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1 Introduction

It has recently been shown [1] that finite N physics for the half-BPS sector of N = 4 SYM

with unitary, orthogonal and symplectic gauge groups can be studied altogether by the use

of certain operators constructed exclusively from an embedding chain of Lie algebras.

In this paper we generalized the operators used in [1] to act on generic states, not

necessarily BPS, of theories with gauge group G(N), which can be either U(N), SO(N)

or Sp(N). We call these operators charges for the reasons adduced below. For theories

with G(N) gauge group, we find an infinite set {Q⊢n
NM |M > N} of self-adjoint (under the

free-field two-point function) commuting charges. The eigenstates of all these charges are

restricted Schur polynomials and analogs for SO(N) and Sp(N). Their eigenvalues encode

(up to constants) the value of the correlator of restricted Schur polynomials, that is, the

correlator of their eigenstates.

By exploiting the embedding chain of Lie algebras, we are able to construct another

infinite set of self-adjoint commuting charges {Q⊢⊢n
NM |M > N}, which also act on generic

states. Their eigenstates are again restricted Schur polynomials but their eigenvalues are

different from those of {Q⊢n
NM |M > N}. As reviewed in section 2, restricted Schur polyno-

mials [2, 3] form a basis of gauge invariant operators and depend on three labels (R,µ,m).

Charges {Q⊢n
NM |M > N} resolve the first label, whereas charges {Q⊢⊢n

NM |M > N} resolve

the second. What we mean by “resolve” is that a number of measures with the respective

charges will specify the label, and so the state. In the same spirit, labels m are expected

to be resolved by an analogous set of charges {Qm
NM |M > N}. We will build them in a

future work.

This paper offers the construction, properties and an interpretation of the two infinite

sets {Q⊢n
NM} and {Q⊢⊢n

NM}. Although our first motivation is to study N = 4 SYM for its

connection with string theory through the most tested AdS/CFT duality [4–6], we realize

that the method applies all the same for a generic CFT in any spacetime dimension as

long as the fields take values in the adjoint. And perhaps, with certain variations, this last

condition might be dropped.

According to AdS/CFT duality, we can learn string physics from studying the dual

gauge theory, we just need the appropriate dictionary. In general, for a gauge group G(N)

in the the gauge theory, the limit N → ∞ corresponds to supergravity solutions on the

string side. For finite N , probing physics of the gauge theory [7] corresponds to studying

non-perturbative objects such as Giant Gravitons [8–10], as well as aspects of spacetime ge-

ometry captured in the stringy exclusion principle [11]. Studying finite N physics is crucial

for describing such non-perturbative objects. On the one hand, it is well-established that

the states of objects like D3 branes are described in the gauge theory by large operators,

that is, composites of n ∼ N fields. On the other hand, it is known that the planar approx-

imation breaks down at leading order for operators with n ∼ N1/2+ǫ with ǫ > 0, see [12] for

recent refinements of this threshold. This means that in order to study non-perturbative

objects using the duality, one has to forget about the planar approximation and sum up all

the Feynman diagrams. Finite N physics develops techniques to deal with this problem.

Different gauge groups in N = 4 super Yang-Mills correspond to different geometries

in which the string theory lives. For U(N) it is known that the corresponding background
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is AdS5×S5 [4], while for SO(N) and Sp(N) gauge groups the CFT is dual to AdS5×RP5

geometry [13]. Unlike string physics in AdS5 × S5, strings in the orbifold AdS5 ×RP5 are

non-oriented. From this fact one expects the study of non-perturbative stringy physics in

the orbifold to bring new insights [14], and they are captured by the finite N physics of

the CFT with gauge groups SO(N) and Sp(N). This was one of the motivations for the

study of finite N physics of orthogonal and symplectic gauge groups in [15, 16].

The programme of studying finite N physics in the case of unitary groups was initi-

ated in [17] for half-BPS operators, that is, for operators built on a single complex matrix.

They showed that half-BPS operators can be described by Schur operators and they demon-

strated that Schur operators diagonalize the free field two-point function. There has been

a considerable progress on the study of finite N physics for U(N) gauge groups and, by

now, we know a number of bases that diagonalize the free field two-point function [2, 3, 18–

22]. Orthogonal operators for the Sl(2) sector of the theory, which involves gauge fields

and their derivatives, and the action of the dilatation operator on them has been studied

in [23]. Fermion together with boson fields have been treated in [24], where an orthogonal

restricted Schur basis for the whole 1
8 -BPS sector was found and the action of the dilatation

operator on them described. Quiver gauge theories for unitary groups and the problem

of counting gauge invariants operators in them has been recently studied [25, 26]. We

also know how to diagonalize the one-loop dilatation operator [27, 28] for certain (large)

operators dual to Giant Gravitons [29–33]. The diagonalization of the one-loop dilatation

operator has provided new integrable sectors in the non-planar regime, with the spectrum

of the dilatation operator reduced to that of decoupled harmonic oscillators which describe

the excitations of strings attached to Giants [31–35].

The programme of studying finite N physics in the case of orthogonal and symplectic

groups was initiated in [14]. A detailed study of the planar spectral problem of N = 4 super

Yang-Mills with gauge groups SO(N) and Sp(N) was carried out in [36]. In order to tackle

the non-planar regime in future works, exact correlators of the orthogonal basis (which is

the analog of the Schur basis in U(N)) of half-BPS operators have been found in [15, 16],

and also in the 1
4 -BPS sector [37, 38]. Recently, non-local operators for orthogonal and

symplectic groups have also been considered [39].

As said at the beginning, this paper deals with the construction of the set of charges

{Q⊢n
NM} and {Q⊢⊢n

NM} that appear in generic CFT’s with unitary, orthogonal or symplectic

gauge groups. The construction of those charges comes almost exclusively from the infinite

chain of Lie algebra embeddings

g(1) →֒ g(2) →֒ · · · (1.1)

We construct the charges by taking this embedding to last consequences. Indeed, the

only extra input is to force the charges to be self-adjoint with respect to the free-field

two-point function of the theory. We see in sections 3 and 5 that with these conditions

there is not much room for choices. On the other hand, the generality of the embedding

structure (1.1) makes it possible to tackle finite N physics for all classical gauge groups

within a unified framework.
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We are going to summarize the main properties of these charges which, together with

their construction, are the main results of this paper.

• The labels N andM refer to the way we construct the charges which also differentiate

them. The charges are constructed by first performing an embedding of the fields

from g(N) to g(M) in (1.1) and, after some manipulation which is needed for self-

adjointness, projecting the fields back to g(N). See sections 3 and 5.

• The first surprise is that among all orthogonal bases of gauge invariant operators

under the free-field two-point function, see [2, 3, 18–22], the basis of restricted Schur

polynomials is singled out by these charges. Restricted Schur polynomials are the

eigenstates of the charges. Since for CFT’s there is a one-to-one correspondence be-

tween states of the theory and operators (as the operators act on the vacuum) we will

freely talk about restricted Schur polynomial states. Restricted Schur polynomials

are specified by three labels: {R,µ,m}, which have a well known group theoretical

meaning in terms of representation of the group of permutations Sn. The point is

that charges {Q⊢n
NM} resolve, via their eigenvalues, the label R which is a partition of

n if we are considering composites of n fields. What we mean by “resolve the label

R” is that a number of measures with charges on a certain state will determine the

label R of the state. Labels µ, which are partitions of partitions of n, are resolved in

the same sense by charges {Q⊢⊢n
NM}.

• Label m in the restricted Schur states is called “multiplicity”. It also has a well-

known group theoretical meaning. Labels m are not resolved by charges {Q⊢n
NM} or

{Q⊢⊢n
NM} since their eigenvalues are the same for different labels m. This degeneracy

is expected to be broken by a set of commuting charges {Qm
NM}. We leave the

construction of {Qm
NM} for a future work.

• The generality of the construction of the charges, mainly of the embedding chain (1.1),

makes it possible to carry all different gauge group cases at once. The construction of

the charges for orthogonal and symplectic group is essentially the same as for unitary

groups. The eigenstates of the charges for those gauge groups are the analogs of

restricted Schur polynomials in the unitary case and their eigenvalues encode the

value of the correlator of two restricted Schurs all the same.

• The charges do not make difference upon the species that build the operators. They

just concern about the values that the fields take in the Lie algebra, or more precisely,

in its isomorphic matrix representation.

• It is expected that charges {Q⊢⊢n
NM}, {Q⊢n

NM} and {Qm
NM} have an interpretation

on the gravity side when the CFT we are considering is N = 4 SYM. In [40],

regarding the half-BPS sector, it was shown that “momenta” which are a collection of

charges that can be expressed in terms of {Q⊢n
NM}, are actually encoded in asymptotic

multipole moments of the dual LLM geometries. We claim in subsection 3.2 that the

interpretation of the charges we build in this paper are also asymptotic multipole
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moments of the corresponding geometries. Unfortunately, out of the BPS sector,

such a description of geometries is not available yet. So, at this stage we cannot

make a precise connection.

• Another nice surprise is that the eigenvalues of the charges encode the essential

information of the correlator of two restricted Schurs. Indeed, by a simple mechanism

we can recover N dependence of the correlator, which is a known polynomial in N of

degree n and depends only on the label R of the state. It will be called f
G(N)
R . See

the end of subsections 3.1 and 5.2.

• Regarding the eigenvalues of the charges, it is also suggesting that they admit a

probabilistic interpretation. Consider the branching graph of the unitary group. It

is graded by N . At level N we write all the irreps of U(N) and we place links

between irreps of consecutive levels whenever the signatures of those irreps interlace.

These links form paths in the graph. Now, the eigenvalue of {Q⊢n
NM} corresponding

to eigenstate R is the probability of starting on irrep R at level M on the graph and

arrive at irrep R at level N by means of a Markov process in which one take a choice

of link with probability Dim[S,N+1]
Dim[T,N ] , if S and T are linked, in each step down. We

explain this in more detail in subsection 3.2.

The organization of the paper is as follows.

In section 2 we fix the notation and give some basic background to follow the paper.

The topics we talk about are structured in paragraphs. The reader is encouraged to jump

to the paragraphs she considers of interest. A special mention deserves the paragraph

regarding Weingarten functions, since it is a novel tool in this field. Weingarten functions

are essential in the construction of the charges.

Sections 3 and 5 contain the main results of the paper, namely the construction of the

charges and their properties. Their proofs can be found in sections 7 and 8.

One of the claims of this paper is that the charges do not make difference upon the kind

of fields that build the composites. However, for simplicity, we have only used composites

of bosonic fields in our proofs. In order to fill this gap we give an example with fermions

in section 4.

Section 6 is an interlude between the charge constructions and their proofs. It is a

technical section and can be thought as a big Lemma. The aim is to offer a characterization

of restricted characters (which drive restricted Schur polynomials) in all gauge groups by

means of their algebra relations under a convolution product. In any case, section 6 provides

easy formulas that allow the proofs in sections 7 and 8 to be more general and elegant.

2 Notation and preliminaries

This section aims to fix the notation we use all along the paper and to provide the necessary

tools to follow the construction and properties of the sets of charges {Q⊢n
NM} and {Q⊢⊢n

NM}

for all M > N which are the main results of this paper. Such charges are going to act on

generic gauge invariant operators of the theory and map them into other gauge invariant

operators. The gauge invariant operators we consider are Quiral Primaries, composites of
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r different fields φ1, . . . φr (the alphabet) from the content of the theory with abundances

{n1, . . . , nr}. The basic bricks, the words, are multitrace monomials1 of a total number

of fields

n = n1 + · · ·+ nr.

For example, if we choose operators built on the scalars 2 Z’s and 2 Y ’s, the possible words

for unitary groups are

Tr(ZZY Y ), Tr(ZY ZY ), Tr(ZZY )Tr(Y ), Tr(ZY Y )Tr(Z), Tr(ZZ)Tr(Y Y ), Tr(ZY )Tr(ZY ),

Tr(Z)Tr(Z)Tr(Y Y ), Tr(Z)Tr(Y )Tr(ZY ), Tr(Y )Tr(Y )Tr(ZZ), Tr(Z)Tr(Z)Tr(Y )Tr(Y ).

The gauge invariant operators we are considering are sentences with these words, that is,

linear combinations of words. Charges Q⊢n
NM and Q⊢⊢n

NM are maps among sentences, so they

respect the field composition of the word.

All the fields along the paper are considered in the adjoint, as happens in N = 4 SYM.

So, they will be matrices whose algebra is isomorphic to the Lie algebra of the gauge group.

With a small abuse of notation we will usually write φi ∈ g(N). Remember that the fields

for orthogonal gauge groups must fulfill φti = −φi, whereas for symplectic groups we have

Jφi = −φtiJ , where J is the standard antisymmetric matrix

J =

(
0N/2 IN/2

−IN/2 0N/2

)
. (2.1)

.

Since we are going to deal with gauge invariant operators of a generic alphabet and

with different gauge groups we must streamline the notation. Let us call

Ψ ≡ φ⊗n1
1 ⊗ · · · ⊗ φ⊗nr

r . (2.2)

We will need to write the components of tensor Ψ explicitly. For the reasons explained be-

low, it is convenient to write the unitary case differently from the orthogonal an symplectic.

For unitary gauge groups we will write

ΨI
J = (φ1)

i1
j1
· · · (φ1)

in1
jn1

(φ2)
in1+1

jn1+1
· · · (φ2)

in2
jn2

· · · · · · (φr)
in−nr−1+1

jn−nr−1+1
· · · (φr)

in
jn
, (2.3)

whereas for orthogonal and symplectic gauge groups we set

ΨI = (φ1)
i1i2 · · · (φ1)

i2n1−1i2n1 · · · · · · (φr)
i2n−2nr−1+1i2n−2nr−1+2 · · · (φr)

i2n−1i2n . (2.4)

Remember that for the gauge group G(N), indeces i, or i and j for unitary gauge groups,

run from 1, . . . , N .

Multitrace monomials. The words that form our gauge invariant operators can be

easily expressed in terms of Ψ and permutations. We will call them TrG(N)(σΨ) and can

be explicitly written in terms of (2.3) and (2.4) like

TrU(N)(σΨ) ≡ ΨI
σ(I), σ ∈ Sn,

TrSO(N)(σΨ) ≡ ΨIδσ(I), σ ∈ S2n, (2.5)

where σ(I) = iσ(1)iσ(2) . . . iσ(2n) and the tensor δI = δi1i2 · · · δi2n−1i2n , so

δσ(I) = δiσ(1)iσ(2)
· · · δiσ(2n−1)iσ(2n)

.

1We know that for orthogonal gauge groups SO(N), with N even, we can also built gauge invariant

operators with the Pfaffian. That sector will not be dealt with in this paper.
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For symplectic gauge groups, where JφiJ = φti, we will write

TrSp(N)(σΨ) ≡ (JΨ)IJσ(I), σ ∈ S2n, (2.6)

where J multiplies every slot of Ψ.

The relation between words and permutations is not one-to-one. Different permuta-

tions can drive the same word. In order to classify the words, and ultimately the sentences,

it is important to know the symmetry under changes in the symmetric group they enjoy.

We will see that these symmetries depend on the gauge group under consideration and on

the precise tensor product Ψ.

Symmetries of multitrace monomials. Fields φi can be bosonic or fermionic. If we

consider bosonic fields, either scalars or the gauge field and its derivatives (derivatives of

the gauge field must be considered as different scalars, see [23]), then it is clear from (2.5)

and (2.3) that for unitary groups

TrU(N)(γσγ
−1Ψ) = TrU(N)(σΨ), γ ∈ Sn1 × Sn2 × · · · × Snr ⊂ Sn. (2.7)

The subgroup Sn1 × Sn2 × · · · × Snr is called the Young subgroup, associated with Sn and

the partition λ = (n1, . . . , nr), and we will denote it by Sλ, so Sλ ⊂ Sn. Elements of Sλ
have the form γ1 ◦ · · · ◦ γr. In (2.7) these permutations swap the ni slots of each field φi in

Ψ. An irreps µ of Sλ is a collection of r partitions µ = (s1, . . . , sr), where si ⊢ ni.

If some of the fields are fermionic, since they are Grassmann valued, their components

anticommute. So, a change of slots must be accompanied with a minus sign when we

change an odd number of slots. Then (2.7) turns into

TrU(N)(γσγ
−1Ψ) = TrU(N)(σΨ)sgn(γf ), γ = γb ◦ γf ∈ Sλ.

For orthogonal and symplectic groups the relevant symmetries are related to S2n in-

stead of Sn as we can see from (2.5). To be precise, the symmetries will be related to

subgroups of S2n called hyperoctahedral groups. Remember that any element of the hy-

peroctahedral group, as a subgroup of S2n, can be seen as a Sn permutation of the pairs

{1, 2; 3, 4; . . . ; 2n − 1, 2n} plus an arbitrary flip of the elements of any pair. We will call

the hyperoctahedral group Sn[S2]. The symmetries of multitraces for both orthogonal and

symplectic group will also be related to the Young subgroup. In these cases, instead of

Sλ ⊂ Sn we will consider S2λ ⊂ S2n, where 2λ = (2n1, . . . , 2nr), and its hyperoctahedral

subgroup Sλ[S2] ⊂ S2λ.

For orthogonal gauge groups we have to keep in mind that the fundamental fields are

matrices of so(N), so they have the additional symmetry φi = −φti. It is easy to see that

Ψη(I) = ΨIsgn(η), η ∈ Sλ[S2].

Besides, tensor δI = δξ(I) for all ξ ∈ Sn[S2]. So, we can see from the definition (2.5) that

TrSO(N)(ησξΨ) = TrSO(N)(σΨ)sgn(η), η ∈ Sλ[S2], ξ ∈ Sn[S2],

– 7 –
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if all φi are bosonic, and if we include fermionic fields we have

TrSO(N)(σΨ) = TrSO(N)(ησξΨ)sgn(η)s̃gn(ηf ), η = ηb ◦ ηf ∈ Sλ[S2], ξ ∈ Sn[S2],

where the function s̃gn(ηf ) is a 1-dimensional representation (there are four) of the hype-

roctahedral group that assigns a sign to the ‘Sn’ part of the permutation ηf , regardless

of the flips. The role of ηf is therefore to change the slots of fermions of the same kind,

producing a minus sign if the permutation is odd.

For symplectic groups we perform a similar analysis keeping in mind that Jη(I) =

JIsgn(η) for all η ∈ Sn[S2], and that (JΨ)ξ(I) = (JΨI) for ξ ∈ Sλ[S2]. Then from (2.6) we

see that

TrSp(N)(ησξΨ) = TrSp(N)(σΨ)sgn(ξ), η ∈ Sn[S2], ξ ∈ Sλ[S2],

for bosonic fields, and as we add fermions we generalize it to

TrSp(N)(σΨ) = TrSO(N)(ησξΨ)sgn(ξ)s̃gn(ξf ), ξ = ξb ◦ ξf ∈ Sλ[S2], η ∈ Sn[S2].

In many calculations there appear the order of the symmetric group and the subgroups

we are dealing with. In order to present them clearer we try to avoid writting their explicit

value. In turn we give it here:

|Sn| = n!, |Sλ| = n1!n2! · · ·nr!, |Sn[S2]| = 2nn!, |Sλ[S2]| = 2nn1! · · ·nr!.

The fact that orthogonal and symplectic multitrace monomials have symmetry under hy-

peroctahedral groups (and not under symmetric groups) leads to the consideration of func-

tions that are constant in the double coset of S2n with two hyperoctahedral subgroups.

In fact, this kind of functions appear once and again when we deal with orthogonal and

symplectic gauge groups.

Spherical functions and zonal polynomials. For functions that are constant on the

double coset Sn[S2]\S2n/Sn[S2] there is a well studied basis called ‘spherical functions’

(see, for instance [41]), they are defined as

ωR(σ) =
1

|Sn[S2]|

∑

ξ∈Sn[S2]

χ2R(σξ), σ ∈ S2n R ⊢ n. (2.8)

Spherical functions enjoy the orthogonality relations inherited from characters.

Associated with each ωR there is a symmetric polynomial ZR (zonal polynomial). Zonal

polynomials are the analogues of Schur functions. They are defined in terms of spherical

functions as2

ZR(x1, . . . , xN ) =
|Sn[S2]|

|S2n|

∑

ρ∈Sn

2−l(ρ)ωR(hρ)pρ(x1, . . . , xN ), R ⊢ n, (2.9)

2Remember that Schur functions are defined as sR((x1, . . . , xN ) = 1
|Sn|

∑
σ∈Sn

χR(σ)pσ(x1, . . . , xN ),

with pσ being the power sums.

– 8 –
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where S2n ∋ hρ = ρ(12)(34) · · · (2n − 1 2n), and ρ ∈ Sn acting on the set of numbers

{1, 3, . . . , 2n − 1}. Symmetric functions pρ(x1, . . . , xN ) are the power sums. The function

l(ρ) measure the number of cycles of permutation ρ.

Zonal polynomials have a natural ‘cut off’, that is ZR(1M ) = 0 if l(R) > M .

The specializations of zonal polynomials to 1 in their variables are

ZR(1N ) =
∏

(i,j)∈R

(N + 2j − i− 1). (2.10)

Alike the U(N) case, there is a direct relation between specializations of zonal polynomials

and combinatorial functions f
SO(N)
R , see equation (8.2). Functions ωR and the correspond-

ing functions ωµ for subgroups Sλ ⊂ S2n, as well as their associated ZR(1M ) and Zµ(1M ),

will appear when dealing with orthogonal gauge groups.

For symplectic groups there will appear functions with the symmetry f(ησξ) =

f(σ)sgn(ηξ), where σ ∈ S2n and ξ, η belonging to some hyperoctahedral subgroup. There

is a well known basis for functions of this kind when η, ξ ∈ Sn[S2]. They are called ‘twisted

spherical functions’ and are defined as

ωε
R(σ) =

1

|Sn[S2]|

∑

ξ∈Sn[S2]

χR∪R(σξ)sgn(ξ), σ ∈ S2n, R ⊢ n. (2.11)

Note that there is a simple relation between spherical and twisted spherical functions

ωR(σ) = ωε
R′(σ)sgn(σ).

Associated to twisted spherical functions are also symmetric polynomials: the so-called

twisted zonal polynomials, defined as

Z ′
R(x1, . . . , xN ) =

|Sn[S2]|

|S2n|

∑

ρ∈Sn

2−l(ρ)ωε
R(hρ)pρ(x1, . . . , xN ), R ⊢ n, (2.12)

whose specialization is

Z ′
R(1N ) =

∏

(i,j)∈R

(2N + j − 2i+ 1). (2.13)

Again, the specialization of twisted zonal polynomials gives the value of the combinatorial

functions f
Sp(N)
R , as explicitly written in equation (2.17).

Restricted Schur polynomials and restricted characters. A generic operator is a

sentence, a linear combination of words. We may write it as

O(Ψ) =
∑

σ

f(σ)Tr(σΨ).

When we don’t have finite N effects, namely when n < N , multitrace monomials form a

basis of operators.3 It is clear that if we choose functions f(σ) to be a basis of functions

3When finite N effects appear there is a cut-off, multitrace monomials still generate gauge invariant

operators but they over-express them. Appropriate basis of operators, like Restricted Schur polynomials,

make the cut-off natural to apply.
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on C with the same symmetries as the multitraces, the operators O generated by f ’s will

form another basis of gauge invariant operators. The point is to look for basis which

are orthogonal under the free two-point function of the theory. The first example are

Schur polynomials driven by characters [17], which diagonalize the two-point function in

the half-BPS sector. For broader sectors of the theory we can find different basis that

make the job. Our construction of charges Q⊢n
NM and Q⊢⊢n

NM singles out the restricted Schur

polynomial basis.

In the bosonic sector of unitary gauge theories, restricted Schur polynomials where

defined as [2, 3]

χR,µ,ij(Ψ) =
1

|Sλ|

∑

σ∈Sn

χR,µ,ij(σ)Tr(σΨ), R ⊢ n, µ irrep of Sλ, i, j = 1, . . . , g(R,µ),

where χR,µ,ij(σ) are the so-called restricted characters. Restricted characters are a basis

of functions of Sn on C with the symmetry χR,µ,ij(γσγ
−1) = χR,µ,ij(σ) for γ ∈ Sλ, in

accordance with the symmetry of multitraces. The construction of restricted characters is

χR,µ,ij(σ) = Tr(PR→µ,ijΓR(σ)),

where PR→µ,ij is a projector that acts on the carrier space of R, projects onto the irrep µ

if it is subduced, and intertwines among copies of the multiplicities i, j. Find more details

in [2, 3, 32].

When we consider fermions, we also introduce inside the trace an involution [24].

Roughly speaking, restricted characters are found by inserting inside the trace some pro-

jectors, intertwiners and involutions acting on the carrier space of R. The special properties

of restricted characters are then derived by results from the representation theory of sym-

metric groups.

Restricted characters for orthogonal and symplectic groups, which drive restricted

Schur polynomials for those cases, have not been completely developed, see progress in this

direction in [37, 38]. One of the claims of this paper is that charges Q⊢n
NM and Q⊢⊢n

NM , via

their eigenstates, single out the restricted Schur polynomial basis for all the gauge groups.

We could take it as a definition. However, in section 6, by means of a convolution product,

we give a characterization of restricted characters which is extensible to all the gauge

groups. Although the restricted characters are not explicitly constructed, it turns out that

their properties under convolution are enough to proof the main results of the paper.

We use a different normalization than usual for restricted characters for reasons that

become clear in section 6. For example, for unitary gauge theories we will write

bUR,µ,ij(σ) ≡
dR
|Sn|

χR,µ,ij(σ).

The restricted Schur polynomials are driven by restricted characters as

χ
U(N)
R,µ,ij(Ψ) =

∑

σ∈Sn

bUR,µ,ij(σ)TrU(N)(σΨ),

χ
SO(N)
R,µ,i (Ψ) =

∑

σ∈S2n

bSOR,µ,i(σ)TrSO(N)(σΨ),
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χ
Sp(N)
R,µ,i (Ψ) =

∑

σ∈S2n

bSpR,µ,i(σ)TrSp(N)(σΨ),

where, in all cases, R ⊢ n, µ is an irrep of Sλ and i, j are the multiplicities. Note that in

the orthogonal and symplectic cases there is just one label for multiplicities. The reason

for that, as well as their properties, may be seen in section 6.

Functions fR. The correlator of restricted Schurs polynomials has been exactly found [3]

〈χ
U(N)
R,µ,ij(Ψ)χ

U(N)
S,ν,kl(Ψ̄)〉 ∝ δRSδµνδikδjlf

U(N)
R , (2.14)

where the constant of proportion is a known function of R and µ. Functions f
U(N)
R are

polynomials in N of the form [17]

f
U(N)
R =

∏

(i,j)∈R

(N + j − i).

Note that in the value of the correlator (2.14) we have dropped the spacetime dependence.

The spacetime dependence of correlators in CFT’s is trivial. It goes like 〈O(x)Ō′(y)〉 ∼
1

|x−y|2∆
, where ∆ is the conformal dimension of the operators. We will omit the spacetime

dependence of correlators from now on.

It turns out that functions f
U(N)
R can be obtained as a specialization of Schur functions

to 1 in their variables

f
U(N)
R =

1

dR

∑

σ∈Sn

χ(σ)pσ(1N ) =
|Sn|

dR
sR(1N ). (2.15)

It is a main result of this paper that the correlator of restricted Schurs polynomials with

big label R (no matter the nature of the fields they built them) are proportional to sR(1N ),

in the unitary case. This comes from application of Q⊢n
NM as seen in section 3. Also, by

means of Q⊢n
NM it is found that

〈χ
SO(N)
R,µ,i (Ψ)χ

SO(N)
S,ν,k (Ψ̄)〉 ∝ δRSδµνZR(1N )

〈χ
Sp(N)
R,µ,i (Ψ)χ

Sp(N)
S,ν,k (Ψ̄)〉 ∝ δRSδµνZ

′
R(1N/2). (2.16)

Actually, the proportionality to ZR and Z ′
R in each case and the orthogonality in labels R,S

come from Q⊢n
NM , whereas the orthogonality in labels µ and ν comes from the properties

of Q⊢⊢n
NM , see section 5. Note that orthogonality in the multiplicities will come from a third

operator Qm
NM , the construction of which is left for a future work.

In order to unify notation we will define

f
SO(N)
R ≡ ZR(1N ) =

∏

(i,j)∈R

(N + 2j − i− 1),

and

f
Sp(N)
R ≡ Z ′

R(1N/2) =
∏

(i,j)∈R

(N + j − 2i+ 1), (2.17)

so as to write

〈χ
SO(N)
R,µ,i (Ψ)χ

SO(N)
S,ν,k (Ψ̄)〉 ∝ δRSδµνf

SO(N)
R

〈χ
Sp(N)
R,µ,i (Ψ)χ

Sp(N)
S,ν,k (Ψ̄)〉 ∝ δRSδµνf

Sp(N)
R .
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Tensor traces. In the course of our computations there appear some traces of tensors

built on Kronecker δ or on the matrix J that we now define:

TrU(N)(σ) ≡ δIσ(I) = N l(σ), σ ∈ Sn,

TrSO(N)(σ) ≡ δIδσ(I) = N co(σ), σ ∈ S2n,

TrSp(N)(σ) ≡ JIJσ(I) = (−N)co(σ)sgn(σ), σ ∈ S2n, (2.18)

where l(σ) is the number of cycles of σ, and co(σ) is the number of rows of the coset-type

of σ. The coset-type is a partition of Sn that every element of S2n is naturally associated

to. See details in [41]. Indeces i of I run from 1 to N .

It is clear from the definitions (2.18) that the traces have the symmetry

TrU(N)(γσγ
−1) = TrU(N)(σ) γ, σ ∈ Sn

TrSO(N)(ησξ) = TrSO(N)(σ), σ ∈ S2n, η, ξ ∈ Sn[S2]

TrSp(N)(ησξ) = TrSp(N)(σ)sgn(ηξ) σ ∈ S2n, η, ξ ∈ Sn[S2],

so they can be expanded in terms of basis of functions with the same symmetry, namely

characters and spherical functions. These expansions are known. They read

TrU(N)(σ) =
1

|Sn|

∑

R⊢n

dRf
U(N)
R χR(σ), σ ∈ Sn

TrSO(N)(σ) =
|Sn[S2]|

|S2n|

∑

R⊢n

d2Rf
SO(N)
R ωR(σ), σ ∈ S2n

TrSp(N)(σ) =
|Sn[S2]|

|S2n|

∑

R⊢n

dR∪Rf
Sp(N)
R ωε

R(σ), σ ∈ S2n, (2.19)

where we have already used the definitions f
SO(N)
R ≡ ZR(1N ) and f

Sp(N)
R ≡ Z ′

R(1N/2).

We will use these expansions, for instance, to write correlators of multitrace monomials

〈TrU(N)(σΨ)TrU(N)(τΨ̄)〉 =
∑

ρ∈Sλ

TrU(N)(σ
−1ρτρ−1)sgn(ρf )

=
1

|Sn|

∑

R⊢n

∑

ρ∈Sλ

dRf
U(N)
R χR(σ

−1ρτρ−1)sgn(ρf ),

〈TrSO(N)(σΨ)TrSO(N)(τΨ̄)〉 =
∑

η∈Sλ[S2]

TrSO(N)(σ
−1ητ)sgn(η)s̃gn(ηf )

=
|Sn[S2]|

|S2n|

∑

R⊢n

∑

η∈Sλ[S2]

d2Rf
SO(N)
R ωR(σ

−1ητ)sgn(η)s̃gn(ηf ),

〈TrSp(N)(σΨ)TrSp(N)(τΨ̄)〉 =
∑

η∈Sλ[S2]

TrSp(N)(σ
−1ητ)sgn(η)s̃gn(ηf )

=
|Sn[S2]|

|S2n|

∑

R⊢n

∑

η∈Sλ[S2]

dR∪Rf
Sp(N)
R ωε

R(σ
−1ητ)sgn(η)s̃gn(ηf ),

(2.20)

where we have considered the general case in which Ψ also contains fermionic fields.
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Weingarten functions. In sections 3 and 5 we will define the operators AvMN and

AvλMN as integrals over the gauge group. The integrands are entries of the group matrices.

It turns out that these integrals can be exactly computed and lead to nice combinatorics

involving symmetric functions.

Weingarten was the first in trying to compute them, and he succeeded for the asymp-

totic behaviour [42], that is, for large N . Since 2003 on, these integrals have been computed

for finite N and for all the classical gauge groups, see [43–45]. The method for computing

them has been baptized as ‘Weingarten calculus’, and the combinatorial functions involved

‘Weingarten functions’. For its close relation with random matrix theory, Weingarten cal-

culus has been widely applied in several fields of mathematics and physics, but as far as

we know this is the first time it appears in our context.

Here we present the formulas of the Weingarten functions for the different gauge groups

which will be necessary to follow the calculations of sections 7 and 8.

For unitary groups we will need to compute the integrals [43]

∫

g∈U(M)
dg gi1j1 · · · g

in
jn
(ḡ)

i′1
j′1
· · · (ḡ)

i′n
j′n

=
∑

α,β∈Sn

(α)II′(β)
J ′

J WgU(M)(αβ),

where

WgU(M)(σ) =
1

|Sn|

∑

R⊢n
l(R)≤M

dR

f
U(M)
R

χR(σ), σ ∈ Sn. (2.21)

The condition l(λ) ≤ N is necessary because Schur functions have a natural ‘cut off’.

They are 0 if the of parts of λ exceeds the number of variables N . This would create a

pole in (2.21) and the Weingarten function would be ill-defined.

For orthogonal groups we will need the result [44]

∫

g∈O(M)
dg gi1j1 · · · gi2nj2n =

1

|Sn[S2]|2

∑

α,β∈S2n

δα(I)δβ(J)WgO(M)(α−1β),

with

WgO(M)(σ) =
|Sn[S2]|

|S2n|

∑

R⊢n
l(R)≤M

d2R

f
SO(M)
R

ωR(σ), σ ∈ S2n. (2.22)

Note that the condition l(λ) ≤ N is also necessary because Zonal polynomials have a

natural ‘cut off’. They are 0 if the of parts of λ exceeds the number of variables N .

For symplectic groups the integral on the entries reads [45]

∫

g∈Sp(M)
dg gi1j1 · · · gi2nj2n =

1

|Sn[S2]|2

∑

α,β∈S2n

Jα(I)Jβ(J)WgSp(M)(α−1β),

with

WgSp(M)(σ) =
|Sn[S2]|

|S2n|

∑

R⊢n
l(R)≤M

dR∪R

f
Sp(M)
R

ωε
R(σ), σ ∈ S2n, (2.23)

and, again, l(λ) ≤ N needs to hold for the function to be well-defined.
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Weingarten functions WgG(N)(σ) are related to TrG(N)(σ) in a nice way by means of

the convolution product4

f ⋆ g (σ) =
∑

α∈Sn

f(α−1)g(ασ) σ ∈ Sn.

It turns out that for n < N , Weingarten functions are the inverse of traces under

this product

WgG(N) ⋆ TrG(N) (σ) = δ(σ),

whereas if we take into account finite N effects

TrG(N) ⋆WgG(N) ⋆ TrG(N) (σ) = TrG(N)(σ).

In a way, this relation is behind the fact that our operators Q⊢n
NM and Q⊢⊢n

NM have such

special properties.

3 Detailed construction of Q⊢n
NM

The construction of Q⊢n
NM = ProjNM ◦ AvMN is a straightforward generalization of the

operators we used in [1], to make them act on a generic gauge invariant operator which

will a linear combination of multitraces

TrG(N)(σΨ),

with

Ψ = φ⊗n1
1 ⊗ · · · ⊗ φ⊗nr

r .

For this reason we use the same notation and we review its construction with minor changes.

3.1 General methodology

First, let us consider the infinite embedding chain

g(1) →֒ g(2) →֒ · · · (3.1)

where g = u, so or sp. So, and element φi ∈ g(N) can always be upgraded to φi ∈

g(M), M > N by placing φi in the upper left of the matrix and filling the rest, up to

dimension M , with 0’s. Related to this embedding, there is a natural set of operators:

ProjNM : g(M) → g(N). (3.2)

Operators ProjNM reduce the dimension of the matrices from M to N by killing the

‘extra’ zeros of the embedding. We can complete the definition of ProjNM by sending to 0

all elements φi ∈ g(M) such that the number of eigenvalues of φi which are different from

0 is greater than N .

We may easily extend the definition of ProjNM to act on gauge invariant operators.

We will make ProjNM to act as above on every φi of the composite operators. This way,

4The properties of restricted characters under this convolution product are studied in section 6.
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ProjNM is a map that takes gauge invariant operators built on φi ∈ g(M) to gauge invariant

operators built on φi ∈ g(N).

At this point it is useful to think of gauge invariant operators built on φi ∈ g(N) as

vectors belonging to a vector space VN . Then ProjNM : VM → VN , and the free field

two-point function is an inner product defined in each VN . It is natural to wonder about

the adjoint operators of ProjNM with respect to this inner product. We will call them

AvMN , and they map gauge invariant operators built on φi ∈ g(N) into gauge invariant

operators built on φi ∈ g(M). So, the two point function must fulfill

〈AvMNON ,O
′
M 〉 = 〈ON ,ProjNMO′

M 〉, (3.3)

for O and O′ arbitrary gauge invariant operators.

The averaging operator can be constructed as

AvMNON (Ψ) =

∫

g∈G(M)
dg Adg(ON (Ψ)), (3.4)

where G = U, SO or Sp, dg is the Haar measure of the corresponding group and Adg is the

adjoint action of g onto the algebra. The adjoint action of φi ∈ g(N) →֒ g(M) is defined

as usual:

Adg(φi) = gφig
−1, g ∈ G(M), (3.5)

where φi is embedded in g(M). The adjoint action of Ψ is defined as (3.5) on each field φi
of Ψ. If we define [

g
]
= g⊗n, g ∈ G(M),

then we have

Adg(Ψ
I
I′) =

[
g
]I
J
ΨJ

J ′

[
g†
]J ′

I′
, g ∈ U(M),

Adg(Ψ
I) =

[
g
]IJ

ΨJ , g ∈ SO(M).

When applied on multitrace monomials we obtain

Adg
(
TrU(N)(σΨ)

)
=
[
g
]I
J
ΨJ

J ′

[
g†
]J ′

I′
(σ)I

′

I , g ∈ U(M),

Adg
(
TrSO(N)(σΨ)

)
=
[
g
]IJ

ΨJδσ(I), g ∈ SO(M). (3.6)

There is a subtle but crucial point in (3.6). Indeces i = 1, . . . , N whereas j = 1, . . . ,M . In

other words, we keep the original range of the traces, otherwise the adjoint action would

be trivial. In a simple example, with just one scalar field, it would be

AdgTrU(N)(Z) = TrU(N)(gZg
−1) 6= TrU(N)(Z), (3.7)

unless M = N , in which case, the adjoint action on gauge invariant operators is trivial.

As example (3.7) shows, given a gauge invariant operator O(Ψ), AdgO(Ψ) is in general

not gauge invariant. However, the integral over the group restores gauge invariance. So,

AvMN , as defined in (3.4), is actually a map between gauge invariant operators.
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Relation (3.3) with the definition of AvMN as in (3.4) was proved for the half-BPS

sector and for each gauge group in [1]. We will give a proof for generic operators in section 7.

Actually, by linearity, it will be enough to prove (3.3) for arbitrary multitrace monomials.

Note that correlators in (3.3) are in different spaces: in the l.h.s. operators are built on

elements φi ∈ g(M) whereas in the r.h.s. φi ∈ g(N). Equation (3.3) shows that AVMN =

Proj*NM , ∀M,N with respect to the free field two-point function of the theory, as we

claim. It also shows the compatibility between Weingarten and Wick calculus. To see this

let us consider two operators built on Ψ, for example two multitrace monomials TrN (σΨ)

and TrN (τΨ). One can compute the correlator of these to operators as usual, summing

all possible Wick contractions. This way we get a result on the r.h.s. of equation (3.3).

Alternatively, we can upgrade Ψ by upgrading every field, so that φi ∈ g(N) →֒ g(M)

and go to the l.h.s. of (3.3). One of the multitrace monomials keeps its structure, except

for φi ∈ g(M). However, the other multitrace monomial is affected by AVMN and turns

into a complicated sum of multitrace monomials built on Ψ, as can be seen in (7.1). The

spectrum of this sum comes from the integrals involved in the definition of AVMN , that is,

from Weingarten calculus. For different M we get a different sum. But as relation (3.3)

states, all these sums must be arranged in a way so that they keep the same value for the

two-point function. In this sense we say that Weingarten and Wick calculus are compatible.

Now, we will consider the composition

Q⊢n
NM ≡ ProjNM ◦AvMN . (3.8)

By construction, Q⊢n
NM are self-adjoint with respect to our correlators and they map gauge

invariant operators built on φi ∈ g(N) into gauge invariant operators built on φi ∈ g(N).

It is logical to wonder about the eigenvectors and the eigenvalues of (3.8). It turns out

that restricted Schur polynomials are eigenvectors of Q⊢n
NM . Specifically, we will prove in

section 7 that5

Q⊢n
NMχ

G(N)
R,µ,m =

f
G(N)
R

f
G(M)
R

χ
G(N)
R,µ,m, ∀M > N, (3.9)

for G = U, SO and Sp.

Since the eigenvalues in (3.9) are all different for different R’s in χ
G(N)
R,µ,m and because

Q⊢n
NM are self-adjoint for all M > N , we conclude that restricted Schur operators are

orthogonal in the capital label R ⊢ n for classical gauge groups of any rank.

Note that from (3.3) and (3.9) one can recover the precise form of the correlator of

restricted Schurs up to a constant. That is, we can obtain

〈χ
G(N)
R,µ,m, χ

G(N)
S,ν,m′〉 = c(R,µ, ν,m,m′)f

G(N)
R δRS . (3.10)

The method is quite simple. From (3.9) we know that

AvMNχ
G(N)
R,µ,m =

f
G(N)
R

f
G(M)
R

χ
G(N)
R,µ,m, ∀M > N. (3.11)

5Within the context of symmetric functions, equation (3.9) first appeared in [46, 47] under the name

of ‘coherence property’ . Their purpose was to give a characterization of Schur functions. Although their

definitions for ProjNM and AvMN are different from ours we have decided to keep their notation.
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Applying (3.3) to Schur operators and using (3.11) we get

1

f
G(M)
R

〈χ
G(M)
R,µ,m, χ

G(M)
R,ν,m′〉 =

1

f
G(N)
R

〈χ
G(N)
R,µ,m, χ

G(N)
R,ν,m′〉 ∀M > N.

This means that

c(R,µ, ν,m,m′) ≡
1

f
G(M)
R

〈χ
G(M)
R,µ,m, χ

G(M)
R,ν,m′〉 (3.12)

is finite and does not depend on M . Therefore, c(R,µ, ν,m,m′) is a number and not a

polynomial in the rank of the gauge group. Now, the orthogonality relation (3.10) follows

from the orthogonality of restricted Schurs in the capital label R and (3.12). We may

conclude that from (3.3) and (3.9) we recover the two point function up to a constant. But

this was expected. It is clear that both (3.3) and (3.9) still hold for k(R,µ,m)χ
G(N)
R,µ,m, so

the freedom of multiplying every restricted Schur by a constant should be reflected in the

two point function. Relation (3.10) precisely reflects this arbitrariness.

In order to find c(R,µ, ν,m,m′) for k(R,µ,m) = 1 one must invariably get some result

from Wick contractions. Equation (3.12) shows that 〈χ
G(M)
R,µ,m, χ

G(M)
R,ν,m′〉 is proportional to

f
G(M)
R . Now, by definition, we know that polynomials f

G(M)
R all have coefficient 1 in the

highest power of M . So, the value of c(R,µ, ν,m,m′) for k(R,µ,m) = 1 is the coefficient

of the highest power of M in the polynomial 〈χ
G(M)
R,µ,m, χ

G(M)
R,ν,m′〉.

Let us summarize the logic of this construction. The starting point is to extract some

information of gauge invariant operators built on n fields of r different type: φ1, . . . , φr ∈

g(N), distributed as n = n1 + · · · + nr. We decide to fix n but move on N . First,

we realize that the algebras can be embedded as in (3.1). Then we think of the most

basic non-trivial set of operators that adapts to this embedding and find ProjNM . These

operators map gauge invariant operators built on φi ∈ g(M) into gauge invariant operators

built on φi ∈ g(N). Considering gauge invariant operators as vectors and the two-point

function as the inner product of the theory, we wonder which operators are the adjoints

of ProjNM , we call them AvNM and find that they can be constructed as in (3.4). The

fact that AvMN = Proj*NM is shown in relation (3.3). Moreover, we construct a set of

self-adjoint operators by composition of them in (3.8) and wonder about their eigenvectors

and eigenvalues in (3.9). It turns out that restricted Schur polynomials are eigenvectors

whose eigenvalues are different for different capital labels6 R ⊢ n. From there, we conclude

that restricted Schurs are necessarily orthogonal in those labels. Besides, the polynomial in

N behaviour of the correlators of restricted Schurs is completely fixed by the embedding,

as shown in (3.10).

3.2 Interpretation of Q⊢n
NM

The objects Q⊢n
NM are self-adjoint with respect to the free-field two point function and com-

mute with each other for allM > N . When applied to half-BPS operators they completely

specify the state. If we choose Schur polynomials as a basis of half-BPS operators then a

number of measures of distinct Q⊢n
NM , that is, a number of different M ’s, will completely

6This explains why we chose to use the label ⊢ n in Q⊢n
NM .
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specify R ⊢ n which labels each state. When Q⊢n
NM are applied to generic operators the

appropriate bases to think of are restricted Schur polynomials χR,µ,m(Ψ). A number of

measures of Q⊢n
NM on these bases will specify the big label R ⊢ n, and a number of measures

Q⊢⊢n
NM will specify µ.

In [40], for the half-BPS sector, they define a collection of charges (momenta) whose

measures completely specify R ⊢ n, i.e. all half-BPS states. Although we haven’t done it

explicitly in this paper, it is clear that those momenta can be put in terms of Q⊢n
NM for

a collection of M ’s. In [40] they write these momenta in terms of the Hamiltonian of N

fermions in a harmonic potential and use this definition to find the interpretation of the

label R of states in the CFT as asymptotic multipole moments of the LLM geometries in

the gravity side.

The geometries associated with restricted Schur polynomial states χR,µ,m(Ψ) are ex-

pected to carry the information of labels {R,µ,m} through asymptotic multipole moments

as well. In this generic case we expect charges {Q⊢n
NM , Q

⊢⊢n
NM , Q

m
NM} in the CFT to be the

“momenta” which are dual to such asymptotic multipoles in the gravity solutions. How-

ever, we cannot make the precise connection in the gravity side for generic operators. There

are two obvious reasons:

• The eigenvalue description for generic operators is not known. So, it is impossible

at this stage to make a connection with free fermions as usually done in the half-

BPS case.

• The analogs of LLM geometries for non half-BPS sectors are also unknown.

It may be instructive, and we leave it for a future work, to work out the problem in the

opposite direction. We mean, trying first to find the set of solutions in SUGRA which

admit a multipole expansion on labels {R,µ,m}.

Probabilistic interpretation of the eigenvalues. Another suggesting point about

charges {Q⊢n
NM , Q

⊢⊢n
NM , Q

m
NM} is related to their eigenvalues. There is a nice group-

theoretical interpretation of the eigenvalues of {Q⊢n
NM} (and likely of the other set of charges

as well) as probabilities. Remember that

Q⊢n
NMχR,µ,m(Ψ) =

f
U(N)
R

f
U(M)
R

χR,µ,m(Ψ) . (3.13)

Take the branching graph of unitary groups. It is a graded graph whose levels are labeled

by N . So, at level N we write all the irreps of U(N), and we link irreps of consecutive

levels if the signatures interlace, as usual. Choosing a path in the graph from irrep R at

level N all the way down to level 0 is tantamount to writing a Gelfand-Tselyn pattern with

signature R. The dimension of the irrep is the number of paths we can write this way.

There is a natural probability associated with this graph7

P (R,N ;S,M) =
Dim(R,N)

Dim(S,M)
Dim(R,N ;S,M), (3.14)

7Actually, equation (3.14) is a natural probability associated with any graded graph [48], when we define

the dimension of a vertex (here an irrep) as the number of paths we find all the way down.
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where Dim(R,N ;S,M) is the number of partial paths that start at levelM with irrep S and

end in irrep R at level N , or equivalently, the number of partial Gelfand-Tselyn patterns

of U(M) that have signature S and end with signature R at level N . It is clear that
∑

R irreps of U(N)

P (R,N ;S,M) = 1.

On the one hand, it is known that

Dim(R,N)

Dim(S,M)
=
f
U(N)
R

f
U(M)
S

and on the other it is not hard to see that

Dim(R,N ;R,M) = 1,

that is, there is only one partial path joining irrep R at level M with irrep R at level N .

Thus, the eigenvalues
f
U(N)
R

f
U(M)
R

of Q⊢n
NM as shown in (3.13), are actually the probabilities of

starting with irrep R at level M and arriving at irrep R at level N by a Markov process in

which we take a choice of link with probability Dim[S,N+1]
Dim[T,N ] , if S and T are linked, at each

step down.

Similar probabilistic interpretations are expected for the other gauge groups. Also, by

combining branching graphs of the gauge groups with the branching graph of the symmetric

group it should be possible to give a probabilistic interpretation to the eigenvalues of the

set of charges Q⊢⊢n
NM . It would be interesting to find out what kind of processes are the

duals in the gravity side.

4 Q⊢n
NM

acting on fermionic fields

It is true that we claim that charges Q⊢n
NM are self-adjoint with respect to the free-field two-

point function and they have eigenvectors and eigenvalues as in (3.9) but, for simplicity,

we only prove it in this paper for bosonic fields. This section aims to fill this gap. It also

may be taken as a warm up of the formalism.

We will make it simple by considering operators in U(N) theory built on one kind of

fermionic field ψ. Since fermionic fields are Grassmann valued we have

ψijψkl = −ψklψij ,

which introduces a modification with respect to the 1/2-BPS sector Ψ(Z) in identities like

Ψ
α(I)
α(J)(Z) = ΨI

J(Z) −→ Ψ
α(I)
α(J)(ψ) = ΨI

J(ψ)sgn(α). (4.1)

We are going to check that Q⊢n
NM = ProjNM ◦ AvMN are self-adjoint and prove that the

orthogonal basis found in [24] are its eigenvectors.

The adjoint action acts in fermionic multitrace monomials as it did for 1
2 -BPS multi-

traces, that is,

Adg(TrU(N)(σΨ)) = gi1j1ψ
j1
j′1
(g†)

j′1
iσ(1)

· · · ginjnψ
jn
j′n
(g†)

j′n
iσ(n)

.
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Remember that since ψ ∈ u(N) →֒ u(M), indeces j, j′ = 1, . . . ,M , whereas i = 1, . . . , N .

The averaging operator acts on multitraces as

Av
MN

(TrU(N)(σΨ))

=
∑

α,β∈Sn

(α)II′(σ)
I′

I (β)
J ′

J ΨJ
J ′WgU(M)(αβ)

=
∑

α,β∈Sn

TrN (σα)TrU(M)(βΨ)sgn(β)WgU(M)(αβ).

In the last equality we have used (4.1). We may absorb sgn(β) into WgU(M)(αβ) by

sgn(β)WgU(M)(αβ) =
1

|Sn|

∑

R⊢n

dR

f
U(M)
R

χR(αβ)sgn(β) =
1

|Sn|

∑

R⊢n

dR

f
U(M)
R

χR′(αβ)sgn(α),

where we have used the fact that χR(σ)sgn(σ) = χR′(σ).

We may as well expand TrU(N)(σα) in terms of characters as

TrU(N)(σα) =
1

|Sn|

∑

S⊢n

dSf
U(N)
S χS(σα),

and compute

Q⊢n
NM [TrU(N)(σΨ)]

=
1

|Sn|2

∑

α,β∈Sn

∑

R,S⊢n

dRdS
f
U(N)
R

f
U(M)
S

χS′(αβ)χR(σα)sgn(α)TrU(N)(βΨ)

=
1

|Sn|2

∑

α,β∈Sn

∑

R,S⊢n

dRdS
f
U(N)
R

f
U(M)
S

χS′(αβ)χR′(σα)sgn(σ)TrU(N)(βΨ)

=
1

|Sn|

∑

β∈Sn

∑

R⊢n

dR
f
U(N)
R

f
U(M)
R

χR′(σβ−1)sgn(σ)TrU(N)(βΨ). (4.2)

Now,

〈Q⊢n
NM [TrU(N)(σΨ)]TrU(N)(τΨ̄)〉

=
1

|Sn|

∑

β∈Sn

∑

R⊢n

dR
f
U(N)
R

f
U(M)
R

χR′(σβ−1)sgn(σ)〈Tr(UN)(βΨ)TrU(N)(τΨ̄)〉

=
1

|Sn|

∑

ρβ∈Sn

∑

R⊢n

dR
f
U(N)
R

f
U(M)
R

χR′(σβ−1)sgn(σ)TrU(N)(βρτρ
−1)sgn(ρ)

=
1

|Sn|2

∑

ρβ∈Sn

∑

R,S⊢n

dRdS
f
U(N)
R f

U(N)
S

f
U(M)
R

χR′(σβ−1)χS(βρτρ
−1)sgn(ρσ)

=
1

|Sn|

∑

ρ∈Sn

∑

R⊢n

dR
f
U(N)
R f

U(N)
R′

f
U(M)
R

χR′(σρτρ−1)sgn(ρσ) .
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Consider the piece

∑

ρ∈Sn

χR′(σρτρ−1)sgn(σρ) =
∑

ρ∈Sn

χR′(σρτρ−1)sgn(ρ), (4.3)

where we have made the substitution σρ → ρ. It is clear that sgn(σ) = 1 otherwise (4.3)

is8 0. Thus,

〈Q⊢n
NM [Tr(UN)(σΨ)]TrU(N)(τΨ̄)〉 =

1

|Sn|

∑

ρ∈Sn

∑

R⊢n

dR
f
U(N)
R f

U(N)
R′

f
U(M)
R

χR′(σρτρ−1)sgn(ρ). (4.4)

The r.h.s. of (4.4) is invariant under the exchange σ ↔ τ . For this reason we conclude that

Q⊢n
NM is also self-adjoint in the fermionic sector.

For the eigenvectors, we know that the restricted characters in this case is a basis of

functions that have the property

f(ρσρ−1) = f(σ)sgn(ρ), σ, ρ ⊢ n. (4.5)

A basis of functions with property (4.5) was found in [24]. They are labeled by self-

conjugate Young diagrams, that is, diagrams which are invariant under the exchange of

rows and columns, and they have the explicit expression

fR(σ) = Tr
(
ORΓR(σ)

)
, R = R′ ⊢ n, (4.6)

where matrices OR are involutions in the carrier space of R that exist only for self-conjugate

representations and have the properties

OR = O†
R, OROR = 1R, ORΓR(σ) = ΓR(σ)ORsgn(σ), R = R′. (4.7)

It is straightforward to prove that a operators driven by the basis (4.6), which are

χ
U(N)
R (Ψ) =

∑

σ∈Sn

Tr
(
ORΓR(σ)

)
TrN (σΨ), R ⊢ n,

are eigenvectors of Q⊢n
NM . Using (4.2) we have

Q⊢n
NM

[ ∑

σ∈Sn

Tr
(
ORΓR(σ)

)
TrU(N)(σΨ)

]

=
1

|Sn|

∑

β,σ∈Sn

∑

S=S′

dS
f
U(N)
S

f
U(M)
S

Tr
(
ORΓR(σ)

)
χS(σβ

−1)sgn(σ)TrU(N)(βΨ)

=
1

|Sn|

∑

β,σ∈Sn

∑

S=S′

dS
f
U(N)
S

f
U(M)
S

Tr
(
ORΓR(σ)

)
χS(σ

−1β)TrU(N)(βΨ)

=
f
U(N)
R

f
U(M)
R

∑

β∈Sn

Tr
(
ORΓR(β)

)
TrU(N)(βΨ),

8Actually, we know [24] that sgn(σ) = 1 for fermions, otherwise TrU(N)(σΨ) ≡ 0.
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where in the third line we have applied the invariance of characters under inversion and

sgn(σ) = 1, otherwise Tr
(
ORΓR(σ)

)
= 0.

Following the reasoning so far, we conclude that sinceQ⊢n
NM are self-adjoint and because

their eigenvalues are all different, their eigenvectors must form an orthogonal basis under

the free field two-point function. Again, we can obtain the polynomial value in N of the

two-point function in this basis:

〈
∑

σ∈Sn

Tr
(
ORΓR(σ)

)
TrU(N)(σΨ)

∑

σ′∈Sn

Tr
(
OSΓS(σ

′)
)
TrU(N)(σ

′Ψ̄) = δRSc(R)f
U(N)
R ,

where c(R) is a number which can depend, in principle, on the diagram R but not in N .

5 Detailed construction of Q⊢⊢n
NM

Charges Q⊢n
NM do not resolve the small labels of restricted Schur polynomials as can be

seen in equation (3.10), where there is no orthogonal relation in the labels µ and ν. It

is reasonable though. The small labels of restricted Schur polynomials are related to the

λ-structure of Ψ (they do not appear in the half-BPS case, for instance). Operators Q⊢n
NM

contain information on the total number of fields but they do not make any difference on

the precise λ-structure of Ψ. So, why should Q⊢n
NM care about the small labels?

In this section we construct charges Q⊢⊢n
NM that do resolve the small labels of restricted

Schur polynomials. They are natural partners of Q⊢n
NM , in the sense that their construction

is also dictated by the embedding.

It is clear that the charges we are looking for in order to resolve the small labels of

restricted Schurs have to be sensitive to the number ni of fields φi which build multitrace

monomials. It is reasonable that such operators carry, in principle, the label λ ⊢ n which

encodes the distribution of fields inside multitrace monomials. As we are going to exploit

again the embedding G(N) → G(M), we will call them Qλ
NM . Later, we will see that the

properties of Qλ
NM allows us to sum over all λ ⊢ n to obtain the charges

Q⊢⊢n
NM =

∑

λ⊢n
λ 6=(n)

Qλ
NM , (5.1)

which act non-trivially on all multitrace monomials built on n fields. Note that we have

substracted the partition λ = (n) from the sum (5.1). Actually, Q
(n)
NM = Q⊢n

NM , so its is

reasonable not to include it in the definition. As we saw in section 3 charges Q⊢n
NM act

non-trivially on any gauge invariant operator. We will see in this section, after constructing

Qλ
NM , that the charges Q⊢⊢n

NM defined as the sum (5.1), will act non-trivially on any gauge

invariant operator except for half-BPS ones, where it is 0. This is reasonable since half-

BPS operators get completely fixed by labels R ⊢ n or, in other words, by measures with

charges Q⊢n
NM .

In the same spirit as for Q⊢n
NM we are looking for

Qλ
NM ≡ ProjNM ◦AvλMN
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that are self-adjoint under the free-field two-point function. Operators Qλ
NM , are not going

to distinguish among the species we choose for a specific multitrace monomial. Thus, λ =

(n1, . . . , nr) defines completely Qλ
NM whether ni refers to bosons or fermions of any kind.

5.1 λ-adjoint action

The first step is to find an appropriate adjoint action, that we will call λ-adjoint action.

Remember the compact notation we use for fields

Ψ ≡ φ⊗n1
1 ⊗ · · · ⊗ φ⊗nr

r ,

where we will use a string of indeces I, J

ΨI
J ≡ Ψi1

j1
Ψi2

j2
· · ·Ψin

jn
, unitary groups

ΨI ≡ Ψi1i2Ψi3i4 · · ·Ψi2n−1i2n , orthogonal and symplectic groups.

The first n1 indeces of I, J refer to fields φ1 and so on.

The multitrace monomials are encoded in permutations as

TrU(N)(σΨ) = Ψi1
iσ(1)

Ψi2
iσ(2)

· · ·Ψin
iσ(n)

= ΨI
σ(I), σ ∈ Sn

TrSO(N)(σΨ) = Ψi1i2Ψi3i4 · · ·Ψi2n−1i2nδσ(I) = ΨIδσ(I), σ ∈ S2n,

TrSp(N)(σΨ) = (JΨ)i1i2(JΨ)i3i4 · · · (JΨ)i2n−1i2nJσ(I) = (JΨ)IJσ(I), σ ∈ S2n, (5.2)

where JΨ = (Jφ1)
⊗n1 ⊗ · · · ⊗ (Jφr)

⊗nr .

We will use a similar notation for the tensor product of matrices of the gauge group:

[
g
]
= g⊗n1

1 ⊗ g⊗n2
2 ⊗ · · · ⊗ g⊗nr

r , gi ∈ U(N),
[
g
]
= g⊗2n1

1 ⊗ g⊗2n2
2 ⊗ · · · ⊗ g⊗2nr

r , gi ∈ SO(N), Sp(N)

or explicitely

[
g
]I
J
≡ (g1)

i1
j1
· · · (g1)

in1
jn1

(g2)
in1+1

jn1+1
· · · (g2)

in1+n2
jn1+n2

· · · (gr)
in−nr+1

jn−nr+1
· · · (gr)

in
jn[

g
]
IJ

≡ (g1)i1j1 · · · (g1)i2n1j2n1
· · · · · · (gr)i2n−2nr+1j2n−2nr+1 · · · (gr)i2nj2n .

Let us first consider the unitary case. The first (naive) approach to the λ-adjoint action

would be to define Âd
λ

[g] which acts on GI operators in a way that the adjoint action on φi
fields is giφig

−1
i . This adjoint action clearly distinguishes between r different fields. Let us

see how Âd
λ

[g] acts on multitrace monomials. In the case of unitary groups

Âd
λ

[g][TrU(N)(σΨ]

= (σ)I
′

I

[
(g1)

i1
j1
(φ1)

j1
j′1
(ḡ1)

i′1
j′1
· · · (g1)

in1
jn1

(φ1)
jn1
j′n1

(ḡ1)
i′n1
j′n1

(g2)
in1+1

jn1+1
(φ2)

jn1+1

j′n1+1
(ḡ2)

i′n1+1

j′n1+1
· · ·

]

=
[
g
]I
J

[
ḡ
]I′
J ′

[
Ψ
]J
J ′(σ)

I′

I , (5.3)
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where indices I run from 1 to N and indeces J from 1 to M . The naive averaging operator

would be: ∫

g1,...,gr∈U(M)
d
[
g
]
Âd

λ

[g][O(Ψ)], (5.4)

where d
[
g
]
= dg1 · · · dgr. Operators (5.4) are maps between GI in U(N) and GI operators

in U(M), as expected, since the integral contracts indeces J with J ′ in (5.3). However, one

can see that the result of aplying (5.4) on multitrace monomials is a linear combination

of operators of the type TrU(M)(ρΨ), where ρ ∈ Sλ. Multitrace monomials of this kind do

not mix fields φi and φi′ in the same trace, so there is no hope that generic operators that

involve traces like, say, Tr(φ1φ2) could be eigenvectors of (5.4) after projection ProjNM .

The problem resides in the adjoint action (5.3). As we can see in (5.3), it involves n

adjoint actions distributed as ni gi-adjoint actions for i = 1, . . . , r. This is the right spirit.

However, the group element gi acts only on φi’s. This is the reason for not mixing φi’s and

φi′ ’s in the same trace of the operators we get under the averaging action. The problem

gets solved if we allow one of the two matrices of the single adjoint actions to act on an

arbitrary slot. In order to do it democratically, we shuffle all the left hand side matrices9

of the adjoint actions over the fields and sum over all possible shufflings. Let us see how

to do it.

The idea is to replace

Âd
λ

[g](Ψ) =
[
g
]I
J

[
ḡ
]I′
J ′

[
Ψ
]J
J ′ → Adλ[g](Ψ) =

1

|Sn|

∑

α∈Sn

[
g
]I
α(J)

[
ḡ
]I′
J ′

[
Ψ
]J
J ′ . (5.5)

But one must be careful in doing so. We should permute the slots where gi but keeping

the structure of the multitrace monomials, which is carried by indeces I. In other words,

we should write

Adλ[g]TrU(N)(σΨ) =
1

|Sn|

∑

α∈Sn

[
g
]I
α(J)

[
ḡ
]I′
J ′

[
Ψ
]J
J ′(σ

′)I
′

I ,

for some σ′ ∈ Sn which is related to σ and α. A careful analysis on indeces reveals that

σ′ = α−1σ, see appendix B for details. All in all, the correct adjoint action on the operators

must be defined as:

Adλ[g][TrU(N)(σΨ)] =
1

|Sn|

∑

α∈Sn

[
g
]I
α(J)

[
Ψ
]J
J ′

[
ḡ
]I′
J ′(α

−1σ)I
′

I . (5.6)

Some comments about (5.6) are in order.

• After the shuffling some of the fields will be acted on as gi′φiḡi, that is, Ad
λ
[g] is not

a collection of truly adjoint actions on every field as Adg is. With this fact in mind

we keep on calling it λ-adjoint action.

• We see that definition (5.6) reduces to Adg when λ = (n), that is, when the multitrace

are built on just one letter of the alphabet. In that case, the action of shuffling is

trivial so it can be omitted.
9Equivalently we could shuffle the right hand side matrices. See appendix B.
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• There is a conceptual meaning about shuffling the group elements gi in the λ-adjoint

action. If we compare (5.6) to the naive approach (5.3) we see that in (5.6) gi’s are

no longer associated to fields φi’s. The delocalization of gi’s makes them refer to the

number of fields ni, instead of the fields φi themselves.

• We have decided to ‘shuffle-act’ on the left, that is moving unbarred elements gi. We

could have acted on the right by moving barred elements with identical result. Both

actions commute. However, applying both at the same time spoils the properties of

the operator. There is a freedom, however, of fully acting on one side (as we have

done) and acting on the other with an appropriate subgroup of Sn, perhaps abelian.

This leaves a room for constructing Qm
NM which will commute with Q⊢n

NM and with

Q⊢⊢n
NM and will resolve the multiplicities, which are not resolved by Q⊢⊢n

NM with (5.6)

as we will see later. We will investigate and report Qm
NM elsewhere.

• We claim that the λ-adjoint action (5.6) is valid for generic operators built on a

distribution λ = (n1, . . . , nr) of fields and also for any classical gauge group with

minor modifications as we are going to see. What we mean with this is that (5.6)

can be used to construct operators Qλ
NM = ProjNM ◦ AvλMN which will be self-

adjoint with respect to the free field two-point function and whose eigenvectors are

restricted Schur polynomials. Moreover, the action of Qλ
NM together with Q⊢n

NM =

ProjNM ◦AvMN will serve to obtain the value (up to constants) of the free correlators

of generic operators.

For the orthogonal gauge group we have

AdλMN

(
TrSO(N)(σΨ)

)
=

1

|S2n|

∑

α∈S2n

[
g
]
Iα(J)

ΨJδα−1σ(I), g ∈ SO(M),

where we have made the same reasoning as in the unitary case for the change σ → α−1σ.

For the symplectic case we have

AdλMN

(
TrSp(N)(σΨ)

)
=

1

|S2n|

∑

α∈S2n

[
g
]
Iα(K)

(JΨ)KJα−1σ(I), g ∈ Sp(M).

5.2 Properties of Q⊢⊢n
NM

Now, with the adjoint actions so-defined in the last subsection, we define the λ-averaging

operators as

AvλMN [O(Ψ)] ≡

∫

g1,...,gr∈G(M)
d
[
g
]
Adλ[g][O(Ψ)]. (5.7)

Now, we compose it with projections and define

Qλ
NM ≡ ProjNM ◦AvλMN ,

which will be maps of gauge invariant operators built on φi ∈ g(N). Let us summarize the

properties of these charges. Detailed proofs are postponed to section 8.
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• Qλ
NM are self-adjoint under the free-field two point function of the theory.

• They only depend on λ = (n1, . . . , nr), and not on the fermionic or bosonic nature of

the fields.

• Their eigenvectors are restricted Schur polynomials:

Qλ
NM (χ

U(N)
R,µ,ij(Ψ)) =

|Sλ|

|Sn|

f
U(N)
R

f
U(M)
µ

χ
U(N)
R,µ,ij(Ψ)

Qλ
NM (χ

SO(N)
R,µ,i (Ψ)) =

|Sλ|

|Sλ[S2]|2|S2n|

f
SO(N)
R

f
SO(M)
µ

χ
SO(N)
R,µ,i (Ψ)

Qλ
NM (χ

Sp(N)
R,µ,i (Ψ)) =

|Sλ|

|Sλ[S2]|2|S2n|

f
Sp(N)
R

f
Sp(M)
µ

χ
Sp(N)
R,µ,i (Ψ). (5.8)

• Since their eigenvalues are all different for each µ irrep of Sλ and they are self-

adjoint, the two point function is forced to be orthogonal in the labels µ. This is the

resolution of small labels we mentioned above. If we link this fact with the correlator

form (3.10), we can see that by means of {Q⊢n
NM} and {Qλ

NM} and, ultimately, by

means of the embedding structure, the form of the correlators is necessarily

〈χ
G(N)
R,µ,m, χ

G(N)
S,ν,m′〉 = c(R,µ,m,m′)f

G(N)
R δRSδµν ,

where the polynomials f
G(N)
R are naturally found for each gauge group.

• If we consider Ψ with a given λ′-structure we can see that

Qλ
NM [O(Ψ)] ≡ 0,

for λ 6= λ′. So, it is natural to define

Q⊢⊢n
NM ≡

∑

λ⊢n
λ 6=(n)

Qλ
NM ,

which, alike Q⊢n
NM , will act non-trivially on all gauge invariant operators (except for

half-BPS operators, for which the action of Q⊢⊢n
NM is 0) built on a total number of

n fields.

6 Characterization of restricted character bases via the convolution

product

One of the handicaps we face in this work is that the restricted character basis for orthog-

onal and symplectic groups is still under development (the 1
2 -BPS sector has been worked

out [15, 16] and, recently the 1/4-BPS sector for orthogonal groups [37, 38]), so in order to

claim that the charges Q⊢n
NM and Q⊢⊢n

NM we have built actually single out restricted Shcur
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polynomials via eigenvectors we should give a characterization of the restricted character

bases in a way that can be extended to the orthogonal and symplectic cases.

For unitary gauge groups, the Schur polynomial basis (1/2-BPS case) corresponds to

characters [17]. Restricted Schur polynomials are driven by the restricted character basis,

which has also been developed [2, 3]. We are going to see that the restricted character

basis can be uniquely characterized by a set of convolution relations. The set is complete,

in the sense that it closes an algebra under the convolution product. To include fermions

in the game we need to extend the algebra of convolution. We will learn from this process

to tackle the other gauge groups.

For any functions g, f : Sn → C we define the convolution product as

f ⋆ g (σ) ≡
∑

α∈Sn

f(α−1)g(ασ). (6.1)

The vector space of all functions of Sn on C will be called H. It is clear that H equipped

with (6.1) form an algebra. Product (6.1) corresponds to the usual product in the group

algebra, that is,

(f ⋆ g)′ = f ′g′,

where prime is the usual map between functions and elements of the group algebra:

f ′ =
∑

σ∈Sn

f(σ)σ.

The algebra of convolution of H has a unit, which is the function

δ(σ) =

{
1 if σ = id,

0 ohtherwise,

so

f ⋆ δ = δ ⋆ f = f,

but is in general non-commutative because

f ⋆ g (σ) =
∑

α∈Sn

f(α−1)g(σα) 6=
∑

α∈Sn

g(α−1)f(σα) = g ⋆ f (σ).

We are interested in the subalgebras of H that play a role in our operators, they will

be algebras of functions with a certain symmetry which is dictated by the symmetry of

multitrace monomials. In the subsequent subsections we will treat them all.

6.1 Unitary groups

Let us consider the bosonic case first and at the end of this subsection we will see how to

deal with fermions. For the unitary group, we have seen that the multitrace monomials

Tr(σΨ) are invariant under the change σ → γσγ−1, where γ ∈ Sn for the 1/2-BPS case,

and γ ∈ Sλ if we consider operators built on multiple bosonic fields. So we will restrict

ourselves to the subalgebra of H of functions which are constant on a given orbit of σ

generated by γσγ−1.
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Half BPS functions. For half BPS operators the Schur functions are characters. We

know that for characters

χR ⋆ χS (σ) =
∑

α∈Sn

χR(α
−1)χS(ασ) = δRS

n!

dR
χR(σ), R ⊢ n.

Now, for the sake of simplicity in the algebra, we will normalize characters like

bUR(σ) ≡
dR
n!
χR(σ).

Then, we have the relations

bUR ⋆ b
U
S = δRSb

U
R, R, S ⊢ n. (6.2)

Relations (6.2) completely define functions bUR, and so they define characters. The algebra

of class functions has the unit δ ⋆ bUR = bUR ⋆ δ = bUR, which can be expanded as

δ(σ) =
∑

R⊢n

bUR(σ).

General bosonic functions. When our operators are composed of more than one kind

of field, say we have ni times field φi, the multitraces have the symmetry

TrU(N)(γσγ
−1Ψ) = TrU(N)(σΨ), σ ∈ Sn, γ ∈ Sλ.

So, we are interested in functions of Sn that have the symmetry

bU (γσγ−1) = bU (σ), σ ∈ Sn, γ ∈ Sλ.

Before defining the restricted character basis by means of their convolution relations, let

us study the algebra relations of characters of Sλ. Similar relations to (6.2) are found

when we consider characters of a Sλ ⊂ Sn. Remember that an irrep of Sλ is labeled by

µ = (r1 ⊢ n1, . . . , rl(λ) ⊢ nl(λ)), where n1 + n2 + · · · + nl(λ) = n, and dµ = dr1 · · · dl(λ).

Characters will be normalized as10

bUµ (ρ) ≡
dµ
|Sλ|

χµ(ρ), ρ ∈ Sλ,

and the algebra of class functions of ρ ∈ Sλ in this basis is

bUµ ⋆ b
U
ν (ρ) = δµνb

U
µ (ρ),

with unit

δ(ρ) =
∑

µ

bUµ (ρ).

10Note that the difference in the notation of bUR(σ) and bUµ (σ) relies only in the labels. It should not lead

to much confusion.

– 28 –



J
H
E
P
0
9
(
2
0
1
4
)
0
3
1

{bUµ } are a basis of class functions of Sλ. We will extend these functions to apply on σ ∈ Sn
by the definition

ḃUµ (σ) =

{
bUµ (σ) if σ ∈ Sλ,

0 otherwise.

It is easy to see that

δ(σ) =
∑

µ

ḃUµ (σ), σ ∈ Sn.

Now we go back to the restricted character basis. As said above, it has been completely

studied. They are defined as

χR,µ,ij(σ) = Tr(PR→(µ)ijΓR(σ)), i, j = 1, . . . , g(R;µ),

where g(R;µ) are the Littlewood-Richardson coefficients, that is, the number of times irrep

µ of Sλ appears when R irrep of Sn is restricted to Sλ. Indeces i, j label the copies of µ

when subduced from R. Matrices PR→(µ)ij act as projectors when i = j from the carrier

space of R to the the carrier space of µ but they intertwine copies i and j when i 6= j. See

more details in [2, 3]. From the Schur orthogonality of irreps

1

|Sn|

∑

σ∈Sn

ΓR
op(σ)Γ

S
qr(σ

−1) =
1

dR
δRSδorδpq, R, S ⊢ n, (6.3)

and the properties of P :

PR,µ,ijPS,ν,kl = δRSδµνδjkPR,µ,il

PR,µ,ij = P †
R,µ,ij (6.4)

we can see that the convolution product of these functions is

χR,µ,ij ⋆ χT,ν,kl = δRSδµνδjk
|Sn|

dR
χR,µ,il. (6.5)

Again, normalizing as

bUR,µ,ij ≡
dR
|Sn|

χR,µ,ij

we get the (non-commutative) relations

bUR,µ,ij ⋆ b
U
S,ν,kl = δRSδµνδjkb

U
R,µ,il . (6.6)

From (6.6) we can see that in this basis the unit may be expanded as

δ(σ) =
∑

R,µ,i

bUR,µ,ii(σ), σ ∈ Sn. (6.7)

Relations (6.6) completely determine the basis {bR,µ,ij} and so the restricted character

basis. However, as happens in our case, they are sometimes not useful for computations. We

will need the convolution relations of restricted characters when combined with characters
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of both Sn and Sλ. Using Schur orthogonality and the projector properties of P we get

the commutative relations

bUR ⋆ b
U
S,µ,ij = δRSb

U
S,µ,ij ,

ḃUµ ⋆ b
U
S,ν,ij = δµνb

U
S,ν,ij ,

bUR ⋆ ḃ
U
µ =

∑

i

bUR,µ,ii, (6.8)

where the third set of relations are obtained by combining the former two with (6.7). The

commutativity of the second set of relations in (6.8) can be easily seen if we take into

account that ḃUµ (σ) = ḃUµ (σ
−1) for all σ ∈ Sn, and that ḃUµ is 0 for all elements outside

Sλ. Then

ḃUµ ⋆ b
U
S,ν,ij (σ) =

∑

α∈Sn

ḃUµ (α
−1)bUS,ν,ij(ασ) =

∑

α∈Sn

ḃUµ (α
−1)bUS,ν,ij(σα)

=
∑

α∈Sn

ḃUµ (α
−1σ)bUS,ν,ij(α) = bUS,ν,ij ⋆ ḃ

U
µ (σ).

The set (6.8) partially determines the restricted character basis. Namely, they determine

the basis up to multiplicities or, in other words, they determine the commutative blocks

of the algebra. But this is enough for our purposes, since the charges Q⊢n
NM that we are

considering in this paper do not resolve the multiplicities.

Adding fermions. If some of the fields that build our operator are fermionic the sym-

metries of the multitrace monomials make us consider functions which have the property

f(γσγ−1) = f(σ)sgn(γf ), γ = γB ◦ γF ∈ Sλ. (6.9)

Functions (6.9) do not close any algebra under the convolution product since, if f and g

fulfill (6.9), we have

f ⋆ g (σ) =
∑

α∈Sn

f(α−1)g(ασ) =
1

|Sλ|

∑

α∈Sn
γ∈Sλ

f(γα−1γ−1)g(ασ)sgn(γf )

=
1

|Sλ|

∑

α∈Sn
γ∈Sλ

f(α−1)g(γαγ−1σ)sgn(γf )

=
1

|Sλ|

∑

α∈Sn
γ∈Sλ

f(α−1)g(αγ−1σγ),

and the last line is manifestly invariant under σ → γσγ−1, so the product of two fermionic

functions gives a bosonic function. With the same analysis we can see that the convolution

product of a fermion and a boson gives a fermion. In order to close an algebra it is necessary

to consider both fermionic and bosonic functions. Let us use f to denote fermionic functions

and b to denote bosonic ones.
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The first issue to discuss is the set of labels of f . When sgn(γf ) appears in (6.9) the

orbits seem to split. One could think that we should consider different functions (and so

different labels) for the orbits where γf is even and for γf odd. However, because the

difference is just a sign both functions are linearly dependent, so the same label must be

used for both orbits. Moreover, it is clear from (6.9) that if σ commutes with any odd

permutation γ ∈ Sλ, all the fermionic functions of σ vanish. So, orbits that contain one

such σ must be excluded. At the end of the day, we are left with a collection of labels

which is a subset of the labels used in the purely bosonic case.

Indeed, the ‘valid’ labels for fermions have been found to be the ones that have self-

conjugate representations (not necessarily irreducible) in the fermionic subgroup of Sλ [24].

It was proved in [24] that for those labels, and only for them, one can construct an involution

that take bosonic functions into fermionic ones. This involution goes schematically like

Tr(PΓ(σ)) → Tr(OPΓ(σ)),

where OΓ(γ) = sgn(γ)Γ(γ)O for γ ∈ Sλ, with properties

O = O+, O2 = 1, [O,P ] = 0.

Functions Tr(OPΓ(σ)) have the symmetry (6.9) and their labels are a subset of the labels

for bosonic functions. Applying Schur orthogonality, properties of P ’s and the properties

of O we arrive to an extension of the algebra (6.6) that includes fermions

bUR,µ,ij ⋆ b
U
S,ν,kl = δRSδµνδjkb

U
R,µ,il

fUR,µ,ij ⋆ b
U
S,ν,kl = δRSδµνδjkf

U
R,µ,il

fUR,µ,ij ⋆ f
U
S,ν,kl = δRSδµνδjkb

U
R,µ,il,

keeping in mind that fUR,µ,ij ≡ 0 for ‘non-valid’ labels.

6.2 Orthogonal groups

For orthogonal gauge groups, multitrace monomials have the symmetries

Tr(ησξΨ) = Tr(σΨ)sgn(η), η ∈ Sλ[S2], ξ ∈ Sn[S2], σ ∈ S2n.

It is easy to see that functions

bSO(ησξ) = bSO(σ)sgn(η) η ∈ Sλ[S2], ξ ∈ Sn[S2], σ ∈ S2n

do not close any algebra under the convolution product on their own, since for any bSO, b′SO

with the above properties we have

bSO ⋆ b′SO (σ) =
∑

α∈S2n

bSO(α−1)b′SO(σα)

=
1

|Sλ|

∑

α∈S2n
η∈Sλ[S2]

bSO(ηα−1)b′SO(σα)sgn(η)
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=
1

|Sλ|

∑

α∈S2n
η∈Sλ[S2]

bSO(α−1)b′SO(σαη)sgn(η)

=
1

|Sλ|

∑

α∈S2n
η∈Sλ[S2]

bSO(α−1)b′SO(σα)sgn(η) = 0.

Indeed, these functions will form part of a broader algebra. We will see shortly that the

complete algebra involves functions of the type

b+(ησξ) = b+(σ), σ ∈ S2n η, ξ ∈ Sn[S2] or η, ξ ∈ Sλ[S2],

bSO(ησξ) = bSO(σ)sgn(η), σ ∈ S2n η, ∈ Sλ[S2], ξ ∈ Sn[S2] .

The choice of η, ξ ∈ Sn[S2] or η, ξ ∈ Sλ[S2] in the first definition will be clear from the

labels they carry.

The algebra of functions b+ in both, the case where the functions are invariant in the

double coset Sn[S2]\S2n/Sn[S2] and the case where the functions are invariant in the double

coset Sλ[S2]\S2n/Sλ[S2], has a unit δ+λ (σ) which is also invariant on the double coset11 and

is defined as

δ+λ (σ) =
1

|Sλ[S2]|

∑

ξ∈Sλ[S2]

δ(ξσ), σ ∈ S2n, (6.10)

which is 0 unless σ ∈ Sλ[S2], in which case it equals 1.

The algebra that contains functions bSO is going to be expressed in terms of combi-

nations (b+, bSO) together with (b+, b+). Note that this algebra will be non-commutative.

For example

b+ ⋆ bSO (σ) =
∑

α∈S2n

b+(α−1)bSO(σα)

=
1

|Sn|

∑

α∈S2n
η∈Sn[S2]

b+(α−1η)bSO(σα)

=
1

|Sn|

∑

α∈S2n
η∈Sn[S2]

b+(α−1)bSO(σηα)

is, in general, a nonzero function of σ of type bSO, whereas

bSO ⋆ b+ (σ) =
∑

α∈S2n

bSO(α−1)b+(σα)

=
1

|Sλ|

∑

α∈S2n
η∈Sλ[S2]

bSO(ηα−1)b+(σα)sgn(η)

=
1

|Sλ|

∑

α∈S2n
η∈Sλ[S2]

bSO(α−1)b+(σαη)sgn(η)

11Note that δ(σ) is not invariant under the double coset, so it does not belong to the algebra of b+.
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=
1

|Sλ|

∑

α∈S2n
η∈Sλ[S2]

bSO(α−1)b+(σα)sgn(η) = 0.

Now, the first thing to discuss is the labels we should use for these functions, and for that

matter we are going to reproduce a general result of finite groups coming from Mackey’s

theory that can be found (with its proof) in [49].

Theorem 1 (Geometric form of Mackey’s Theorem) Let H1 and H2 be subgroups

of the finite group G, and let ψi be a linear character of Hi. Let Λ ∈ HomG(ψ
G
1 , ψ

G
2 ). Then

there exists a function ∆ : G→ C such that

∆(h2gh1) = ψ2(h2)∆(g)ψ1(h1), hi ∈ Hi (6.11)

and Λf = ∆ ⋆ f for all f ∈ ψG
1 . The map Λ → ∆ is a vector space isomorphism of

HomG(ψ
G
1 , ψ

G
2 ) with the space of all functions satisfying (6.11).

We will make use of this results in the following paragraphs.

Functions b+ with η, ξ ∈ Sn[S2]. These functions b+ also close an algebra. The re-

stricted Schur basis corresponds to what goes in the literature under the name of ‘spherical

functions’. These functions are defined as

ωR(σ) =
1

|Sn[S2]|

∑

ξ∈Sn[S2]

χ2R(ξσ), σ ∈ S2n, R ⊢ n. (6.12)

We see that ωR(ξση) = ωR(σ) for all η, ξ ∈ Sn[S2], as required. We can apply the theorem

as a test in this case. Functions ω are ∆, H1 = H2 = Sn[S2] and ψ1 = ψ2 are the trivial

characters of Sn[S2]. We know that (it is a Littlewood’s result) 1↑S2n

Sn[S2]
is a multiplicity-free

sum of irreps of S2n with even number of boxes in each row. So, the space HomG(ψ
G
1 , ψ

G
2 )

is (by Schur Lemma) the set of maps 2R → 2R for all R ⊢ n. These maps can obviously

be labeled by R ⊢ n, and so can the spherical functions since they are in one-to-one

correspondence. So the number of spherical functions that form the basis matches the

theorem’s prediction.

Now, from the orthogonality of characters we see that spherical functions have the

convolution relations

ωR ⋆ ωS (σ) = δRS
|S2n|

d2R
ωR(σ).

Again, we will take the normalization

b+R ≡
d2R
|S2n|

ωR .

To get the relations

b+R ⋆ b
+
S = δRSb

+
R, R, S ⊢ n,

which completely determine functions b+R.

Of course when we consider functions of ρ ∈ S2λ ⊂ S2n, because the spherical function

of a product of representations is basically a character of a product of representations
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we can, as in the unitary case, name µ = (r1 ⊢ n1, . . . , rl(λ) ⊢ nl(λ)) irrep of Sλ, and

dµ = dr1 · · · dl(λ), so

ωµ(ρ) =
1

|Sλ[S2]|

∑

ξ∈Sλ[S2]

χ2µ(ξρ), ρ ∈ S2λ

which can be normalized as

b+µ =
d2µ

|Sn[S2]|
ωµ

to obtain the relations

b+µ ⋆ b
+
ν = δµνb

+
µ .

Functions b+ of S2n with η, ξ ∈ Sλ[S2]. These are functions of S2n that have the

symmetry b+(ξση) = b+(σ) for all η, ξ ∈ Sλ[S2]. This case is similar to the restricted

charater case in the unitary group as we are going to see. Let us first discuss the labels of

the basis. Referring to the theorem, in this case our linear characters are the trivial ones but

of Sλ[S2]. So, the labels for our functions b+ are going to be in one-to-one correspondence

with HomS2n(1↑
S2n

Sλ[S2]
, 1↑S2n

Sλ[S2]
). But we know what this space is. Because induction is

transitive we can perform first the induction 1↑S2λ

Sλ[S2]
, where S2λ is understood as the group

S2n1 × S2n2 × . . ., and then induce the resulting representation up to S2n. After the first

induction we find the direct sum of all irreps 2µ = (2r1 ⊢ 2n1, . . . , 2rl(λ) ⊢ 2nl(λ)) of S2λ.

After the second induction we get a sum of all irreps R of S2n with their multiplicities (if

any) that come from the product 2r1 × · · · × 2rl(λ). By Frobenius reciprocity we can think

of this space as the set of homomorphisms

(R,µ, ij) : R,µ, i→ R,µ, j, R ⊢ 2n, µ irrep of Sλ, i, j = 1, . . . , g(R; 2µ) (6.13)

where R is an irrep of S2n, arbitrary as long as it subduces 2µ when restricted to S2λ. Labels

i, j run over the multiplicities, the copies of 2µ that come out from the subduction. The

number of copies is given by the Littlewood-Richardson coefficient g(R; 2µ). Note that, by

Schur Lemma, irrep µ must be the same in both sides of the homomorphism, but the mul-

tiplicities need not, because one can always establish a non-trivial homomorphism between

two different copies of the same irrep. The dimension of this space of homomorphisms is

easily calculated to be ∑

R,µ

g(R; 2µ)2

which must coincide with the dimension of the space of functions {b+R,µ,ij}.

In short, our basis will be labeled as {b+R,µ,ij}, where R is an irrep of S2n, µ an irrep

of Sλ and i, j = 1, 2, . . . g(R; 2µ).

Now, spherical functions are basically characters. The sum in the hyperoctahedral

group Sn[S2] that appears in their definition can be interpreted as a projector P[S] (acting

on the carrier space of R) onto the trivial representation of Sn[S2]

1

|Sn[S2]|

∑

ξ∈Sn[S2]

χ2R(ξσ) = Tr(P[S]Γ2R(σ)).
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To construct the ‘restricted’ spherical functions {b+R,µ,ij}, we can use the same technology

as for restricted characters in the unitary case. Irrep [S] will be the trivial representation of

Sλ[S2]. The fact that Sλ[S2] ⊂ S2λ indicates that the intertwiners PR,µ,ij as defined in (6.4),

and in particular PR,2µ,ij , will commute with P[S]. So, they will serve to construct functions

b+R,µ,ij(σ) =
dR
|S2n|

Tr(P[S]PR,2µ,ijΓR(σ)),

that fulfill the algebra relations

b+R,µ,ij ⋆ b
+
S,ν,kl = δRSδµνδjkb

+
R,µ,il. (6.14)

As in the case of restricted characters, although these relations fully characterize the re-

stricted spherical functions, they are not very useful for our applications. A first look

at (6.14) reveals

δ+λ =
∑

R⊢2n

∑

µ irrep of Sλ

g(R,2µ)∑

i=1

b+R,µ,ii,

since it makes δ+λ ⋆ b+R,µ,ij = b+R,µ,ij ⋆ δ
+
λ = b+R,µ,ij .

We can find analogous commutative relations to (6.8) for restricted spherical functions:

b+R ⋆ b
+
S,µ,ij = δS 2Rb

+
S,µ,ij ,

ḃ+µ ⋆ b
+
S,ν,ij = δµνb

+
S,ν,ij ,

b+R ⋆ ḃ
+
µ =

∑

i

b+2R,µ,ii, (6.15)

with R ⊢ n and S ⊢ 2n.

Functions bSO. The symmetries of the multitrace monomials in CFT’s with orthogonal

gauge groups for λ ⊢ n field content, are

Tr(ησξΨ) = Tr(σΨ)sgn(η), σ ∈ S2n, η ∈ Sλ[S2], ξ ∈ Sn[S2].

So, we are facing to study functions of σ ∈ S2n that fulfill

bSO(ησξ) = bSO(σ)sgn(η), η ∈ Sλ[S2], ξ ∈ Sn[S2]. (6.16)

For half-BPS operators, where λ = (n), these functions where first studied in [50] and

baptized as bispherical functions. For this reason we will call the basis of functions which

behave as in (6.16) restricted bispherical functions. How many of these functions will

form a basis? How should we label them? To answer these questions we refer again to

the theorem (6.11). Let as call [A] the sign representation of Sλ[S2] and [S] the trivial

representation of Sn[S2]. The space of functions as a vector space will be isomorphic to

the space HomS2n([A]↑
S2n

Sλ[S2]
, [S]↑S2n

Sn[S2]
). It is a Littlewood result that [A]↑S2n

Sn[S2]
is the

multiplicity-free direct sum of irreps of S2n with even number of boxes in each column. So,

[A]↑S2λ

Sλ[S2]
= ⊕µ(µ ∪ µ), µ irrep of Sλ. (6.17)
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And, as before

[S]↑S2n

Sn[S2]
= ⊕R(2R), R ⊢ n.

Note that in this case, the multiplicities appear only in one side of the homomorphism,

namely when performing the second induction ↑S2n
S2λ

in (6.17). For this reason the space

of homomorphisms (and thus the space of functions) will have a basis labeled by one

multiplicity index:

(R,µ, i) : µ→ R,µ, i, R ⊢ n, µ irrep of Sλ, i = 1, . . . , g(2R;µ ∪ µ).

So, valid labels for restricted bispherical functions are the ones for which the multiplicity

index is not 0, so irrep 2R of S2n must subduce at least once the irrep µ ∪ µ of S2λ. They

can be easily counted as

Dim HomS2n([A]↑
S2n

Sλ[S2]
, [S]↑S2n

Sn[S2]
) = Card{bSOR,µ,i} =

∑

R,µ

g(2R;µ ∪ µ).

This result is in agreement with the counting by means of the evaluation of the partition

function for large N in [37].

According to the construction we are giving for restricted characters, {bSO} will be a

set of functions of S2n of the type

bSOR,µ,i(σ) = Tr(P2R,µ∪µ,iΓ2R(σ)) R ⊢ n, µ irrep of Sλ, (6.18)

where the objects P2R,µ∪µ,i will be intertwiners/projectors acting on the carrier space of ΓR.

The construction of such objects is out of the scope of this paper. See [37] for details. We are

going to offer some reasonable relations that, without being too speculative, these functions

must fulfill. Since bO ⋆ bO = 0 ∀bO, we will partially characterize (up to multiplicities) bSO

by the right convolution product with functions b+. We declare that

bSOR,µ,i ⋆ b
+
S = δRSb

SO
R,µ,i, R, S ⊢ n, (6.19)

bSOR,µ,i ⋆ ḃ
+
ν = δµνb

SO
R,µ,i, µ, ν irreps of Sλ, (6.20)

or equivalently

bSOR,µ,i ⋆

(∑

j

b+S,ν,jj

)
= δ2RSδµνb

SO
R,µ,i, R ⊢ n, S ⊢ 2n . (6.21)

Relations (6.19) are straightforwardly fulfilled from (6.18) and Schur orthogonality of rep-

resentations. For the relations (6.20) we will first point out that

∑

ν irrep of Sλ

ḃ+ν = δ+λ and bSOR,µ,i ⋆ δ
+
λ = bSOR,µ,i.

So, we are sure that

bSOR,µ,i ⋆

( ∑

ν irrep of Sλ

ḃ+ν

)
= bSOR,µ,i,

for all R ⊢ n and µ irrep of Sλ, and then (6.20) feels like reasonable projections.
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Let us comment the last point in more detail. All along this section we are extracting

the essence, say, of restricted characters by means of their algebra relations with the con-

volution product. Because, such bases have not been explicitly constructed in all cases, we

have had to derive relations (6.19) and (6.20) as reasonable “guesses”. Instead, we could

have declare (instead of claiming) that the restricted Schur polynomials (which are driven

by restricted bases of functions) come as eigenvectors of the charges {Q⊢n, Q⊢⊢n, Qm},

which is true for restricted Schur polynomials in the unitary case, that is, for all examples

we explicitly know. Now, in this paper we construct the charges {Q⊢n, Q⊢⊢n}, and it turns

out (see sections 7 and 8) that (6.19) and (6.20) are necessary and sufficient conditions

for restricted operators to be their eigenvalues. In other words, relations (6.19) and (6.20)

could be taken as definitions of restricted bases of functions for the orthogonal case, up

to multiplicities.

6.3 Symplectic groups

For CFT’s with symplectic gauge groups gauge invariant operators are generated as linear

combinations of multitrace monomials as well. Now, since the fields that build the operators

are elements of sp(N), multitrace monomials can be written as

TrSp(N)(σΨ) = Jσ(I)(JΨ)I , σ ∈ S2n, (6.22)

where

(JΨ)I = (Jφ1)
i1i2 · · · (Jφ1)

i2n1−1i2n1 (Jφ2)
i2n1+1i2n1+2 · · ·

Note that matrices Jφi are symmetric, whereas matrices J are antisymmetric. We see

from (6.22) that multitrace monomials for symplectic gauge groups have the symmetry

TrSp(N)(ησξΨ) = TrSp(N)(σΨ)sgn(ξ), η ∈ Sλ[S2], ξ ∈ Sn[S2].

We will call bSp the functions of S2n that have the same symmetry, that is,

bSp(ησξΨ) = bSp(σ)sgn(ξ), η ∈ Sλ[S2], ξ ∈ Sn[S2].

It is easy to see that bSp ⋆ b+ = 0 and bSp ⋆ bSp = 0, whereas bSp ⋆ b− is, in general, another

function bSp. So, functions bSp will be characterize by their relations with b− via the right

convolution product.

For the algebra of b− we define the unit as

δ−λ (σ) =
1

|Sλ[S2]|

∑

ξ∈Sλ[S2]

δ(ξσ)sgn(ξ), σ ∈ S2n. (6.23)

The analysis of functions is completely analogous to that of b+, so we are going to point

out the differences and state the results.

For the half-BPS case, that is functions with the symmetry

b−(ησξ) = b−(σ)sgn(ξ), η, ξ ∈ Sn[S2]
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the restricted basis has been studied under the name of ‘twisted spherical functions’:

ωε
R(σ) =

1

|Sn[S2]|

∑

η∈Sn[S2]

χR∪R(ησ)sgn(η), σ ∈ S2n, R ⊢ n.

Choosing the normalization

b−R ≡
dR∪R

|S2n|
ωε
R,

we have the relations

b−R ⋆ b
−
S = δRSb

−
R, R ⊢ n.

Analogous results to b+ functions, are obtained for b− when they are functions of ρ ∈

S2λ. Then

ωε
µ(ρ) =

1

|Sλ[S2]|

∑

ξ∈Sλ[S2]

χµ∪µ(ξρ)sgn(ξ), ρ ∈ S2λ

which can be normalized as

b−µ =
dµ∪µ

|Sn[S2]|
ωε
µ

to obtain the relations

b−µ ⋆ b
−
ν = δµνb

−
µ .

With this functions we define the extensions ḃ−µ of S2n as

ḃ−µ (σ) =

{
b−µ (σ) if σ ∈ S2λ,

0 otherwise,

And we have the identity

δ−λ =
∑

µ irrep of Sλ

ḃ−µ .

For functions

b−(ησξ) = b−(σ)sgn(ξ), η, ξ ∈ Sλ[S2]

we find the same labeling as for b+, but the basis of homomorphisms, as read from the

theorem, are

(R,µ, ij) : R,µ, i→ R,µ, j, R ⊢ 2n, µ irrep of Sλ, i, j = 1, . . . , g(R;µ∪µ), (6.24)

so R must subduce irreps of S2λ with an even number of boxes in each column.

Calling [A] the antisymmetric irrep of Sλ[S2] we see that PR,µ∪µ,ij commutes with P[A],

and so we will define

b−R,µ,ij(σ) =
dR
|S2n|

Tr(P[A]PR,µ∪µ,ijΓR(σ)), R ⊢ 2n, µ irrep of Sλ,

to obtain the algebra relations

b−R,µ,ij ⋆ b
−
S,ν,kl = δRSδµνδjkb

−
R,µ,il.
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Functions bSp. For functions

bSp(ησξΨ) = bSp(σ)sgn(ξ), η ∈ Sλ[S2], ξ ∈ Sn[S2].

We will find the labeling from a similar analysis we did with bSO. We find that a basis of

the space of homomorphisms

HomS2n([S]↑
S2n

Sλ[S2]
, [A]↑S2n

Sn[S2]
)

can be labeled as

(R,µ, i) : µ→ R,µ, i, R ⊢ n, µ irrep of Sλ, i = 1, . . . , g(R ∪R; 2µ),

and we will reasonably define/claim that the algebra relations they satisfy are

bSpR,µ,i ⋆ b
−
S = δRSb

Sp
R,µ,i, R, S ⊢ n, (6.25)

bSpR,µ,i ⋆ ḃ
−
ν = δµνb

Sp
R,µ,i, µ, ν irreps of Sλ (6.26)

or equivalently

bSpR,µ,i ⋆

(∑

j

b−S,ν,jj

)
= δR∪RSδµνb

Sp
R,µ,i, R ⊢ n, S ⊢ 2n. (6.27)

Relations (6.25) and (6.26) are very similar to (6.19) and (6.20). Indeed bO and bSp

are identical in the half-BPS case [1], where the functions are invariant up to a sign in the

double coset Sn[S2]\S2n/Sn[S2].

7 General proofs for Q⊢n
NM

Charges Q⊢n
NM acts naturally on gauge invariant operators built on Ψ in much the same

way as it acts on the half-BPS sector where only one scalar matrix is considered. This

operator is self-adjoint by construction but we can check it.

7.1 Self-adjointness

First, we find that when they act on multitrace monomials they give

Q⊢n
NM

[
TrU(N)(σΨ)

]
=

1

|Sn|

∑

β∈Sn

∑

R⊢n
l(R)≤N

dR
f
U(N)
R

f
U(M)
R

χR(β
−1σ)TrU(N)(βΨ)

Q⊢n
NM

[
TrSO(N)(σΨ)

]
=

1

|S2n|

∑

β∈S2n

∑

R⊢n
l(R)≤N

d2R
f
SO(N)
R

f
SO(M)
R

ωR(β
−1σ)TrSO(N)(βΨ)

Q⊢n
NM

[
TrSp(N)(σΨ)

]
=

1

|S2n|

∑

β∈S2n

∑

R⊢n
l(R)≤N

dR∪R
f
Sp(N)
R

f
Sp(M)
R

ωε
R(β

−1σ)TrSp(N)(βΨ), (7.1)
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where σ ∈ Sn for unitary groups and σ ∈ S2n for orthogonal and symplectic groups. For

convenience let us write (7.1) in terms of the functions b, b+ and b− defined in section (6).

We have

Q⊢n
NM

[
TrU(N)(σΨ)

]
=
∑

β∈Sn

∑

R⊢n
l(R)≤N

f
U(N)
R

f
U(M)
R

bUR(β
−1σ)TrU(N)(βΨ)

Q⊢n
NM

[
TrSO(N)(σΨ)

]
=
∑

β∈S2n

∑

R⊢n
l(R)≤N

f
SO(N)
R

f
SO(M)
R

b+R(β
−1σ)TrSO(N)(βΨ)

Q⊢n
NM

[
TrSp(N)(σΨ)

]
=
∑

β∈S2n

∑

R⊢n
l(R)≤N

f
Sp(N)
R

f
Sp(M)
R

b−R(β
−1σ)TrSp(N)(βΨ). (7.2)

In order to prove self-adjointness of Q⊢n
NM we must see that

〈Q⊢n
NM

[
TrG(N)(σΨ)

]
TrG(N)(τΨ̄)〉

is invariant under the exchange σ ↔ τ .

We will need to know how Wick contractions go for multitrace monomials. This is

written in equations (2.20). We reproduce it here in terms of normalized functions b. For

the unitary group we have

〈TrU(N)(βΨ)TrU(N)(τΨ̄)〉 =
∑

R⊢n

∑

ρ∈Sλ

f
U(N)
R bUR(β

−1ρτρ−1),

for orthogonal groups

〈TrSO(N)(βΨ)TrSO(N)(τΨ̄)〉 = |Sn[S2]|
∑

R⊢n

∑

η∈Sλ[S2]

f
SO(N)
R b+R(β

−1ητ)sgn(η)

and for symplectic groups

〈TrSp(N)(βΨ)TrSp(N)(τΨ̄)〉 = |Sn[S2]|
∑

R⊢n

∑

η∈Sλ[S2]

f
Sp(N)
R b−R(β

−1ητ)sgn(η).

The key point here is that functions bR(σ) = bR(σ
−1), because they are essentially char-

acters. The same happens with b+R and b−R because they are invariant over the elements of

the double coset Sn[S2]\S2n/Sn[S2], and σ
−1 ∈ S2n belongs to the double coset of σ ∈ S2n.

Now, for the unitary groups we have

〈Q⊢n
NM

[
TrU(N)(σΨ)

]
TrU(N)(τΨ̄)〉

=
∑

β∈Sn

∑

R⊢n
l(R)≤N

f
U(N)
R

f
U(M)
R

bUR(β
−1σ)〈TrU(N)(βΨ)TrU(N)(βΨ̄)〉

=
∑

β∈Sn

∑

R⊢n
l(R)≤N

∑

S⊢n

∑

ρ∈Sλ

f
U(N)
R

f
U(M)
R

f
U(N)
S bUR(β

−1σ)bUS (β
−1ρτρ−1)
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=
∑

β∈Sn

∑

R⊢n
l(R)≤N

∑

S⊢n

∑

ρ∈Sλ

f
U(N)
R

f
U(M)
R

f
U(N)
S bUR(β

−1)bUS (β
−1σ−1ρτρ−1)

=
∑

R⊢n
l(R)≤N

∑

ρ∈Sλ

(
f
U(N)
R

)2

f
U(M)
R

bUR(σ
−1ρτρ−1),

which is clearly invariant under the swap σ ↔ τ because bUR(σ) = bUR(σ
−1).

For the orthogonal case we obtain

〈Q⊢n
NM

[
TrSO(N)(σΨ)

]
TrSO(N)(τΨ̄)〉 = |Sn[S2]|

∑

R⊢n
l(R)≤N

∑

η∈Sλ[S2]

(
f
SO(N)
R

)2

f
SO(M)
R

b+R(σ
−1ητ)sgn(η),

which is again invariant under the swap σ ↔ τ because b+R(σ) = b+R(σ
−1).

Similar result is found for the symplectic case:

〈Q⊢n
NM

[
TrSp(N)(σΨ)

]
TrSp(N)(τΨ̄)〉 = |Sn[S2]|

∑

R⊢n
l(R)≤N

∑

η∈Sλ[S2]

(
f
Sp(N)
R

)2

f
Sp(M)
R

b−R(σ
−1ητ)sgn(η),

which also invariant under the swap σ ↔ τ since b−R(σ) = b−R(σ
−1).

7.2 Eigenvectors

To see that restricted Schur polynomials are eigenvectors of Q⊢n
NM we must remember the

algebra of functions b, b+ and b− as shown in section (6). Specifically

bUS,µ,ij ⋆ b
U
R = δRSb

U
S,µ,ij ,

bSOS,µ,i ⋆ b
+
R = δRSb

SO
S,µ,i,

bSpS,µ,i ⋆ b
−
R = δRSb

Sp
S,µ,i .

Remember that our restricted Schur polynomials are defined as

χ
G(N)
R,µ,m(Ψ) =

∑

σ∈Sn(S2n)

bGR,µ,m(σ)TrG(N)(σΨ).

Now, using (7.2) we have for the unitary case

Q⊢n
NM

[
χ
U(N)
R,µ,ij(Ψ)

]
=
∑

β∈Sn

∑

S⊢n
l(S)≤N

f
U(N)
S

f
U(M)
S

bUS (β
−1σ)bUR,µ,ij(σ)TrU(N)(βΨ)

=
∑

β∈Sn

∑

S⊢n
l(S)≤N

f
U(N)
S

f
U(M)
S

bUS (σ
−1β)bUR,µ,ij(σ)TrU(N)(βΨ)

=
∑

β∈Sn

f
U(N)
R

f
U(M)
R

bUR,µ,ij(β)TrU(N)(βΨ)

=
f
U(N)
R

f
U(M)
R

χ
U(N)
R,µ,ij(Ψ).
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For orthogonal gauge groups we have

Q⊢n
NM

[
χ
SO(N)
R,µ,i (Ψ)

]
=
∑

β∈S2n

∑

S⊢n
l(S)≤N

f
SO(N)
S

f
SO(M)
S

b+S (β
−1σ)bSOR,µ,i(σ)TrSO(N)(βΨ)

=
f
SO(N)
R

f
SO(M)
R

χ
SO(N)
R,µ,i (Ψ).

And for symplectic gauge groups

Q⊢n
NM

[
χ
Sp(N)
R,µ,i (Ψ)

]
=
∑

β∈S2n

∑

S⊢n
l(S)≤N

f
Sp(N)
S

f
Sp(M)
S

b+S (β
−1σ)bSpR,µ,i(σ)TrSp(N)(βΨ)

=
f
Sp(N)
R

f
Sp(M)
R

χ
Sp(N)
R,µ,i (Ψ).

8 General proof for Q⊢⊢n
NM

We have defined

Q⊢⊢n
NM ≡

∑

λ⊢n
λ 6=(n)

Qλ
NM =

∑

λ⊢n
λ 6=(n)

ProjNM ◦AvλMN .

We will use this definition to prove the properties of Q⊢⊢n
NM described in section 5. We will

first find how Qλ
NM act on multitrace monomials. Using this result and the properties of

restricted Schur characters as described in section 6, we will prove the self-adjointness of

Q⊢⊢n
NM and find that their eigenvectors are precisely restricted Schur polynomials.

8.1 λ-averaging acting on multitrace monomials

The λ-averaging operator with the adjoint actions defined in section 5 have the form

AvλMN [OG(N)(Ψ)] ≡

∫

g1,...,gr∈G(M)
d
[
g
]
AdλMN [OG(N)(Ψ)]. (8.1)

We are going to see how it acts on multitrace monomials for each gauge group.

Unitary gauge groups. In order to see how AvλMN acts on multitrace monomials we

should remember the result of the integration of group entries in the unitary case [43]

∫

g∈U(M)
dg gi1j1 · · · g

in
jn
(ḡ)

i′1
j′1
· · · (ḡ)

i′n
j′n

=
∑

α,β∈Sn

(α)II′(β)
J ′

J WgU(M)(αβ),

where

WgU(M)(σ) =
1

|Sn|

∑

R⊢n
l(R)≤M

dR

f
U(M)
R

χR(σ), σ ∈ Sn.
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Note that in (8.1) there are r integrals over the subgroups Sn1 , Sn2 , . . . , Snr . We will call

Wg
U(M)
λ (ρ) =

1

|Sλ|

∑

µ irrep of Sλ

l(µ)≤M

dµ

f
U(M)
µ

χµ(ρ), ρ ∈ Sλ,

where we have µ = (s1, . . . , sr) for si ⊢ ni, and we have defined dµ = ds1ds2 · · · dsr ,

f
U(M)
µ = f

U(M)
s1 f

U(M)
s2 · · · f

U(M)
sr and χµ(ρ) = χs1×···×sr(ρ).

With this notation we will write

AvλMN [TrU(N)(σΨ)] =

∫

g1,...,gr∈U(M)
d
[
g
]
AdλMN [TrU(N)(σΨ)]

=
1

|Sn|

∑

α∈Sn

∫

g1,...,gr∈U(M)
d
[
g
][
g
]I
α(J)

[
Ψ
]J
J ′

[
ḡ
]I′
J ′(α

−1σ)I
′

I

=
1

|Sn|

∑

α∈Sn

∑

ρ1,ρ2∈Sλ

(ρ1)
I
I′(α

−1σ)I
′

I (αρ2)
J ′

J

[
Ψ
]J
J ′Wg

U(M)
λ (ρ1ρ2)

=
1

|Sn|

∑

α∈Sn

∑

ρ1,ρ2∈Sλ

TrU(N)(ρ1α
−1σ)Wg

U(M)
λ (ρ1ρ2)TrU(M)(αρ2Ψ)

=
|Sλ|

|Sn|

∑

α∈Sn

∑

ρ∈Sλ

TrU(N)(ρα
−1σ)Wg

U(M)
λ (ρ)TrU(M)(αΨ),

where we have used simple algebra of indeces, see appendix A. Now, for the unitary case

we have

Qλ
MNTrU(N)(σΨ) =

|Sλ|

|Sn|

∑

α∈Sn

∑

ρ∈Sλ

TrU(N)(ρα
−1σ)Wg

U(M)
λ (ρ)TrU(N)(αΨ).

Orthogonal gauge groups. The orthogonal case presents some minor variations. The

integral of the entries of the orthogonal group is [44]
∫

g∈O(M)
dg gi1j1 · · · gi2nj2n =

1

|Sn[S2]|2

∑

α,β∈S2n

δα(I)δβ(J)WgO(M)(α−1β),

with

WgO(M)(σ) =
|Sn[S2]|

|S2n|

∑

R⊢n
l(R)≤M

d2R

f
O(M)
R

ωR(σ), σ ∈ S2n,

where we have defined

f
SO(M)
R =

∏

(i,j)∈R

(M + 2j − i− 1) = ZR(1M ). (8.2)

Again, we have to perform r integrals in (8.1) over the subgroups S2n1 , S2n2 , . . . , S2nr .

Using analogous notation as for the unitary case, we will call µ = (s1, . . . , sr) an irrep of

Sλ, 2µ = (2s1, . . . , 2sr) an irrep of S2λ and define

Wg
O(M)
λ (ρ) =

|Sλ[S2]|

|S2λ|

∑

µ irrep of Sλ

l(µ)≤M

d2µ

f
O(M)
µ

ωµ(ρ), ρ ∈ S2λ.
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With this notation we will write

AvλMN [TrSO(N)(σΨ)] =

∫

g1,...,gr∈SO(M)
d
[
g
]
AdλMN [TrSO(N)(σΨ)]

=
1

|S2n|

∑

α∈S2n

∫

g1,...,gr∈SO(M)
d
[
g
][
g
]
Iα(J)

ΨJδα−1σ(I)

=
1

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ1,ρ2∈S2λ

δρ1(I)δα−1σ(I)δαρ2(J)
[
Ψ
]J
Wg

SO(M)
λ (ρ−1

1 ρ2)

=
1

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ1,ρ2∈S2λ

TrSO(N)(ρ
−1
1 α−1σ)Wg

SO(M)
λ (ρ−1

1 ρ2)TrSO(M)(αρ2Ψ)

=
|S2λ|

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ∈S2λ

TrSO(N)(ρα
−1σ)Wg

SO(M)
λ (ρ)TrSO(M)(αΨ),

and so

Qλ
NM [TrSO(N)(σΨ)] =

|S2λ|

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ∈S2λ

TrSO(N)(ρα
−1σ)Wg

SO(M)
λ (ρ)TrSO(N)(αΨ) .

Symplectic gauge groups. For symplectic groups the integral on the entries reads [45]

∫

g∈Sp(M)
dg gi1j1 · · · gi2nj2n =

1

|Sn[S2]|2

∑

α,β∈S2n

Jα(I)Jβ(J)WgSp(M)(α−1β),

with

WgSp(M)(σ) =
|Sn[S2]|

|S2n|

∑

R⊢n
l(R)≤M

dR∪R

f
Sp(M)
R

ωε
R(σ), σ ∈ S2n,

where we have defined

f
Sp(M)
R =

∏

(i,j)∈R

(M + j − 2i+ 1) = Z ′
R(1M/2).

As we have to perform r integrals in (8.1) over the subgroups S2n1 , S2n2 , . . . , S2nr , will call

µ = (s1, . . . , sr) an irrep of Sλ, µ ∪ µ = (s1 ∪ s1, . . . , sr ∪ sr) an irrep of S2λ and define

Wg
Sp(M)
λ (ρ) =

|Sλ[S2]|

|S2λ|

∑

µ irrep of Sλ

l(µ)≤M

dµ∪µ

f
Sp(M)
µ

ωε
µ(ρ), ρ ∈ S2λ.

With this notation we will write

AvλMN [TrSp(N)(σΨ)] =

∫

g1,...,gr∈Sp(M)
d
[
g
]
AdλMN [TrSp(N)(σΨ)]

=
1

|S2n|

∑

α∈S2n

∫

g1,...,gr∈Sp(M)
d
[
g
][
g
]
Iα(K)

(JΨ)KJα−1σ(I)

=
1

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ1,ρ2∈S2λ

Jρ1(I)Jα−1σ(I)Jαρ2(K)

[
JΨ
]K

Wg
Sp(M)
λ (ρ−1

1 ρ2)
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=
1

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ1,ρ2∈S2λ

TrSp(N)(ρ
−1
1 α−1σ)Wg

Sp(M)
λ (ρ−1

1 ρ2)TrSp(M)(αρ2Ψ)

=
|S2λ|

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ∈S2λ

TrSp(N)(ρα
−1σ)Wg

Sp(M)
λ (ρ)TrSp(M)(αΨ),

and so

Qλ
NM [TrSp(N)(σΨ)] =

|S2λ|

|S2n||Sλ[S2]|2

∑

α∈S2n

∑

ρ∈S2λ

TrSp(N)(ρα
−1σ)Wg

Sp(M)
λ (ρ)TrSp(N)(αΨ) .

8.2 Self-adjointness

To see that Q⊢⊢n
NM is self-adjoint it is enough to prove that Qλ

NM is self-adjoint for all λ.

So, what we have to prove is that

〈(ProjNM ◦AvλMN )TrN (σΨ)TrN (τΨ̄)〉 = 〈TrN (σΨ)(ProjNM ◦AvλMN )TrN (τΨ̄)〉,

for all σ, τ ∈ Sn in the unitary case, and σ, τ ∈ S2n for orthogonal and symplectic gauge

groups. For simplicity we will consider the case of operators built on bosonic fields. We

will need to know how Wick contractions go for multitrace monomials. Remember that for

unitary groups we have

〈TrU(N)(σΨ)TrU(N)(τΨ̄)〉 =
∑

R⊢n

∑

ρ∈Sλ

f
U(N)
R bUR(σ

−1ρτρ−1), (8.3)

for orthogonal groups

〈TrSO(N)(σΨ)TrSO(N)(τΨ̄)〉 = |Sn[S2]|
∑

R⊢n

∑

η∈Sλ[S2]

ZR(1N )b+R(σ
−1ητ)sgn(η) (8.4)

and for symplectic groups

〈TrSp(N)(σΨ)TrSp(N)(τΨ̄)〉 = |Sn[S2]|
∑

R⊢n

∑

η∈Sλ[S2]

Z ′
R(1N/2)b

−
R(σ

−1ητ)sgn(η). (8.5)

Applying Qλ
NM = ProjNM ◦AvλMN to multitrace monomials we obtain

Qλ
NM

(
TrU(N)(σΨ)

)
=

|Sλ|

|Sn|

∑

α∈Sn

∑

ρ∈Sλ

TrU(N)(ρ
−1α−1σ)Wg

U(M)
λ (ρ)TrU(N)(αΨ)

Qλ
NM

(
TrSO(N)(σΨ)

)
=

|Sλ|

|Sλ[S2]|2|Sn|

∑

α∈S2n

∑

ρ∈Sλ[S2]

TrSO(N)(ρ
−1α−1σ)Wg

SO(M)
λ (ρ)TrSO(N)(αΨ)

Qλ
NM

(
TrSp(N)(σΨ)

)
=

|Sλ|

|Sλ[S2]|2|Sn|

∑

α∈S2n

∑

ρ∈Sλ[S2]

TrSp(N)(ρ
−1α−1σ)Wg

Sp(M)
λ (ρ)TrSp(N)(αΨ).

Let us compute ∑

ρ∈Sλ

TrG(N)(ρ
−1α−1σ)Wg

G(M)
λ (ρ),

– 45 –



J
H
E
P
0
9
(
2
0
1
4
)
0
3
1

for G = U, SO, Sp gauge groups. In order to make the computations agile and clearer,

we will make use of convolution properties studied in section (6). For unitary groups we

know that

TrU(N)(ρ
−1α−1σ) =

∑

R⊢n

f
U(N)
R bUR(ρ

−1α−1σ),

and that the Weingarten function of the subgroup Sλ can be expanded as

Wg
U(M)
λ (ρ) =

1

|Sλ|

∑

µ irrep of Sλ

dµ
1

f
U(M)
µ

χµ(ρ) =
∑

µ irrep of Sλ

1

f
U(M)
µ

bUµ (ρ).

Now, we extend the function to β ∈ S2n by

Wg
U(M)
λ (β) =

∑

µ irrep of Sλ

1

f
U(M)
µ

ḃUµ (β),

and so

∑

ρ∈Sλ

TrU(N)(ρ
−1α−1σ)Wg

U(M)
λ (ρ) =

∑

R⊢n
µ irrep of Sλ

β∈S2n

f
U(N)
R

f
U(M)
µ

ḃUµ (β)b
U
R(β

−1α−1σ)

=
∑

R⊢n
µ irrep of Sλ

f
U(N)
R

f
U(M)
µ

ḃUµ ⋆ b
U
R(α

−1σ)

=
∑

R⊢n
µ irrep of Sλ

i=1,...,g(R;µ)

f
U(N)
R

f
U(M)
µ

bUR,µ,ii(α
−1σ)

Performing analogous calculations we find for the orthogonal case

∑

ρ∈S2λ

TrSO(N)(ρ
−1α−1σ)Wg

SO(M)
λ (ρ) =

∑

R⊢n
µ irrep of Sλ

i=1,...,g(R;2µ)

f
SO(N)
R

f
SO(M)
µ

b+R,µ,ii(α
−1σ)

and for symplectic gauge groups

∑

ρ∈S2λ

TrSp(N)(ρ
−1α−1σ)Wg

Sp(M)
λ (ρ) =

∑

R⊢n
µ irrep of Sλ

i=1,...,g(R;µ∪µ)

f
Sp(N)
R

f
Sp(M)
µ

b−R,µ,ii(α
−1σ).

So, we will write

Qλ
NM

(
TrU(N)(σΨ)

)
=

|Sλ|

|Sn|

∑

α∈Sn

∑

R⊢n
µ irrep of Sλ

i=1,...,g(R;µ)

f
U(N)
R

f
U(M)
µ

bR,µ,ii(α
−1σ)TrU(N)(αΨ)
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Qλ
NM

(
TrSO(N)(σΨ)

)
=

|Sλ|

|Sλ[S2]|2|Sn|

∑

α∈S2n

∑

R⊢n
µ irrep of Sλ

i=1,...,g(R;2µ)

f
SO(N)
R

f
SO(M)
µ

b+R,µ,ii(α
−1σ)TrSO(N)(αΨ)

Qλ
NM

(
TrSp(N)(σΨ)

)
=

|Sλ|

|Sλ[S2]|2|Sn|

∑

α∈S2n

∑

R⊢n
µ irrep of Sλ

i=1,...,g(R;µ∪µ)

f
Sp(N)
R

f
Sp(M)
µ

b−R,µ,ii(α
−1σ)TrSp(N)(αΨ).

(8.6)

As said before, to prove that Qλ
NM is self-adjoint, the necessary and sufficient condition is

that the result of

〈(Qλ
NMTrG(N)(σΨ)TrG(N)(τΨ̄)〉 (8.7)

is invariant under the swap σ ↔ τ . This is the case for all gauge groups we are consid-

ering. One has to use (8.6) in (8.7), apply the Wick contractions for multitrace monomi-

als (8.3), (8.4) and (8.5), and take into account that
∑

i b
(±)
R,µ,ii(σ) =

∑
i b

(±)
R,µ,ii(σ

−1).

8.3 Eigenvectors and eigenvalues

For the eigenvectors and eigenvalues of Qλ
NM = ProjNM ◦AvλMN , take the restricted Schur

polynomials with our normalization:

χ
G(N)
R,µ,m(Ψ) =

∑

σ∈Sn(S2n)

bGR,µ,m(σ)Tr(σΨ).

Again,
∑

i b
(±)
R,µ,ii(σ) =

∑
i b

(±)
R,µ,ii(σ

−1) and the convolution products (6.21) and (6.27) we

see that

Qλ
NM (χ

U(N)
R,µ,ij(Ψ)) =

|Sλ|

|Sn|

f
U(N)
R

f
U(M)
µ

χ
U(N)
R,µ,ij(Ψ)

Qλ
NM (χ

SO(N)
R,µ,i (Ψ)) =

|Sλ|

|Sλ[S2]|2|S2n|

f
SO(N)
R

f
SO(M)
µ

χ
SO(N)
R,µ,i (Ψ)

Qλ
NM (χ

Sp(N)
R,µ,i (Ψ)) =

|Sλ|

|Sλ[S2]|2|S2n|

f
Sp(N)
R

f
Sp(M)
µ

χ
Sp(N)
R,µ,i (Ψ), (8.8)

and restricted Schur polynomials are eigenvalues of Qλ.

Note that if we apply Qλ
NM to operators with a different distribution of fields λ′, say

n′1 + n′2 + · · ·+ n′r = n

then µ 6= µ′ for µ irrep of Sλ and µ′ irrep of Sλ′ , and it is 0. This fact allows us to define

Q⊢⊢n
NM =

∑

λ⊢n
λ 6=(n)

Qλ
NM

as charges with the same properties as (8.8) which act non-trivially on all gauge invariant

operators (except for half-BPS) built on n fields.
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9 Conclusions and future works

In this paper we have constructed two infinite sets of self-adjoint commuting charges for a

quite general CFT. They come out naturally by considering an infinite embedding chain

of Lie algebras, an underlying structure that share all theories with gauge groups U(N),

SO(N) and Sp(N). The generality of the construction allows us to carry all gauge groups

at the same time in a unified framework, and so to understand the similarities among them.

One of the surprising results is that among all the bases of operators which diagonalize

the free-field two-point function, restricted Schur polynomials are singled out. They are the

eigenstates of the charges. Moreover, the charges, via their eigenvalues, resolve the labels

of the restricted Schur polynomials. The correlator of two restricted Schur polynomials

can be read (up to constants) from the eigenvalues of the charges as well.

We also have suggested that the charges should correspond to asymptotic multipole

moments of the geometries in the gravity side although, for obvious reasons we explain in

the paper, we were not able to establish an explicit connection. For unitary groups, we

have shown that the eigenvalues of the charges admit a probabilistic interpretation in the

space of paths of the branching graph of the unitary group.

There are a number of future works that this paper suggests. Let us list some of them.

• Construction of charges Qm
NM . This charges will break the degeneracy we still have

in the multiplicity labels. The sets {Q⊢n
NM}, {Q⊢⊢n

NM} and {Qm
NM} will complete the

specification of state.

• It is likely that the eigenvalues of Q⊢⊢n
NM have a similar probabilistic interpretation as

the eigenvalues of Q⊢n
NM . They will be related to some Markov process in the space

of paths of branching graphs. It would be interesting to identify it. We also think

that these processes must have a physical meaning in the gravity side. It should

be investigated.

• We used matter in the adjoint for the construction of the charges. tt would be

interesting to see if we can relax this condition and apply the machinery to theories

with matter, say, in the bifundamental.

• In the same line as the previous point, It would be worth investigating the appli-

cability of our charges to quiver gauge theories and see, for example, if generalized

restricted Schurs, as described in [25] are their eigenstates.

• Weingarten calculus is a powerful tool and can be further exploited. For example,

it seems possible to rewrite the dilatation operator in terms of Weingarten integrals.

Then, perhaps, we can use the properties of those integrals, which are being actively

studied, to say something about nonplanar integrability.
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A Algebra with indeces

Delta tensors

δIJ = δi1j1δ
i2
j2
· · · δinjn

are easily seen to fulfill

δ
α(I)
α(J) = δ

iα(1)

jα(1)
· · · δ

iα(1)

jα(1)
= δIJ . (A.1)

This happens because deltas commute with each other. Applying (A.1) we see that

(α)IJ ≡ δIα(J) = δ
α−1(I)
J = (α−1)JI .

When we have different permutations up and downstairs one can see that

δ
α(I)
β(J) = δIβα−1(J) = (βα−1)IK .

We often have to perform products like

(α)IJ (β)
J
K = δIα(J)δ

J
β(K) = δIJδ

α−1(J)
β(K) = δIJδ

J
βα(K) = (βα)IK .

For SO(N) gauge group we often need

δα(I)δ
β(I) = δKδK′(α)KI (β)K

′

I = δKδK′(α−1)IK(β)K
′

I = δIδ
α−1β(I) = TrSO(N)(α

−1β).

Different rules apply when we deal with tensors that have other kind of symmetry like Ψ

and
[
g
]
. Tensors Ψ (and

[
g
]
) have the obvious symmetry

Ψ
α(I)
α(J) = ΨI

J , α ∈ Sλ,

but it is not true for α /∈ Sn × Sm. A direct consequence of this fact is that, for

generic α ∈ Sn,

Ψ
α(I)
J 6= ΨI

α−1(J).

B Shuffling slots for λ-adjoint actions

Generic multitrace monomials for unitary gauge theories of a total number of n fields can

be written in terms of σ ∈ Sn. In doing so, we have tacitly chosen a given order of fields.

Let us choose some Ψ with λ-structure

Tr(σΨ) ≡ ΨJ
J ′(σ)J

′

J , σ ∈ Sn.

Imagine we want to write the same multitrace monomial in terms of the tensor Ψ
α(J)
J ′ ,

for α ∈ Sn. It is clear that there should be a σ′ different from σ that encodes the same

monomial, that is,

Ψ
α(J)
J ′ (σ′)J

′

J = ΨJ
J ′(σ)J

′

J .
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But

Ψ
α(J)
J ′ (σ′)J

′

J = ΨJ
J ′(σ′)J

′

α−1(J) = ΨJ
J ′(α−1σ′)J

′

J ,

so, σ′ = ασ referred to Ψ
α(J)
J ′ drives the same multitrace monomial as σ does when referred

to ΨJ
J ′ . We have

Ψ
α(J)
J ′ (ασ)J

′

J = ΨJ
J ′(σ)J

′

J . (B.1)

Similarly,

ΨJ
β(J ′)(σβ

−1)J
′

J = ΨJ
J ′(σ)J

′

J .

Now, when applying the naive adjoint action we transform

ΨJ
J ′(σ)J

′

J →
[
g
]I
J
ΨJ

J ′

[
ḡ
]I′
J ′(σ)

I′

I .

But the correct action needs to shuffle the group elements g1, . . . , gr ∈ U(N). So we are

interested in [
g
]I
α(J)

ΨJ
J ′

[
ḡ
]I′
J ′(σ)

I′

I =
[
g
]I
J
Ψ

α−1(J)
J ′

[
ḡ
]I′
J ′(σ)

I′

I .

We see that σ drives a multitrace monomial but refered to the tensor Ψ
α−1(J)
J ′ , what means

that in any shuffling we are changing the multitrace structure. To remedy this we use (B.1)

and write [
g
]I
α(J)

ΨJ
J ′

[
ḡ
]I′
J ′(α

−1σ)I
′

I

for every shuffling. Then the generalized adjoint action is defined as

Adλg [TrU(N)(σΨ] =
1

|Sn|

∑

α∈Sn

[
g
]I
α(J)

ΨJ
J ′

[
ḡ
]I′
J ′(α

−1σ)I
′

I .
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