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Abstract We present a highly general implementation of fast multipole methods on
graphics processing units (GPUs). Our two-dimensional double precision code fea-
tures an asymmetric type of adaptive space discretization leading to a particularly el-
egant and flexible implementation. All steps of the multipole algorithm are efficiently
performed on the GPU, including the initial phase, which assembles the topological
information of the input data. Through careful timing experiments, we investigate the
effects of the various peculiarities of the GPU architecture.

Keywords Adaptive fast multipole method · CUDA · Graphics processing units ·
Tesla C2075

1 Introduction

We discuss in this paper implementation and performance issues for adaptive fast
multipole methods (FMMs). Our concerns are focused on using modern high-
throughput graphics processing units (GPUs), which have seen an increased popular-
ity in Scientific Computing in recent years. This is mainly thanks to their high peak
floating point performance and memory bandwidth, implying a theoretical perfor-
mance which is an order of magnitude better than for CPUs (or even more). However,
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in practice for problems in Scientific Computing, the floating point peak performance
can be difficult to realize since many such problems are bandwidth limited [24]. Al-
though the GPU processor bandwidth is up to 4 times larger than that of the CPU, this
is clearly not sufficient whenever the parallel speedup is (or could be) much larger
than this. Moreover, according to the GPU computational model, the threads has to
be run synchronously in a highly stringent manner. For these reasons, near optimal
performance can generally only be expected for algorithms of predominantly data-
parallel character.

Another difficulty with many algorithms in Scientific Computing is that the GPU
off-chip bandwidth is comparably small such that the ability to mask this communi-
cation becomes very important [24]. Since the traditional form of many algorithms
often involves intermediate steps for which the GPU architecture is suboptimal, a fair
degree of rethinking is usually necessary to obtain an efficient implementation.

Fast multipole methods appeared first in [4, 9] and have remained important com-
putational tools for evaluating pairwise interactions of the type

Φ(xi) =
N∑

j=1,j �=i

G(xi, xj ), xi ∈ RD, i = 1 . . .N, (1.1)

where D ∈ {2,3}. More generally, one may consider to evaluate

Φ(yi) =
N∑

j=1,xj �=yi

G(yi, xj ), i = 1 . . .M, (1.2)

where {yi} is a set of evaluation points and {xj } a set of source points. In this paper,
we shall also conveniently use the terms potentials or simply particles to denote the
set of sources {xj }.

Although the direct evaluation of (1.1) has a complexity of O(N2), the task is
trivially parallelizable and can be performed much more efficiently using GPUs than
CPUs. For sufficiently large N , however, tree-based codes in general and the FMM
algorithm in particular become important alternatives. The practical complexity of
FMMs scales linearly with the input data and, moreover, effective a priori error esti-
mates are available. Parallel implementations are, however, often highly complicated
and balancing efficiency with software complexity is not so straightforward [20, 23].

In this paper, we present a double precision GPU implementation of the FMM
algorithm which is fully adaptive. Although adaptivity implies a more complex al-
gorithm, this feature is critical in many important applications. Moreover, in our ap-
proach, all steps of the FMM algorithm are performed on the GPU, thereby reducing
memory traffic to the host CPU.

Successful implementations of the FMM algorithm for GPUs have been reported
previously [12, 26, 27] under certain limitations. Specifically, with GPUs the perfor-
mance of single precision algorithms is a factor of at least 2 times better than double
precision [16, p. 11]. In fact, for computationally intensive applications, this factor
can reach as high as 8 times [25], which implies that single precision speedups vis-à-
vis CPU implementations can well be > 2. It should be noted, however, that simpler
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tree-based methods than the FMM exist that offer a better performance at low tol-
erance (cf. [3], [10, Chap. 8.7]), and that the FMM is of interest mainly for higher
accuracy demands.

In Sect. 2, we give an overview of our version of the adaptive FMM. The details of
the GPU implementation are found in Sect. 3, and in a separate Sect. 4, we highlight
the algorithmic changes that were made to the original serial code described in [7]. In
Sect. 5, we examine in detail the speed-ups obtained when moving the various phases
of the algorithm from the CPU to the GPU. We also reason about the results such
that our findings may benefit others who try to port their codes to the GPU. Since
the FMM has been judged to be one of the top 10 most important algorithms of the
twentieth century [5], it is our hope that insights obtained here is of general value.
A final concluding discussion around these matters is found in Sect. 6.

Availability of software The code discussed in the paper is publicly available and the
performance experiments reported here can be repeated through the Matlab-scripts
we distribute. Refer to Sect. 6.1 for details.

2 Well-separated sets and adaptive multipole algorithms

In a nutshell, the FMM algorithm is a tree-based algorithm which produces a continu-
ous representation of the potential field (1.2) from all source points in a finite domain.
Initially, all potentials are placed in a single enclosing box at the zeroth level in the
tree. The boxes are then successively split into child-boxes such that the number of
points per box decreases with each level.

The version of FMM that we consider is described in [7], and is organized around
the requirement that boxes at the same level in the tree are either decoupled or
strongly/weakly coupled. The type of coupling between the boxes follows from the
θ -criterion, which states that for two boxes with radii r1 and r2, whose centers are
separated with distance d , the boxes are well-separated whenever

R + θr ≤ θd, (2.1)

where R = max{r1, r2}, r = min{r1, r2}, and θ ∈ (0,1) a parameter. In this paper,
we use the constant value θ = 1/2 which we have found to perform well in practice.
At each level l and for each box b, the set S(p) of strongly coupled boxes of its
parent box p is examined; children of S(p) that satisfy the θ -criterion with respect
to b are allowed to become weakly coupled to b, otherwise they remain strongly
coupled. Since a box is defined to be strongly connected to itself, this rule defines the
connectivity for the whole multipole tree. In Fig. 1, an example of a multipole mesh
and its associated connectivity pattern is displayed.

All boxes are equipped with an outgoing multipole expansion and an incoming
local expansion. The multipole expansion is the expansion of all sources within the
box around its center and is valid away from the box. To be concrete, in our two-
dimensional implementation, we use the traditional format of a p-term expansion in
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Fig. 1 The adaptive mesh is constructed by recursively splitting boxes along the coordinate axes in such a
way that the number of source points is very nearly the same in the four resulting boxes. (a) Here, the boxes
colored in light gray will interact via multipole-to-local shifts with the black box, that is, they satisfy the
θ -criterion (θ = 1/2). The boxes in dark gray are strongly connected to the black box and must be taken
care of at the next level in the tree. (b) Same mesh as in (a), but visualized as a distribution by letting the
height of each box be inversely proportional to its area. The source points in this example were sampled
from a normal distribution

the complex plane,

M(z) = a0 log(z − z0) +
p∑

j=1

aj

(z − z0)j
, (2.2)

where z0 is the center of the box. The local expansion is instead the expansion of
sources far away from the box and can therefore be used to evaluate the contribution
from these sources at all points within the box:

L(z) =
p∑

j=0

bj (z − z0)
j , (2.3)

where again (2.3) is specific to a two-dimensional implementation.
The computational part of the FMM algorithm proceeds in an upward and a down-

ward phase. During the first stage, the multipole-to-multipole (M2M) shift from chil-
dren to parent boxes recursively propagates and accumulates multipole expansions.
In the second stage, the important multipole-to-local (M2L) shift adds to the local
expansions in all weakly coupled boxes which are then propagated downwards to
children through the local-to-local shift (L2L). At the finest level, any remaining
strong connections are evaluated through direct evaluation of (1.1) or (1.2). A sim-
ple optimization which was noted already in [4] is that, at the lowest level, strongly
coupled boxes are checked with respect to the θ -criterion (2.1), but with the roles of
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r and R interchanged. If found to be true, then the potentials in the larger box can be
directly shifted into a local expansion in the smaller box, and the outgoing multipole
expansion from the smaller can directly be evaluated within the larger box.

The algorithm so far has been described without particular assumptions on the
multipole mesh itself. As noted in [7], relying on asymmetric adaptivity when con-
structing the meshes makes a very convenient implementation possible. In particular,
this construction avoids complicated cross-level communication and implies that the
multipole tree is balanced, rendering the use of post-balancing algorithms [21] unnec-
essary. Also, the possibility to use a static layout of memory is particularly attractive
when considering data-parallel implementations for which the benefits with adaptive
meshes have been questioned [12].

In this scheme, the child boxes are created by successively splitting the parent
boxes close to the median value of the particle positions, causing all child boxes to
have about the same number of particles. At each level, all boxes are split twice in
succession, thus producing four times as many boxes for each new level. The resulting
FMM tree is a pyramid rather than a general tree for which the depth may vary. The
cost is that with a balanced tree, the communication stencil is variable. Additionally, it
also prevents the use of certain symmetries in the multipole translations as described
in [14]. To improve on the communication locality, the direction of the split is guided
by the eccentricity of the box since the algorithm gains in efficiency when the boxes
have equal width and height (the θ -criterion is rotationally invariant).

The algorithmic complexity of the FMM has been discussed by many authors.
Practical experiences [2], [10, Chap. 8.7], [11, Chap. 6.6.3], indicate that linear com-
plexity in the number of source points is observed in most cases, but that simpler
algorithms perform better in certain situations. Although it is possible to construct
explicit distributions of points for which the FMM algorithm has a quadratic com-
plexity [1], this behavior is usually not observed in practical applications.

With p terms used in both the multipole and the local expansions, we expect the se-
rial computational complexity of our implementation to be proportional to θ−2p2 ·N ,
with N the number of source points. This follows from assuming an asymptotically
regular mesh such that R ∼ r in (2.1) and a total of on the order of N boxes at
the finest level. Then each of those N boxes interact through M2L-interactions with
about πd2 × N other boxes. From (2.1), we get d ∼ (1 + θ)/θ × r ∼ (

√
Nθ)−1, and

since the M2L-interaction is a linear mapping between p coefficients this explains
our stated estimate. This simple derivation assumes that the M2L-shift is the most
expensive part of the algorithm. In practice, the cost of the direct evaluation of (1.1)
may well match this part. From extensive experiments with the serial version of the
algorithm, we have seen that it is usually possible to balance the algorithm in such a
way that these two parts take roughly the same time.

With a given relative target tolerance TOL, the analysis in [7] implies p ∼
log TOL/ log θ , so that the total complexity can be expected to be on the order of
θ−2 log−2 θ · N log2 TOL. We now proceed to discuss an implementation which dis-
tributes this work very efficiently on a GPU architecture.
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3 GPU implementation

The first major part of the adaptive fast multipole method is the topological phase
which arranges the input into a hierarchical FMM mesh and determines the type of
interactions to be performed. We discuss this part in Sect. 3.2. The second part is
discussed in Sect. 3.3 and consists of the actual multipole evaluation algorithm with
its upward and downward phases performing the required interactions in a systematic
fashion.

To motivate some of our design choices, we choose to start with a brief discussion
on the GPU hardware and the CUDA programming model (Compute Unified Device
Architecture). The interested reader is referred to [8, 17] for further details.

3.1 Overview of the GPU architecture

Using CUDA terminology, the GPU consists of several multiprocessors (14 for the
Tesla C2075), where each multiprocessor contains many CUDA cores (32 for the
C2075). The CUDA execution model groups 32 threads together into a warp. All
threads in the same warp execute the same instruction, but operate on different data;
this is simply the GPU-version of the Single Instruction Multiple Data (SIMD)-model
for parallel execution. Whenever two threads within the same warp need to execute
different instructions, the operations become serialized.

To perform a calculation on the GPU, the CPU launches a kernel containing the
code for the actual calculation. The threads on the GPU are grouped together into
blocks, where the number of blocks as well as the number of threads per block is to
be specified at each kernel launch (for performance reasons the number of threads per
block is usually a multiple of the warp size). All threads within a block will be exe-
cuted on the same multiprocessor and thread synchronization can only be performed
efficiently between the threads of a single block. This synchronization is required
whenever two threads write to the same memory address. Although for this purpose
there are certain built-in atomic write operations, none of these support double preci-
sion for the Tesla C2075.

The GPU typically has access to its own global memory and all data has to be
copied to this memory before being used. Further, each multiprocessor has a spe-
cial fast shared memory, which can be used for the communication between threads
within the same block [8, Chap. 5]. For example, the C2075 has 48 kB of shared
memory per multiprocessor for this purpose. Overuse of this memory limits the num-
ber of threads that can run simultaneously on a multiprocessor, which in turn has a
negative effect on performance.

3.2 Topological phase

The topological phase consists of two parts, where the first part creates the boxes by
partitioning the particles (we refer to this as “sorting”) and the second part deter-
mines the interactions between them (“connecting”).

The sorting algorithm successively partitions each box in two parts according to
a chosen pivot point (Algorithm 3.1). The pivot element is obtained by first sorting
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32 of the elements using a simple O(n2) algorithm where each thread sorts a single
point (32 elements was chosen to match the warp size). The pivot is then determined
by interpolation of the current relative position in the active set of points so as to
approximately land at the global median point (line 2, Algorithm 3.1).

Algorithm 3.1 (Partitioning with successive splits)

Input: Unordered array consisting of x- or y-coordinates.
Output: Array partitioned around its median coordinate.

1: while size(array) > 32 do
2: determine_pivot_32()
3: split_around_pivot()
4: keep_part_containing_median()
5: end while
6: {the array now consists of ≤ 32elements :}
7: determine_median_32()

The split in line 3 uses a two-pass scheme, where each thread handles a small set
of points to split. The threads start by counting the number of points smaller than the
pivot. Then a global cumulative sum has to be calculated. Within a block, the method
described in [13] is used. For multiple blocks, atomic addition is used in between the
blocks, thus allowing the split to be performed in a single kernel call (note that using
atomic addition makes the code non-deterministic). Given the final cumulative sum,
the threads can correctly insert their elements in the sorted array (second pass). After
the split, only the part containing the median is kept for the next pass (line 4).

Algorithm 3.1 can be used to partition many boxes in a single kernel call using one
block per box. If the number of boxes is low, it is desirable to use several blocks for
each partitioning to better use the GPU cores. This requires communication between
the blocks and the partitioning has to be performed with several kernel calls according
to Algorithm 3.2. The splitting code is executed in a loop (lines 2 to 9) and a small
amount of data transfer between the GPU and the CPU is required to determine the
number of loops.

Algorithm 3.2 (Partitioning with successive splits, CPU part)

Input: Unordered array consisting of x- or y-coordinates.
Output: Array partitioned around its median coordinate.

1: determine_split_direction()
2: while maxi size(arrayi ) > single_thread_limit do
3: {executed in parallel:}
4: for all splits do
5: determine_pivot_32()
6: partition_around_pivot()
7: keep_part_containing_median()
8: end for
9: end while
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10: split_on_single_block()

Running the code using multiple blocks forces the code to run synchronized, with
equal amount of splits in each partitioning. If one bad pivot is encountered, then this
split takes much longer time than the others resulting in bad parallel efficiency. By
contrast, a single block running does not force this synchronization and, additionally,
allows for a better caching of the elements since they remain in the same kernel call
all the time. For these reasons, Algorithm 3.2 switches to single block mode (line 10)
when all splits contain a small enough number of points (single_thread_limit = 4096
in the current implementation).

The second part of the topological phase determines the connectivity of the FMM
mesh, that is, if the boxes should interact via near- or far-field interactions. This search
is performed for each box independently and the parallelization one thread/box is
used here. Each kernel call calculates the interactions of one full level of the FMM
tree.

3.3 Computational part: the multipole algorithm

The computational part consists of all the multipole-related interactions, which in-
clude initialization (P2M), shift operators (M2M), (M2L), and (L2L), and local eval-
uation (L2P). Additionally, we also include the direct interaction in the near-field
(P2P) in this floating point intensive phase of the FMM algorithm. During the com-
putational part, no data transfer is necessary between the GPU and the host.

3.3.1 Multipole initialization

The initialization phase creates multipole expansions for each box via particle-to-
multipole shifts (P2M). Since each source point gives a contribution to each coeffi-
cient aj , using several threads per box requires intra-thread communication which in
Algorithm 3.3 is accomplished by introducing a temporary matrix to store the coeffi-
cients.

Initially (line 5, Algorithm 3.3), one thread calculates the coefficients for one
source particle (two threads if the number of particles is less than half the number
of available threads). Then each thread calculates the sum for one coefficient (line 7).
This procedure has to be repeated for a large number of coefficients, as it is desir-
able to have a small temporary matrix to limit the use of shared memory. The current
implementation uses 64 threads per box (two warps) and takes 4 coefficients in each
loop iteration (8 in the two threads/particle case).

The initialization also handles the special case where the particles are converted
directly to local expansions via particle-to-local expansions (P2L). The principle for
creating local expansions is the same as for the multipole expansions. All timings of
this phase will include both P2M and P2L shifts.

Algorithm 3.3 (Multipole initialization)

Input: Positions and strengths for source particles in a box.
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Output: Multipole coefficients ai for the box.
1: {executed in parallel:}
2: for all sources in box do
3: load_one_source_per_thread()
4: for k = 1 to p do
5: temp_array := calc_N_cache_coefficients()
6: synchronize_threads()
7: ak := ak + sum(temp_array)
8: end for
9: end for

3.3.2 Upward pass

In the upward pass, the coefficients of each of four child boxes are repeatedly
shifted to their parent’s coefficients via the M2M-shift. This is achieved using Al-
gorithm 3.4 (a), which is similar to the one proposed in [15]. Algorithm 3.4 (a) can
be parallelized by allowing one thread to calculate one interaction, and at the end
compute the sum over the four boxes (line 14, Algorithm 3.4). It should be noted
that the multiplication in Algorithm 3.4 is a complex multiplication which is per-
formed O(p2) times. By introducing scaling, the algorithm can be modified to Algo-
rithm 3.4 (b), which instead requires one complex division, O(p) complex multipli-
cations and O(p2) complex additions. The advantage of this modification in the GPU
case is not the reduction of complex multiplications, but rather that the real and imag-
inary parts are independent. Hence, two threads per shift can be used thus reducing
the amount of shared memory per thread.

Algorithm 3.4 (Multipole to multipole translation)

Input: Multipole coefficients aj of child box at position zc .
Output: Multipole coefficients aj of parent box at position zp .

(a) Without scaling
1: r := zc − zp

2:

3:

4:

5: for k = p downto 2 do
6: for j = k to p do
7: aj := aj + r · aj−1
8: end for
9: end for

10: for j = 1 to p do
11: aj := aj − rj · a0/j

12: end for
13: {4 child boxes shift coefficients to

the same parent:}
14: a := sum_translations()

(b) With scaling
r := zc − zp

for j = 1 to p do
aj := aj /rj

end for
for k = p downto 2 do

for j = k to p do
aj := aj + aj−1

end for
end for
for j = 1 to p do

aj := (aj − a0/j) · rj

end for

a := sum_translations()
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3.3.3 Downward pass

The downward pass consists of two parts, the translation of multipole expansions
to local expansions (M2L), and the translation of local expansions to the children
of a box (L2L). The translation of local expansions to the children is very similar
to the M2M-shift discussed previously, and can be achieved with the scheme in Al-
gorithm 3.5 (b). This shift is slightly simpler on the GPU since there is no need to
sum the coefficients at the end, but instead requires more memory accesses as the
calculated local coefficients must be added to already existing values.

Algorithm 3.5 (Local to local translation)

Input: Local coefficients bj of parent box at position zp .
Output: Local coefficients bj of child box at position zc .

1: r := zp − zc

2: for j = 1 to p do
3: bj := bj · rj

4: end for
5: for k = 0 to p do
6: for j = p − k to p − 1 do
7: bj := bj − bj+1
8: end for
9: end for

10: for j = 1 to p do
11: bj := bj /rj

12: end for

The translation of multipole expansions to local expansions is the most time con-
suming part of the downward pass. The individual shifts can be performed with a
combination of the reduction scheme in the M2M translation and the L2L transla-
tion; see Algorithm 3.6. Again, this implementation allows for two dedicated threads
for each shift. We have not seen this algorithm described elsewhere.

Algorithm 3.6 (Multipole to local translation)

Input: Multipole coefficients aj of box at position zi .
Output: Local coefficients bj of box at position zo.

1: r := zo − zi

2: for j = 1 to p do
3: bj−1 := aj/rj · (−1)j

4: end for
5: bp := 0
6: for k = 2 to p do
7: for j = p − k to p − 1 do
8: bj := bj − bj+1
9: end for



Adaptive fast multipole methods on the GPU 907

10: end for
11: for k = p downto 1 do
12: for j = k to p do
13: bj := bj + bj−1
14: end for
15: end for
16: b0 := b0 − a0 · log(r)

17: for j = 1 to p do
18: bj := (bj − a0/j)/rj

19: end for
20: b := sum_translations()

With the chosen adaptive scheme, the number of shifts per box varies. Since our
GPU does not support atomic addition in double precision, one block has to handle all
shifts of one box in order to perform this operation in one kernel call. As the number
of translations is not always a multiple of 16 (the number of translations per loop if
32 threads/block is used), this can result in idle threads. One can partially compensate
for this by giving one block the ability to operate on two boxes in the same loop.

As the M2L translations are performed within a single level of the multipole tree,
all translations can be performed in a single kernel call. This is in contrast to the
M2M- and L2L translations, which both require one kernel call per level.

3.3.4 Local evaluation

The local evaluation (L2P) is scheduled in parallel by using one block to calculate
the interactions of one box. Moreover, one thread calculates the interactions of one
evaluation point from the local coefficients of the box. This operation requires no
thread communication and can be performed in the same way as for the CPU. The
local evaluation uses 64 threads/block.

This phase will also include the special case where the evaluation is performed
directly through the multipole expansion (M2P). This operation is performed in a
similar way as for the L2P evaluation. All timings of this phase therefore include
both L2P- and M2P evaluations.

3.3.5 Near-field evaluation

In the near-field evaluation (P2P), the contribution F from all boxes within the near-
field of a box should be calculated at all evaluation points of the box. Similar to the
M2L translations, the number of boxes in the near-field varies due to the adaptivity.

Algorithm 3.7 (Direct evaluation between boxes)

Input: Positions and strengths of particles in the near field.
Output: The contribution F of the particles in the near field.

1: {executed in parallel:}
2: load_evaluation_point_positions() {one per thread}
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3: for all interaction boxes do
4: cache_interaction_positions()
5: if cache_is_full or all_positions_loaded then
6: for all elements in cache do
7: F := F + add_pairwise_interaction()

8: end for
9: end if

10: end for

The GPU implementation uses one block per box and one to four threads per eval-
uation point (depending on the number of evaluation points compared to the num-
ber of threads). The interaction is calculated according to Algorithm 3.7, where the
source points are loaded into a cache in shared memory (line 4) and when the cache
is full, the interactions are calculated (line 7). This part uses 64 threads per block and
a suitable cache size is to use the same size as the number of threads.

4 Differences between the CPU and GPU implementations

In this section, we highlight the main differences between the two versions of the
code. A point to note is that when we compare speed-up with respect to the CPU-
code in Sect. 5, we have taken care in implementing several optimizations which are
CPU-specific.

4.1 Topological phase

When sorting, the GPU implementation is based on sorting 32 element arrays for
choosing a pivot element. This design was made to achieve a better use of the CUDA
cores and, in the multiple block/partitioning case, to make all partitionings behave
more similar to each other. The single-threaded CPU version uses the median-of-
three procedure for choosing the pivot element, which is often used in the well-known
algorithm quicksort [19, Chap. 9]. An advantage with this method compared to the
GPU algorithm is that it is in-place and hence that there is no need for temporary
storage.

4.2 Computational part

The direct evaluation can use symmetry on the CPU if the evaluation points are the
same as the source points since the direct interaction is symmetric. Using this sym-
metry, the run time of the direct interaction can be reduced by almost a factor of two
in the CPU version. This is not implemented on the GPU as it would require atomic
memory operations to store the results (which is not available for double precision on
our GPU).

The operations M2M, P2P, P2M, and M2P are all in principle the same in both
versions of the code. For the M2L shift, the symmetry of the θ -criterion (2.1) can
be used in the scaling phases on the CPU (lines 2–4 and 17–19 in Algorithm 3.6),
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while in the GPU version, the two shifts are handled by different blocks, making
communication unpractical. Another difference is that the scaling vector is saved
in memory from the prescaling part to the post-scaling part after the principal shift
operator. This was intentionally omitted from the GPU version as the extra use of
shared memory decreased the number of active blocks on each multiprocessor, and
this in turn reduced performance.

4.3 Symmetry and connectivity

The CPU implementation uses symmetry throughout the multipole algorithm. With
symmetry, it is only required to create one-directional interaction lists when deter-
mining the connectivity.

As the GPU implementation does not rely on symmetry when evaluating, it is
beneficial to create directed interaction lists. This causes twice the work and twice the
memory usage (for the connectivity lists). However, the time required to determine
the connectivity is quite small (∼1 %, see Table 1).

4.4 Further notes on the CPU implementation

The current CPU implementation is a single threaded version. Other research
[6, 24] has shown that good parallel efficiency can be obtained for a multicore version
(e.g., 85 % parallel efficiency on 64 processors). However, the work in [6] does not
appear to use the symmetry in the compared direct evaluation.

In order to achieve a highly efficient CPU implementation, as suggested also by
others [22, 27], the multipole evaluation part was written using SSE intrinsics. Using
these constructs means that two double precision operations can be performed as one
single operation. The direct- and multipole evaluation, as well as the multipole initial-
ization all use this optimization, where two points are thus handled simultaneously.
Additionally, all shift operators also rely on SSE intrinsics in their implementation.

4.5 Double versus single precision

The entire algorithm is written in double precision for both the CPU and the GPU.
Using single precision would be significantly faster, both on the CPU (as SSE could
operate on 4 floats instead of 2 doubles) and on the GPU (where the performance
difference appears to vary depending on the mathematical expression [25]). It is likely
that higher speedups could be obtained with a single precision code, but it would
also seriously limit the applicability of the algorithm. With our approach, identical
accuracy is obtained from the two codes.

5 Performance

This section compares the CPU and GPU codes performance-wise. The simulations
were performed on a Linux Ubuntu 10.10-system with an Intel Xeon 6c W3680
3.33 GHz CPU and a Nvidia Tesla C2075 GPU. The compilers were GCC 4.4.5
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and CUDA 4.0. For all comparisons of individual parts, the sorting was performed on
the CPU to ensure identical multipole trees (the GPU sorting algorithm is nondeter-
ministic). All timings have been handled using the timing functionality of the GPU.
The total time includes the time to copy data between the host and the GPU, while
the time of the individual parts does not include this. All simulations were performed
a large number of times such that the error in the mean when regarded as an estimator
to the expected value was negligible. Overall we found that the measured times dis-
played a surprisingly small spread with usually a standard deviation which was only
some small fraction of the measured value itself.

All performance experiments were conducted using the harmonic potential,

G(zi, zj ) ≡ Γj

zj − zi

, (5.1)

in (1.1), and hence a0 = 0 in (2.2). Moreover, in Sects. 5.1 through 5.3, all simulations
were performed using randomly chosen source points, homogeneously distributed in
the unit square.

We remark again that the performance experiments reported here can be repeated
using the scripts distributed with the code itself; see Sect. 6.1.

5.1 Calibration

From the perspective of performance, the most critical parameter is the number of
levels in the multipole tree. Adding one extra level increases the number of boxes at
the finest level in the tree by four. Assuming that each box connects to approximately
the same number of boxes at each level, the total number of pairwise interactions
therefore decrease with a factor of about 4. The initialization and multipole evaluation
require the same amount of operations, but will operate on an increasing number of
boxes, thus increasing the memory accesses. For all shift operations, one additional
level implies about a threefold increase of the total number of interactions and the
same applies for the determination of the connectivity information. For the sorting,
each level requires about the same amount of work, but handling many small boxes
easily causes additional overhead.

It is expected that the CPU code will follow this scaling quite well, while for the
GPU, where several threads should run synchronously, this is certainly not always the
case. As an example, L2P operates by letting one thread handle the interaction of one
source point, P2M can use up to two threads, and P2P can use up to four threads/point
(all these use 64 threads/block). On the tested Tesla C2075 system, this means that
the local evaluation of a box containing 1 evaluation point takes the same amount of
time as a box containing 64 evaluation points (on a Geforce GTX 480 system, this
only applies to up to 32 evaluation points which is the warp size here). This shows the
sensitivity of the GPU implementation with respect to the number of points in each
box.

In Fig. 2, the GPU speedup as a function of the number of sources per box is
studied. Within this range, the shift operators and the connectivity mainly depend on
the number of levels and, therefore, obtain constant speedups (hence we omit them).
All parts that depend on the number of particles in each box obtain higher speedups
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Fig. 2 Speedup of the
individual parts of the
GPU-implementation as a
function of the number of
sources per box Nd . Here the
total number of sources varies
between 216 and 75 × 216

Fig. 3 Time as a function of the
number of sources per box Nd

for the CPU and the GPU
implementation, both
normalized so that the fastest
time ≡ 1

for larger number of particles per box. This is expected, since it is easier to get a
good GPU load for larger systems. There is also a performance decrease when the
number of particles increases above 32, 64, and so on, that is, at multiples of the
warp size. The direct evaluation additionally shows a performance decrease directly
after each multiple of 16, which is due to the fact that the algorithm can use 4 threads
per particle.

The small high frequency oscillations seen in the speedup of L2P and P2P origi-
nates from the CPU algorithm, and is due to the use of SSE instructions which makes
the CPU code more efficient for an even number of sources per box.

It should be noted again that the direct evaluation and connectivity both make use
of symmetry in the CPU version. This means that the speedup would be significantly
higher (almost a factor 2) if the CPU version did not rely on this symmetry.

As adding one extra level reduces the computational time of the direct interaction,
but increases the time requirement for most other parts, it is necessary to find the best
range of particles per box. The number of levels Nl is calculated according to

Nl =
⌈

0.5 log2

(
5

8

N

Nd

)⌉
, (5.2)

where N is the number of particles and Nd is the desired number of particles per
box. This parameter choice was studied for 150 simulations with different number of
particles (from 1 × 104 to 2 × 106). The result (normalized against the lowest time on
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Table 1 Time distribution of
the GPU algorithm. The most
expensive part in the case
studied here is the direct
evaluation (P2P), followed by
sorting and M2L translations.
The field “other” contains all
data transfers between the host
and the GPU

Part Time Part Time

P2P 43 % Connect 1 %

Sort 30 % M2M <1 %

M2L 11 % L2L <1 %

P2M 5 %

L2P 2 % Other 8 %

each platform) is found in Fig. 3, showing that a value around 45 is best for the GPU,
while 35 is best for the CPU. Even though the GPU has poor speedup for low number
of particles, it still scales better than the CPU in this case. The reason is that with low
values of Nd , the multipole shifts dominate the computational time. This simulation
was performed with 17 multipole coefficients, giving a tolerance of approximately
1 × 10−6. The tolerance is here and below understood as

TOL =
∥∥∥∥
ΦFMM − Φexact

Φexact

∥∥∥∥∞
(5.3)

where Φexact is the exact potential and ΦFMM is the FMM result.
For the optimal value 45 of Nd , the time distribution of the different parts of the

algorithm is given in Table 1 for N = 45 × 216, which gives 45 sources in each box
at the finest level of the FMM tree. According to (5.2), using Nd = 45 gives 8 levels
for N ∈ (18 × 216,72 × 216]. Within this interval, the time of P2P relative to the total
time varies between 25 % to 55 %. It is particularly interesting to note in Table 1
that the sorting dominates by a factor of about 3 over the usually very demanding
M2L-operation.

5.2 Shift operators

The performance of the sorting and direct evaluation depends on the number of
sources per box and the number of levels while the connectivity to a first approxi-
mation only depends on the number of levels. The rest of the operators also depend
on the number of multipole coefficients (the number of multipole coefficients de-
termine the error in the algorithm). Multipole initialization and evaluation depends
linearly on the number of coefficients, while the shift operators have two linear parts
(pre and postscaling) and one quadratic part (the actual shift). In the GPU case, all
accesses to global memory are included in the linear parts while all data is kept in
shared memory during the shift. A higher number of coefficients increases the use
of shared memory and fewer shift operations can therefore be performed in parallel.
The speedup as a function of number of coefficients is plotted in Fig. 4, where the
simulation was performed on 106 particles with Nd = 45. The decrease in speedup
due to lack of shared memory can be seen quite clearly, e.g. at 42 coefficients for the
M2L-shift, where one block less (3 in total) can operate on the same multiprocessor.

The difference in speedup for L2P at low number of coefficients is likely due to
overhead, since these values stabilize at high enough number of coefficients.
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Fig. 4 Speedup as a function of
the number of multipole
coefficients p

Fig. 5 Optimal value of Nd as
a function of the number of
multipole coefficients p

Considering that the time required for the shift operators increases with increasing
number of coefficients, the optimal value for Nd changes as well. Figure 5 shows that
the optimal number for Nd increases approximately linearly with increasing number
of coefficients.

5.3 Break-even

If the number of sources is low enough, it may be faster to use a direct summation
instead of the fast multipole method. In Fig. 6, the speed of the entire algorithm
is compared with the speed of direct summation for both the CPU and the GPU
implementation. The speedup of the GPU code increases with the number of particles
since more source points provide a better load for the GPU. Looking at the direct
summation times, the GPU scales linearly in the beginning where the number of
working cores is still increasing, and later scales quadratically as the cores become
fully occupied. Since a double sum is easily performed in parallel and is not memory
bandwidth dominated the direct evaluation provides a good estimate of the maximum
speedup that can be achieved with the GPU. Recall, however, that symmetry is used in
the CPU implementation, which almost speeds up the calculation with a factor of 2.
Figure 6 shows that it is more beneficial to use the FMM algorithm if the number
of points exceeds about 3500 on the GPU. This result compares favorably with that



914 A. Goude, S. Engblom

Fig. 6 Total time of the
algorithm as a function of the
number of sources N . For the
FMM-algorithm, the simulation
was performed with p = 17,
implying a tolerance of about
10−6

Fig. 7 Speedup as a function of
the number of sources N

reported by others [26]. For large N , the speedup of the direct interaction is higher
than that of the FMM (15 compared to about 11, see Fig. 7). Again, one should note
that the CPU version uses symmetry here. For simulations where the source points
and evaluation points are separate, the speedup is about 30 for the direct evaluation
and 15 for the FMM. The lower increase in speedup for the FMM is due to the fact
that only the P2P-evaluation of the algorithm uses this symmetry (compare Table 1).

Comparing the individual parts (Fig. 8), the M2L- and P2P-shifts quite rapidly
obtain high speedups, while the sorting requires quite a large number of points. The
poor values for M2M and L2L at low number of particles are due to the fact that few
shifts are performed at the lower levels, causing many idle GPU cores. The situation
is the same for the connectivity. As these algorithms have to be performed one level
at a time, the low performance of the shifts high up in the multipole tree decreases the
performance of the entire step. Consequently, the speedup increases with an increas-
ing number of source points. The oscillating behavior of the multipole initialization
and evaluation is related to the number of particles in each box (compare with Fig. 2).

The code has been tested both on the Tesla platform used for the above figures,
and on a Geforce GTX 480 platform (which has 480 cores, compared to 448 for the
Tesla card). The total run-time is approximately the same on both platforms. Notable
differences are that the P2P interaction is faster on the Tesla if Nd is high, and in the
simulation in Table 1, the GTX 480 card required 30 % longer time than the Tesla
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Fig. 8 Speedup of individual
parts as a function of the number
of sources

card. On the other hand, the Tesla card required 25 % longer time than the GTX
480 for the sorting (which is limited by memory access, rather than double precision
math). The shift operators were approximately equally fast on both systems. The
overall result is that the optimal value for Nd is lower for the GTX 480 card (35
instead of 45) for a total running time which was approximately the same. This shows
that the much cheaper GTX 480 gaming card is a perfectly reasonable option for this
implementation of the fast multipole method, despite the fact that it is written in
double precision.

5.4 Benefits of adaptivity

As a final computational experiment, we investigated the performance of the adaptiv-
ity by using different point distributions. Under a relative tolerance of 10−6 (p = 17
in (2.2) and (2.3)), we measured the evaluation time for increasing number of points
sampled from three very different distributions. As shown in Fig. 9, the code is robust
under highly nonuniform inputs and scales well at least up to some 10 million source
points.

When the distribution of particles is increasingly nonuniform, more boxes will be
in each others near-field resulting in more direct interactions. This is tested in Fig. 10
for the two nonuniform distributions from Fig. 9. Both the CPU and GPU timings
have been normalized to the time of a homogeneous distribution. The results indicate
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Fig. 9 Performance of the code when evaluating the harmonic potential for three different distributions
of points. The source points were (i) uniformly distributed in [0,1] × [0,1], (ii) normally distributed with
variance 1/100, and (iii) distributed in a ‘layer’ where the x-coordinate is uniform, and the y-coordinate is
again N(0,1/100)-distributed. For the purpose of comparison, all distributions were rejected to fit exactly
within the unit square. The FMM mesh for case (ii) is shown in Fig. 1

Fig. 10 Robustness of
adaptivity. Time for two
different nonuniform
distributions normalized with
respect to a uniform distribution
of points. The top two graphs
are for the normal distribution of
sources, while the lower two
graphs are for the “layer”
distribution. See text for further
details

that the decrease in performance for highly nonuniform distributions is less for the
GPU version than for the CPU version. From the timings of the individual parts, it
is seen that almost all the increase in computational time originates from the P2P-
shift. The speedup for all time consuming individual parts is relatively constant with
respect to the degree of nonuniformity (e.g. the parameter σ in Fig. 10) and the reason
the GPU code handles a highly nonuniform distribution better is simply because the
P2P evaluation has a higher speedup than the overall code.

6 Conclusions

We have demonstrated that all parts of the adaptive fast multipole algorithm can be
efficiently implemented on a GPU platform in double precision. Overall, we obtain
a speedup of about a factor of 11 compared to a highly optimized (including SSE
intrinsics), albeit serial, CPU-implementation. This factor can be compared with the
speedup of about 15, which we obtain obtained for the direct N -body evaluation, a
task for which GPUs are generally understood to be well suited [18] (see Fig. 7).
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In our implementation, all parts of the algorithm achieve speedups in about the
same order of magnitude. Generally, we obtain a higher speedup whenever the boxes
contain some 20–25 % more particles than the CPU version (see Figs. 5 and 8). Given
the data-parallel signature of this particular operation, this result is quite expected.
Another noteworthy result is that our version of the GPU FMM is faster than the
direct N -body evaluation at around N = 3500 source points; see Fig. 6. Our tests
also show that the asymmetric adaptivity works at least as well on the GPU as on the
CPU, and that in some cases it even performs better.

When it comes to coding complexity it is not so straightforward to present ac-
tual figures, but some observations at least deserve to be mentioned. The topological
phase was by far the most difficult part to implement on the GPU. In fact, the num-
ber of lines of codes approximately quadrupled when transferring this operation. We
remark also that the topological phase performs rather well on the GPU, an observa-
tion which can be attributed to its comparably high internal bandwidth. Thus, there
is a performance/software complexity issue here, and striking the right balance is not
easy.

By contrast, the easiest part to transfer was the direct evaluation (P2P), where, due
to SSE-intrinsics, the CPU-code is in fact about twice the size than the corresponding
CUDA-implementation.

These observations as well as our experimental results, suggest that a balanced
implementation, where parts of the algorithm are off-loaded to the GPU while the
remaining parts are parallelized over the CPU-cores, would be a reasonable compro-
mise. This has also been noted by others [3] and is ongoing research.

6.1 Reproducibility

Our implementation as described in this paper is available for download via the sec-
ond author’s web-page.1 The code compiles both in a serial CPU-version and in a
GPU-specific version and comes with a convenient Matlab mex-interface. Along with
the code, automatic Matlab-scripts that repeat the numerical experiments presented
here are also distributed.
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