+
− k4(n − 6)(n − 1)α3}3[3k(n − 2)(n − 1)r4+
+ 3k2(n−4)(n−1)r2+α+k3(n−6)(n−1)α2

− 6r6+� − 6(n − 2)2r4+�2], (53)

and E(r+, Q) is too lengthy to be displayed here. The above
result has been rewritten as a function of �, so that we can
compare it with the specific heat. It is not difficult to observe
from Eq. (52) that in the denominator of the Ruppeiner scalar
curvature, the fifth factor is exactly one quarter of the denom-
inator of the specific heat, while the last factor coincides with
the numerator of the Hawking temperature. In other words,
the Ruppeiner scalar curvature may diverge exactly where
the specific heat diverges. It also reveals the extremal black
hole condition that the Hawking temperature is zero. For an
intuitive understanding, one can observe the behavior of the
Ruppeiner scalar curvature R in Fig. 5. Comparing Fig. 5
with Fig. 1a, one can find that the divergence structures of
both the Ruppeiner scalar curvature and the specific heat are
exactly the same. The Ruppeiner metric does provide a won-
derful tool for one to probe the phase structures of black
holes.

Among thermodynamic geometry theories, Ruppeiner
geometry has been proved to be outstanding for its pro-
found physical meaning. As argued in Ref. [50], the Rup-
peiner scalar curvature R results from the thermodynamic
information metric giving thermodynamic fluctuations and
may be interpreted physically as a measure of the correlation
between fluctuating Planck length pixels of event horizon. In
the region with positive R, repulsive interactions (fermionic
behavior) dominate, while in the region with negative R,
attractive interactions (bosonic behavior) dominate. More-
over, | R | indicates the average size of fluctuations.
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Fig. 5 Ruppeiner scalar curvature R vs. r+ for k = 1, n = 6, α =
1,� = 1,� = −2

5 Concluding remarks

In this paper, we extend our former research of charged topo-
logical Lovelock AdS black holes to the non-extended phase
space. Specifically, we investigate phase transition of (n+1)-
dimensional Lovelock AdS black holes in the grand canoni-
cal ensemble. Firstly, we calculated the specific heat at con-
stant electric potential. To probe the impact of the various
parameters, we utilize the control variate method and solve
the phase transition condition equation numerically for the
case k = 1,−1. There are two critical points for the case
n = 6, k = 1, while there is only one for the other cases. The
distance between the two phase transition points becomes
larger with the increasing of � and �, while it first becomes
larger and then becomes smaller with the increasing of α. We
also study the behavior of specific heat graphically. As can be
seen from the graph, the black holes can be divided into three
phases; namely, the small stable (C� > 0) black hole, the
medium unstable (C� < 0) black hole, and the large stable
(C� > 0) black hole. The graph of the Hawking temperature
is also depicted to check whether the phase transition points
locate in the physical region. For k = 0, there exists no phase
transition point.

To figure out the nature the phase transition in the grand
canonical ensemble, we carry out an analytic check of the
analog form of Ehrenfest equations proposed by Banerjee et
al. It is proved that the two Ehrenfest equations hold at the
phase transition point. Prigogine–Defay ratio is also calcu-
lated. Based on these results, one can draw the conclusion that
Lovelock AdS black holes in the grand canonical ensemble
undergo a second-order phase transition.

To examine the phase structure in the grand canoni-
cal ensemble, we also utilize the thermodynamic geometry
method. Specifically, we calculate both the Weinhold metric
and the Ruppeiner metric. It is shown that in the denominator

of the Ruppeiner scalar curvature, the fifth factor is exactly
one quarter of the denominator of the specific heat, while
the last factor coincides with the numerator of the Hawking
temperature. So the Ruppeiner scalar curvature may diverge
exactly where the specific heat diverges. It also reveals the
extremal black hole condition that the Hawking temperature
is zero. From the graph of the Ruppeiner scalar curvature,
one can see clearly that the divergence structures of the Rup-
peiner scalar curvature and the specific heat are exactly the
same. Our research provides one more example that Rup-
peiner metric serves as a wonderful tool to probe the phase
structures of black holes.

Note that one may vary the spatial dimension, the cosmo-
logical constant, and the coefficients of the curvature terms in
the Lagrangian and we mainly concentrate on a few instances
of a very large model in this paper. The control variate method
has been utilized to crack down the problem of probing the
impact of the various parameters. We choose such parameter
regions that we can compare our results with those in the
literature. One can easily extend our results to more cases.
The black hole solution here was derived for the special case
that the second- and third-order Lovelock coefficients sat-
isfy certain conditions. Phase transitions in the non-extended
space of more general black hole solutions in Lovelock grav-
ity will be further investigated in our future work. Also note
that the methods utilized in this paper can be generalized
to an arbitrary nonlinear electrodynamics Lagrangian, the
specific results in this paper, however, are model-dependent.
For a more general analysis, we would like to draw the read-
ers’ attention to the excellent work [63], where the authors
presented an elegant procedure for Gauss–Bonnet gravity
regardless of the explicit form of the nonlinear electrodynam-
ics Lagrangian. It certainly deserves to extend this treatment
to the third-order Lovelock case in future research.
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Lifshitz gravity. JHEP 1310, 056 (2013)

44. J.X. Mo, W.B. Liu, Ehrenfest scheme for P–V criticality in the
extended phase space of black holes. Phys. Lett. B 727, 336–339
(2013)

45. J.X. Mo, W.B. Liu, Ehrenfest scheme for P–V criticality of higher
dimensional charged black holes, rotating black holes and Gauss–
Bonnet AdS black holes. Phys. Rev. D 89, 084057 (2014)

46. Z. Zhao, J. Jing, Ehrenfest scheme for complex thermodynamic
systems in full phase space. arXiv:1405.2640

47. F. Weinhold, Metric geometry of equilibrium thermodynamics.
Chem. Phys. 63, 2479 (1975)

48. G. Ruppeiner, A Riemannian geometric model. Phys. Rev. A 20,
1608 (1979)

123

http://arxiv.org/abs/1405.3306
http://arxiv.org/abs/0802.2637
http://arxiv.org/abs/hep-th/0506227
http://arxiv.org/abs/hep-th/0602243
http://arxiv.org/abs/0806.1426
http://arxiv.org/abs/0903.4260
http://arxiv.org/abs/1004.4397
http://arxiv.org/abs/1107.3354
http://arxiv.org/abs/gr-qc/0408078
http://arxiv.org/abs/0708.0782
http://arxiv.org/abs/0908.2346
http://arxiv.org/abs/0812.2038
http://arxiv.org/abs/0912.1877
http://arxiv.org/abs/0911.0245
http://arxiv.org/abs/1005.5053
http://arxiv.org/abs/1007.4888
http://arxiv.org/abs/1011.2595
http://arxiv.org/abs/1110.0064
http://arxiv.org/abs/1011.4988
http://arxiv.org/abs/1101.5781
http://arxiv.org/abs/1012.4390
http://arxiv.org/abs/1011.5293
http://arxiv.org/abs/1212.1704
http://arxiv.org/abs/1302.2151
http://arxiv.org/abs/1302.0904
http://arxiv.org/abs/1305.6767
http://arxiv.org/abs/1309.3338
http://arxiv.org/abs/1311.4911
http://arxiv.org/abs/1002.0466
http://arxiv.org/abs/1005.4832
http://arxiv.org/abs/1111.0147
http://arxiv.org/abs/1008.2644
http://arxiv.org/abs/1109.2433
http://arxiv.org/abs/1106.3877
http://arxiv.org/abs/1405.2640


211 Page 10 of 10 Eur. Phys. J. C (2015) 75 :211

49. H. Quevedo, Geometrothermodynamics. J. Math. Phys. 48, 013506
(2007). arXiv:physics/0604164

50. G. Ruppeiner, Thermodynamic curvature and black holes inBreak-
ing of Supersymmetry and Ultraviolet Divergences in Extended
Supergravity, ed. by S. Bellucci. Springer Proceedings in Physics,
vol 153 (Springer, 2014), p. 179–203

51. R. Tharanath, J. Suresh, N. Varghese, V.C. Kuriakose, Thermody-
namic geometry of Reissener–Nordström–de Sitter black hole and
its extremal case. arXiv:1404.6789

52. J. Suresh, R. Tharanath, N. Varghese, V.C. Kuriakose, The ther-
modynamics and thermodynamic geometry of the Park black hole.
Eur. Phys. J. C 74, 2819 (2014)

53. S.A.H. Mansoori, B. Mirza, Correspondence of phase transition
points and singularities of thermodynamic geometry of black holes.
Eur. Phys. J. C 74, 2681 (2014)

54. M.B.J. Poshteh, B. Mirza, Z. Sherkatghanad, Phase transition, crit-
ical behavior, and critical exponents of Myers–Perry black holes.
Phys. Rev. D 88, 024005 (2013)

55. S.W. Wei, Y.X. Liu, Critical phenomena and thermodynamic geom-
etry of charged Gauss–Bonnet AdS black holes. Phys. Rev. D 87,
044014 (2013)

56. S.W. Wei, Y.X. Liu, Thermodynamic geometry of black hole in
the deformed Horava–Lifshitz gravity. Europhys. Lett. 99, 20004
(2012)

57. A. Lala, D. Roychowdhury, Ehrenfest’s scheme and thermody-
namic geometry in Born–Infeld AdS black holes. Phys. Rev. D
86, 084027 (2012)

58. G. Ruppeiner, Thermodynamic curvature: pure fluids to black
holes. J. Phys. Conf. Ser. 410, 012138 (2013). arXiv:1210.2011

59. S. Bellucci, B.N. Tiwari, Thermodynamic geometry and topologi-
cal Einstein–Yang–Mills black holes. Entropy 14, 1045 (2012)

60. Y.D. Tsai, X.N. Wu, Y. Yang, Phase structure of Kerr-AdS black
hole. Phys. Rev. D 85, 044005 (2012)

61. C. Niu, Y. Tian, X.N. Wu, Critical phenomena and thermodynamic
geometry of RN-AdS black holes. Phys. Rev. D 85, 024017 (2012)

62. H. Janyszek, R. Mrugala, Geometrical structure of the state space in
classical statistical and phenomenological thermodynamics. Rep.
Math. Phys. 27, 145 (1989)

63. O. Miskovic, R. Olea, Quantum statistical relation for black holes
in nonlinear electrodynamics coupled to Einstein–Gauss–Bonnet
AdS gravity. Phys. Rev. D 83, 064017 (2011)

123

http://arxiv.org/abs/physics/0604164
http://arxiv.org/abs/1404.6789
http://arxiv.org/abs/1210.2011

	Non-extended phase space thermodynamics of Lovelock AdS black holes in the grand canonical ensemble
	Abstract 
	1 Introduction
	2 Phase transition in the grand canonical ensemble
	3 The nature the phase transition in the grand canonical ensemble
	4 Thermodynamic geometry of Lovelock AdS black holes
	5 Concluding remarks
	Acknowledgments
	References




