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Abstract Consider a system of particles evolving as independent and identically dis-
tributed (i.i.d.) random walks. Initial fluctuations in the particle density get translated
over time with velocity �v, the common mean velocity of the random walks. Consider
a box centered around an observer who starts at the origin and moves with constant
velocity �v. To observe interesting fluctuations beyond the translation of initial density
fluctuations, we measure the net flux of particles over time into this moving box. We
call this the “box-current” process.

We generalize this current process to a distribution-valued process. Scaling time
by n and space by

√
n gives current fluctuations of order nd/4 where d is the space di-

mension. The scaling limit of the normalized current process is a distribution-valued
Gaussian process with given covariance. The limiting current process is equal in dis-
tribution to the solution of a given stochastic partial differential equation which is
related to the generalized Ornstein–Uhlenbeck process.

Keywords Independent random walks · Hydrodynamic limit · Current fluctuations ·
Distribution-valued process · Generalized Ornstein–Uhlenbeck process

Mathematics Subject Classification Primary 60K35 · 60F10 · Secondary 60F17 ·
60G15

1 Introduction

In a system of independent random walks in dimension d ≥ 1, the hydrodynamic
limit of particle density, under Euler scaling, satisfies the scalar conservation law

∂tu(x, t) + ∇x · f (
u(x, t)

) = 0, (1.1)
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with u(x,0) = u0(x) as the initial particle density and where t ≥ 0, x ∈ R
d and

f (u) = u�v, �v being the mean drift of the random walks. What we mean by this
hydrodynamic limit is the following. If we start with a sequence of initial particle
configurations {ηn

0(m) : m ∈ Z
d} satisfying

1

nd

∑

x∈nA∩Zd

ηn
0(x) −→

∫

A

u0(x) dx in probability

where A ⊂ R
d is a bounded box, then the particle configurations at subsequent times,

ηn
t (·), satisfy

1

nd

∑

x∈nA∩Zd

ηn
nt (x) −→

∫

A

u(x, t) dx in probability

where u(x, t) satisfies (1.1) with initial condition u(x,0) = u0(x). This hydrody-
namic limit picture indicates that on time and space scales of O(n) we see shifts in
the particle profile along characteristic lines of (1.1) given by ny + n�vt , y ∈ R

d . To
capture diffusive fluctuations about these characteristic lines, we consider a box of ra-
dius O(

√
n) moving with the characteristic velocity �v, and we look at the net inward

flux of particles across the boundary of this moving box. The measurement of this net
flux of particles gives us what we call the ‘box-current’ process. We generalize this
box-current process to a distribution-valued process. In Sect. 2.3, we give a precise
definition of these current processes and explain the connection between the current
process and fluctuations about the hydrodynamic limit.

The question we resolve in this paper is the size and the distribution of the scaling
limit of current fluctuations. It turns out that the current process scaled by n−d/4,
where n is the scaling parameter, gives us Gaussian scaling limits. The limiting
distribution-valued current process can also be attained as the solution of a stochas-
tic partial differential equation. An alternate representation of the limiting current
process as the solution of a stochastic differential equation is given in Sect. 2.5. The
limiting current process is expressed as the sum of two independent stochastic inte-
grals, where one of the integrals is a generalized Ornstein–Uhlenbeck process.

In 1985, current fluctuations in a system of independently moving particles was
studied in [2] in connection with the asymptotic behavior of trajectories in an infinite
particle system with collisions. Seppäläinen, in [10], found the scaling limit of cur-
rent across characteristics in the one-dimensional system of asymmetric independent
random walks. His work was extended in [7] where shifts in characteristics at the
diffusive scale were allowed. In both cases current fluctuations were of order n1/4,
where n was the scaling factor, and Gaussian scaling limits were obtained. In [7], a
representation of the limiting current process as the sum of two stochastic integrals
was given for the one-dimensional case which agrees with the results in Sect. 2.5 of
this paper. While in the one-dimensional system of independent random walks there
is a connection between the position of a tagged particle under elastic collisions and
a current process (see [2]), there is no such obvious connection in higher dimensions.

Equilibrium fluctuations in particle density, in a system of independent Markovian
particles in multiple dimensions, was studied by Anders Martin-Löf in 1976 [8]. Our
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results about current fluctuations hold in the equilibrium as well as non-equilibrium
case, under the assumption that the initial distribution of number of particles at each
site on the lattice Z

d is i.i.d. It is interesting to note that in the absence of fluctuations
in the initial particle configuration (i.e. if we start with a deterministic initial config-
uration), our limiting current process is a generalized Ornstein–Uhlenbeck process.
Generalized Ornstein–Uhlenbeck processes appear as the fluctuation limits of sev-
eral infinite particle systems in the literature, for example see Chap. 11 of Kipnis and
Landim [1, 4, 6, 8].

Fluctuation results for other asymmetric models in multiple dimensions can be
found in the literature. We mention some of these. In multiple dimensions, equi-
librium fluctuations for a tagged particle in asymmetric exclusion processes and in
asymmetric zero range processes have been studied in [11, 14] and [13] respec-
tively. The diffusion coefficient for the two-dimensional asymmetric simple exclu-
sion process was studied in [15]. In [12], Sethuraman proves superdiffusivity of
occupation-time variance in the two-dimensional asymmetric exclusion process.

In this paper we extend the results of [10] and [7] to multiple dimensions. We also
generalize their results from a simple real-valued current process to a distribution-
valued current process. Our proof parallels the proof in [10] and [7] in several places.
Some significant differences arise in the treatment of a distribution-valued process.
As is typical for process-level distributional limits, our proof is in two stages: first, we
prove convergence of finite-dimensional distributions and second, we prove tightness
of the current process. We omit parts of the proof that are similar to parts in [7] and
refer the reader to [7] for details.

This paper is structured as follows. Section 2 contains a description of the inde-
pendent random walks model, the current process and a statement of our results. The
stochastic partial differential equation satisfied by the limiting current process and its
solution are also mentioned here. In Sect. 3 we find the finite-dimensional distribu-
tion limits of the process. We prove tightness of the process and complete the proof
in Sect. 4.

2 Model and Results

2.1 Independent Random Walks Model

Let d ≥ 1 denote the space dimension. We start with an initial configuration of par-
ticles on Z

d denoted by {η0(x) : x ∈ Z
d}, i.e. η0(x) is the number of particles at site

x at time 0. These particles evolve like independent, identically distributed (i.i.d.)
continuous time random walks. Let Xm,j (t), m ∈ Z

d , j = 1, . . . , η0(m) denote the
position at time t of the j -th random walk starting at site m. Let {ηt (x) : x ∈ Z

d}
denote the occupation variables at time t i.e. ηt (x) is the number of random walks
(particles) at site x, at time t . Clearly,

ηt (x) :=
∑

m∈Zd

η0(m)∑

j=1

1
{
Xm,j (t) = x

}
,

x ∈ Z
d .
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The common jump rates of the random walks are given by the probability kernel
{p(x) : x ∈ Z

d} where we assume
∑

x∈Zd

p(x) = 1.

The common transition probabilities of the random walks is given by

P
(
Xm,j (s + t) = y|Xm,j (s) = x

) =
∞∑

k=0

e−t t k

k! p(k)(y − x),

where

p(k)(z) =
∑

x1+x2+···+xk=z

p(x1)· (x2) · · ·p(xk)

is the k-fold convolution of the kernel p(x).
We make the following assumptions.

Assumption 2.1 The initial occupation variables {η0(m) : m ∈ Z
d} are i.i.d. random

variables with exponential moments i.e.

Eeθη0(m) < ∞
for some θ > 0. Let ρ0 := Eη0(m) and v0 := Varη0(m).

Assumption 2.2 Given {η0(m) : m ∈ Z
d}, the evolution of the random walks

{Xm,j (t) − Xm,j (0) : m ∈ Z
d , j = 1, . . . , η0(m)} are i.i.d. continuous time random

walks on Z
d starting at the origin, independent of η0(·). We can assume without loss

of generality that the common jump probability kernel {p(x) : x ∈ Z
d} is not sup-

ported on a hyperplane in R
d . Let

�v :=
∑

x

xp(x)

denote average velocity of the random walks. Define a d × d matrix a, related to the
second moments of the random walks, as

ai,j :=
∑

x=(x1,...,xd )∈Zd

xixjp(x),

and choose matrix κ such that

κκT = a.

Assumption 2.3
∑

x∈Zd

eδ|x|p(x) < ∞

for some δ > 0.
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2.2 Some Standard Notation

We define the norm of x = (x1, . . . , xd) ∈ R
d as

|x| := max
1≤i≤d

|xi |.

For x ∈ R, define

[x] :=
{

largest integer ≤ x, if x ≥ 0

smallest integer ≥ x, if x ≤ 0.
(2.1)

Define

[x] := ([x1], . . . , [xd ])

for x = (x1, x2, . . . , xd) ∈ R
d .

Let

∂α :=
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

for a multi-index α = (α1, . . . , αd) with αi ≥ 0. For any nonnegative integer N and
multi-index α = (α1, . . . , αd), αi ≥ 0, define

‖f ‖(N,α) := sup
x∈Rd

{(
1 + |x|)N ∣∣∂αf (x)

∣∣}.

Let S(Rd) denote the space of Schwartz functions. Recall that this space of functions
is defined as

S
(
R

d
) := {

f ∈ C∞(
R

d
) : ‖f ‖(N,α) < ∞ ∀N,α

}
.

We denote the dual of the Schwartz space as S ′(Rd). For any bounded subset B of
S(Rd), let

qB(f ) := sup
φ∈B

∣∣f (φ)
∣∣, f ∈ S ′(

R
d
)
.

Then {qB} is a family of semi-norms on S ′(Rd) which defines the strong topology
on S ′(Rd). Fix T > 0, let D([0, T ], S ′(Rd)) be the space of mappings from [0, T ] to
S ′(Rd) that are right continuous and have left-hand limits in the strong topology of
S ′(Rd).

2.3 The Current Process and Fluctuations About the Hydrodynamic Limit

Let

BM := {
x ∈ R

d : |x| ≤ M
}

be a box centered at the origin with radius M . Suppose this box is centered about
an observer who starts at the origin and moves with constant velocity �v. We define
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the ‘box-current process’ as the net inward flux of particles across the boundary of
this moving box, over time. Thus the box-current at time t is simply the difference
between the number of particles inside the box at time t and the number of particles
initially inside the box. Scaling space by

√
n and time by n, we construct a sequence

of scaled box-current processes given by

ξn(t,1BM
) := n−d/4

∑

i∈BM
√

n

{
ηnt

(
i + [n�vt]) − η0(i)

}

= n−d/4
∑

m∈Zd

η0(m)∑

j=1

[
1
{
Xm,j (nt) ∈ BM

√
n + [n�vt]} − 1{m ∈ BM

√
n}

]
.

In words, ξn(t,1BM
) measures the cumulative net current of particles into the box

BM
√

n up to time nt as the box moves with fixed velocity �v.
We generalize the above box-current process to a distribution-valued process by

taking the weighted average of the differences {ηnt (i + [n�vt]) − η0(i)}, where the
weights are given by values of a Schwartz function. For φ ∈ S(Rd) and t ∈ [0, T ],
define

ξn(t, φ) := n−d/4
∑

i∈Zd

{
φ

(
i√
n

)(
ηnt

(
i + [n�vt]) − η0(i)

)}
. (2.2)

This is our current process. Observe that ξn(·, ·) ∈ D([0, T ], S ′(Rd)). We can rewrite
ξn(t, φ) as

ξn(t, φ)

= n−d/4
∑

i∈Zd

φ

(
i√
n

){
∑

m∈Zd

η0(m)∑

j=1

[
1
{
Xm,j (nt) = i + [n�vt]} − 1{m = i}]

}

= n−d/4
∑

m∈Zd

η0(m)∑

j=1

[
φ

(
Xm,j (nt) − [n�vt]√

n

)(∑

i∈Zd

1
{
Xm,j (nt) = i + [n�vt]}

)

− φ

(
m√
n

)]

= n−d/4
∑

m∈Zd

η0(m)∑

j=1

[
φ

(
Xm,j (nt) − [n�vt]√

n

)
− φ

(
m√
n

)]
. (2.3)

In the last line of (2.3) we are summing over all random walks and adding their
contributions to the current. This is a more tractable form of the current process com-
pared to its initial definition in (2.2) and we will use this definition henceforth for the
current process.

As in [10], here too there is a connection between the current process and what
the author in [10] termed the “second-order fluctuations” from the hydrodynamic
limit. We explore this connection below. Let (Ω, F , P ) be the underlying probability
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measure space for our independent random walk process. By our assumptions, under
P , the initial occupation variables {η0(m),m ∈ Z

d} are i.i.d. random variables and are
independent of the evolution of the random walks {Xm,j (·) − Xm,j (0) : m ∈ Z

d , j =
1, . . . , η0(m)}. Under these assumptions we get

n−d/2
∑

i∈Zd

φ

(
i√
n

)
ηnt

(
i + [n�vt]) n→∞−−−→ ρ0

∫

x∈Rd

φ(x) dx in L2(P ) for all t ≥ 0,

(2.4)

where E[η0(m)] = ρ0. (For general initial conditions with E[ηn
0(x)] = ρ0(

x√
n
), the

right hand side would be
∫

ρ(x, t)φ(x) dx where ρ(x, t) is the solution of a diffusion
equation with initial condition ρ0(·). Since ρ0(x) ≡ ρ0 is a constant in our problem,
we get ρ(x, t) ≡ ρ0.)

We can express ξn(t, φ) as the difference of two terms:

ξn(t, φ) = nd/4
[(

n−d/2
∑

i∈Zd

φ

(
i√
n

)
ηnt

(
i + [n�vt]) − ρ0

∫

x∈Rd

φ(x) dx

)

−
(

n−d/2
∑

i∈Zd

φ

(
i√
n

)
η0(i) − ρ0

∫

x∈Rd

φ(x) dx

)]
.

Using the observer as a frame of reference, the first term is the fluctuation from the
hydrodynamic limit at time t and the second term is the fluctuation from the hydrody-
namic limit at time 0. Thus, ξn(t, φ) is obtained by subtracting the initial fluctuations
from the hydrodynamic limit from the fluctuations at time t from the hydrodynamic
limit, as seen by the observer, and scaling this difference by nd/4. The current process
therefore looks at fluctuations beyond the rigid translation of fluctuations in the initial
configuration along the characteristic line y = x + �vt .

2.4 Results

Recall that {p(x), x ∈ Z
d} denote the common jump probabilities of the random

walks. Let X(t) be a continuous time random walk starting at the origin, with jump
probabilities p(x). Henceforth, in this paper, X(t) will always denote such a random
walk. By the martingale central limit theorem (refer pp. 339–340 in [3]), we have

X(nt) − [n�vt]√
n

=⇒ κB(t)

where B(t) is standard d-dimensional Brownian motion. The probability density
function of κB(t) is given by

pt(x) dx := P
(
κB(t) ∈ dx

) = e
− 1

2t

∑
i,j a−1

i,j xixj

(2πt)d/2 √
det(a)

dx. (2.5)

(Note: Since p(x) is not supported on a hyperplane in R
d , a is positive definite.)
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Define

σ1
(
(s,φ), (t,ψ)

) :=
∫

Rd

∫

Rd

φ(y)ψ(z)p|t−s|(z − y)dz dy

−
∫

Rd

∫

Rd

φ(y)ψ(z)pt+s(z − y)dz dy (2.6)

and

σ2
(
(s,φ), (t,ψ)

) :=
∫

Rd

∫

Rd

φ(y)ψ(z)pt+s(z − y)dz dy

−
∫

Rd

∫

Rd

φ(y)ψ(z)pt (z − y)dz dy

−
∫

Rd

∫

Rd

φ(y)ψ(z)ps(z − y)dz dy

+
∫

Rd

φ(x)ψ(x)dx (2.7)

where pt (x) is the probability density function of κB(t) given in (2.5).

Theorem 2.1 Under Assumptions 2.1–2.3, as n → ∞, ξn(·, ·) → ξ(·, ·) in distribu-
tion in D([0, T ], S ′(Rd)) where ξ(·, ·) is a mean zero, distribution-valued Gaussian
process with covariance function

Eξ(s,φ)ξ(t,ψ) = ρ0σ1
(
(s,φ), (t,ψ)

) + v0σ2
(
(s,φ), (t,ψ)

)
. (2.8)

Theorem 2.2 Under Assumptions 2.1–2.3, as n → ∞, ξn(·,1BM
) converges in dis-

tribution in D([0, T ],R) to a mean zero Gaussian process with covariance as in (2.8)
where φ = ψ = 1BM

.

Example We calculate the covariance terms (2.6) and (2.7) for a simple example.
Take φ ≡ ψ := 1BM

= ∏d
i=1 1[−M,M] and a = Id×d . Let Φu(·) denote the cumula-

tive distribution function of a mean zero real-valued Gaussian random variable (i.e.

Φu(x) := 1√
2πu

∫ x

−∞ e− x2
2u ) and define

Iu =
[

2M
{
Φu(2M) − Φu(−2M)

} + 2

√
u

2π

(
e

−2M2
u − 1

)]d

.

Then

σ1
(
(s,φ), (t,ψ)

) = I|t−s| − It+s ,

and

σ2
(
(s,φ), (t,ψ)

) = It+s − It − Is + (2M)d.



1178 J Theor Probab (2011) 24:1170–1195

Remark 1 In the long-run, the current process is asymptotically a stationary Gaussian
process. This can be observed by taking the long time asymptotic limit of the covari-
ance terms (2.6) and (2.7).

Remark 2 If we start with an initial configuration where η0(·) are i.i.d. Poisson(λ)

random variables, the system of independent random walks is in equilibrium and
we get ηt (·) are i.i.d. Poisson(λ) for all t ≥ 0. Under this invariant distribution of
particles, the limiting current process in [7] and [10] are fractional Brownian motion
with Hurst parameter 1/4. In the present paper, under this invariant distribution of
particles, ρ0 = v0 = λ and

E
[
ξ(t, φ) − ξ(s,ψ)

]2

= E
[
ξ(t, φ)2 + ξ(s,φ)2 − 2ξ(t, φ)ξ(s,φ)

]

= λ

[∫

Rd

φ(x)ψ(x)dx −
∫

Rd

∫

Rd

φ(y)ψ(z)pt−s(z − y)dz dy

]
. (2.9)

Thus, under the invariant distribution, ξ(·, φ) has stationary increments, as
E(ξ(t, φ)−ξ(s,φ))2 is a function of t −s. The time-indexed process ξ(·, φ) lacks the
self-similarity property of one-parameter fBM. However, the process ξ(t, φ) satisfies
the following self-similarity property:

ξ(at, φ ◦ ηa)
d= ad/2 · ξ(t, φ), for a > 0,

where ηa(x) = x√
a
, x ∈ R

d ; this is evident from the form of the covariance terms (2.6)
and (2.7).

The proof of both theorems involves two stages: first, showing convergence
of finite-dimensional distributions and second, proving tightness of the sequence
of processes. We use Mitoma’s theorem [9] to prove tightness of {ξn(·, ·)} ⊂
D([0, T ], S ′(Rd)). According to Mitoma’s theorem, it is sufficient to prove tightness
for the sequence {ξn(·, φ)} ⊂ D([0, T ],R) for each φ ∈ S(Rd). We use the tightness
criteria in [2] to prove tightness of the sequence {ξn(·, φ)} ⊂ D([0, T ],R). A descrip-
tion of Schwartz space S(Rd), it’s dual space S ′(Rd) and Mitoma’s theorem can be
found in [5].

2.5 Stochastic Integral Representation

The limiting current process in Theorem 2.1 has the same distribution as the solution
of the stochastic partial differential equation given below in (2.13).

Define operator A on S(Rd) (the infinitesimal generator of κB(t)) as

Aφ(x) := 1

2

d∑

i,j=1

ai,j ∂ij φ(x). (2.10)
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Let {Tt , t ≥ 0} denote the semigroup associated to A. Then

Tt (φ)(x) =
∫

Rd

φ(y)pt (y − x)dy.

Define covariance functions

Q1(φ,ψ) :=
∫

Rd

d∑

i,j=1

ai,j ∂iφ(x)∂jψ(x)dx, (2.11)

and

Q2(φ,ψ) :=
∫

Rd

Aφ(x)Aψ(x)dx. (2.12)

Consider the following spde,

dZ(t, ·) = √
ρ0 dW �

t + AZ(t, ·) dt + √
v0 F (·) dt; Z(0, ·) = 0, (2.13)

where Wt is a centered S ′(Rd)-Wiener process with covariance Q1(·.·), {F (φ),φ ∈
S(Rd)} is a Gaussian random field on S(Rd) with covariance Q2(·, ·) and F and Wt

are independent of each other. We can write

W
φ
t =

∫

[0,t]×Rd

∇φ(x) · κW1(dt dx) (2.14)

where W1(t, x) is d-dimensional space-time white noise on R+ × R
d .

F (φ) =
∫

Rd

Aφ(x)W2(dx) (2.15)

where W2(x) is a one-dimensional white noise on R
d independent of the white noise

W1. Observe that the stochastic differential equation (2.13) has two independent
sources of randomness and thus we get the solution to (2.13) to be the sum of two
independent stochastic integrals

Z(t,φ) = √
ρ0

∫

[0,t]×Rd

∇(
Tt−sφ(x)

) · κW1(dx ds)

+ √
v0

∫ t

0

∫

Rd

ATt−sφ(x)W2(dx) ds. (2.16)

Denote the two stochastic integrals in (2.16) as Z1(t, φ) and Z2(t, φ) so that

Z(t,φ) = √
ρ0Z1(t, φ) + √

v0Z2(t, φ).

The first term
√

ρ0Z1(t, φ) represents space-time noise created by fluctuations in the
random walks. The second term

√
v0Z2(t, φ) indicates the fluctuations in the initial

configuration that get propagated as the system evolves. In the absence of fluctuations
in the initial configuration, i.e. if we take the initial configuration to be deterministic
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(v0 = 0), the second source of randomness in the spde (2.13),
√

v0 F (·) dt , disappears.
The spde (2.13) in this case then reduces to

dZ(t, ·) = √
ρ0 dW �

t + AZ(t, ·) dt,

where the solution

Z(t,φ) = √
ρ0

∫

[0,t]×Rd

∇(
Tt−sφ(x)

) · κW1(dx ds)

is a generalized Ornstein–Uhlenbeck process [4].
For t, s ∈ [0, T ] and φ,ψ ∈ S(Rd),

Cov
(
Z(t,φ),Z(s,ψ)

) = ρ0 Cov
(
Z1(t, φ),Z1(s,ψ)

) + v0 Cov
(
Z2(t, φ),Z2(s,ψ)

)
.

Elementary calculations show that

Cov
(
Z1(t, φ),Z1(s,ψ)

) = σ1
(
(s,φ), (t,ψ)

)

and

Cov
(
Z2(t, φ),Z2(s,ψ)

) = σ2
(
(s,φ), (t,ψ)

)
.

We can conclude that the solution of the spde and the limiting current process in
Theorem 2.1 are equal in distribution as they are both mean zero, distribution-valued
Gaussian processes with the same covariance.

3 Convergence of Finite-Dimensional Distributions

We begin the proof of Theorems 2.1 and 2.2 with showing convergence of finite-
dimensional distributions.

Note Henceforth, in this paper, ‘c’ will denote constants that change from line to line
in calculations.

Fix N ∈ N and choose (ti , φi) ∈ [0, T ] × S(Rd) for i = 1, . . . ,N such that
(ti , φi) �= (tj , φj ) for i �= j . Let (θ1, . . . , θN) ∈ R

N be an arbitrary vector.

Lemma 3.1 As n → ∞,
∑N

i=1 θiξn(ti , φi) converges to a mean zero Gaussian ran-
dom variable with variance

σ 2 =
d∑

i,j=1

θiθj

(
ρ0σ1

(
(ti , φi), (tj , φj )

) + v0σ2
(
(ti , φi), (tj , φj )

))
.

Proof Define

Um(t,φ) := n−d/4
η0(m)∑

j=1

[
φ

(
Xm,j (nt) − [n�vt]√

n

)
− φ

(
m√
n

)]
.
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Let Wm = ∑N
i=1 θiUm(ti , φi). Denote Ūm(t, φ) = Um(t,φ) − EUm(t,φ) and W̄m =

Wm − EWm. Choose r(n) so that r(n) → ∞ slowly enough that
(
r(n)

)d · E[
η0(x)21

{
η0(x) ≥ nd/8}] → 0 as n → ∞. (3.1)

Since {η0(m) : m ∈ Z
d} are i.i.d., a simple calculation shows that Eηt(m) = ρ0,

∀t > 0,m ∈ Z
d and hence Eξn(t, φ) = 0. Rewrite

N∑

i=1

θiξn(ti , φi) =
N∑

i=1

θi ξ̄n(ti , φi) =
∑

m∈Zd

W̄m.

This sum can be split into the following two sums:
N∑

i=1

θiξn(ti , φi) =
∑

|m|≤r(n)
√

n

W̄m +
∑

|m|>r(n)
√

n

W̄m. (3.2)

We can now apply the Lindeberg–Feller theorem to the sum
∑

|m|≤r(n)
√

n W̄m and
show that it converges in distribution to the mean zero Gaussian random variable
with variance indicated in Lemma 3.1. The proof follows in the same vein as the
proof of Lemma 2 in [7] and we skip it.

We next show that the second sum in (3.2) converges to 0 in L2 as n → ∞. The
proof of this differs from the analogous step in [7] and so we give the proof in detail.
In [7] we use large deviations to control contributions to the current from distant
particles. This is not enough in the present situation and we need to appeal to the
rapidly decreasing property of Schwartz functions to bound these contributions.

By the Schwartz inequality,

E

( ∑

|m|>r(n)
√

n

W̄m

)2

≤ ‖θ‖2
N∑

i=1

∑

|m|>r(n)
√

n

EŪm(ti , φi)
2

where ‖θ‖2 = ∑N
i=1 θ2

i . It suffices to show that for a fixed t > 0 and φ ∈ S(Rd),
∑

|m|>r(n)
√

n

EŪm(t, φ)2 → 0

as n → ∞.
∑

|m|>r(n)
√

n

EŪm(t, φ)2

≤ cn−d/2
∑

|m|>r(n)
√

n

E

[
η0(m)∑

j=1

φ

(
Xm,j (nt) − [n�vt]√

n

)

− ρ0Eφ

(
Xm,1(nt) − [n�vt]√

n

)]2

+ cn−d/2
∑

|m|>r(n)
√

n

φ2
(

m√
n

)
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since (a + b)2 ≤ 2a2 + 2b2 and η0(·) have bounded moments by Assumption 2.1

≤ cn−d/2
[ ∑

|m|>r(n)
√

n

Eφ2
(

Xm,1(nt) − [n�vt]√
n

)
+

∑

|m|>r(n)
√

n

φ2
(

m√
n

)]

since η0(·) have bounded second moments and are independent of the random walks

= cn−d/2
∑

|m|>r(n)
√

n

[
E

(
φ2

(
Xm,1(nt) − [n�vt]√

n

)

× 1
{
Xm,1(nt) ∈ BM(n)

√
n + [n�vt]}

)

+ E

(
φ2

(
Xm,1(nt) − [n�vt]√

n

)
1
{
Xm,1(nt) /∈ BM(n)

√
n + [n�vt]}

)

+ φ2
(

m√
n

)]

where M(n) is chosen so that M(n) → ∞ as n → ∞ and M(n) = o(r(n)).

= cn−d/2 (I1 + I2 + I3) (3.3)

where I1, I2, I3 denote the sums of the three terms resp. in the expression above. We
show below that the scaled limits of each of these sums goes to 0 as n → ∞.

n−d/2I1 ≤ cn−d/2
∑

|m|>r(n)
√

n

P
(
X(nt) ∈ BM(n)

√
n + [n�vt] − m

)

since φ is bounded

= cn−d/2
∑

i∈BM(n)
√

n

P
(
X(nt) − [n�vt] /∈ Br(n)

√
n + i

)

≤ cn−d/2
∑

i∈BM(n)
√

n

P
(
X(nt) − [n�vt] /∈ B 1

2 r(n)
√

n

)

as 1
2 r(n)

√
n ≤ r(n)

√
n − M(n)

√
n (recall that M(n) = o(r(n))

= cn−d/2
∑

i∈BM(n)
√

n

P

(∣∣X(nt) − [n�vt]∣∣ >
1

2
r(n)

√
n

)

≤ cn−d/2M(n)dnd/2 E|X(nt) − [n�vt]|r
(r(n)

√
n )r
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by the Markov inequality, r ≥ 0

= cnr/2n−r/2M(n)d
(
r(n)

)−r

(as E|X(nt) − [n�vt]|r is O(nr/2))

→ 0

as n → ∞ by taking r > d .
The following requires the rapidly decreasing property of Schwartz functions.

n−d/2I2 ≤ n−d/2
∑

m∈Bc
r(n)

√
n

∑

L≥M(n)

E

(
φ2

(
Xm,1(nt) − [n�vt]√

n

)

× 1
{
Xm,1(nt) ∈ Bc

L
√

n
∩ B(L+1)

√
n + [n�vt]}

)

≤ n−d/2
∑

m∈Bc
r(n)

√
n

∑

L≥M(n)

cj

L2j
P

(
X(nt) − [n�vt] ∈ Bc

L
√

n
∩ B(L+1)

√
n − m

)

since φ ∈ S(Rd), |φ(x)| ≤ cj x
−j for any j ∈ N

≤ n−d/2
∑

m∈Bc
r(n)

√
n

∑

L≥M(n)

∑

i∈Bc
L

√
n
∩B(L+1)

√
n

cj

L2j
P

(
X(nt) − [n�vt] = i − m

)

≤ n−d/2
∑

L≥M(n)

cj

L2j

∣∣Bc
L

√
n
∩ B(L+1)

√
n

∣∣

by summing over m first and then i

≤ n−d/2
∑

L≥M(n)

cj

L2j

(
L

√
n

)d−1√
n =

∑

L≥M(n)

cj

L2j−d+1
→ 0

as n → ∞ by choosing 2j > d and since M(n) → ∞ as n → ∞. And finally,

n−d/2I3 ≤ c

∫

|x|>r(n)

φ2(x) dx → 0

as n → ∞ by a Riemann sum argument and since r(n) → ∞ as n → ∞.
Thus the right hand side of (3.3) goes to 0 as n → ∞ and since

E

( ∑

|m|>r(n)
√

n

W̄m

)2

≤ ‖θ‖2
N∑

i=1

∑

|m|>r(n)
√

n

EŪm(ti , φi)
2,

we conclude that the second sum in (3.2) goes to 0 in L2. This proves Lemma 3.1. �



1184 J Theor Probab (2011) 24:1170–1195

4 Tightness and Completion of the Proof

Choose α > 0 and

β ≥ d/4 + dα + 1. (4.1)

Fix φ ∈ S(Rd). We prove

Proposition 4.1 ξn(·, φ) is tight in D([0, T ],R).

To prove Proposition 4.1 we use the tightness criteria in [2]. In Sects. 4.1 and 4.2
below, we check the two tightness conditions of Proposition 5.7 in [2] for the se-
quence of processes {ξn(·, φ)}. The first condition is a moment bound condition and
the second involves the modulus of continuity.

4.1 Verifying the First Tightness Condition

Let s, t ∈ [0, T ] and without loss of generality we assume t > s below. Let ξ̄ denote
the centered current process. Choose an integer

r > 2β > 2. (4.2)

We show that

Lemma 4.1 When (t − s) ≥ n−β ,

E
∣∣ξ̄n(t, φ) − ξ̄n(s,φ)

∣∣2r ≤ Cr(t − s)σ (4.3)

where σ > 1, and Cr is a constant depending only on r .

Proof Let

Am :=
η0(m)∑

j=1

(
φ

(
Xm,j (nt) − [n�vt]√

n

)
− φ

(
Xm,j (ns) − [n�vs]√

n

))
.

We can write

ξn(t, φ) − ξn(s,φ) = n−d/4
∑

m∈Zd

Am.

Then

E|ξ̄n(t, φ) − ξ̄n(s,φ)|2r = n−rd/2E

( ∑

m∈Zd

Ām

)2r

(4.4)

where Ām = Am − EAm.
To appropriately bound (4.4), we first find the following moment bound.
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Lemma 4.2 For any integer 1 ≤ k ≤ 2r , there exists a constant C that depends on r ,
such that

∑

m∈Zd

E|Ām|k ≤ C
(
n−1/2 + √

t − s
)
nd/2.

Proof

∑

m∈Zd

E|Ām|k ≤ 2k
∑

m∈Zd

[
E|Ām|k]

by applying (a + b)k ≤ 2k(|a|k + |b|k) and then Hölder’s inequality

≤ 2k
∑

m∈Zd

[
E

(
η0(m)

)k
E

∣∣∣∣φ
(

Xm,1(nt) − [n�vt]√
n

)

− φ

(
Xm,1(ns) − [n�vs]√

n

)∣∣∣∣

k]

by Jensen’s inequality and independence of η0(·) from the random walks

≤ c22r

[ ∑

m∈Zd

E

∣∣∣∣φ
(

Xm,1(nt) − [n�vt]√
n

)
− φ

(
Xm,1(ns) − [n�vs]√

n

)∣∣∣∣

k]

(4.5)

since η0(m) has bounded moments.
Define

Dφ(x) := (
∂1φ(x), . . . , ∂dφ(x)

)
,

where ∂i denotes the partial derivative with respect to the ith co-ordinate of x. Let
ψ(x) := (1 + |x|)−N for some positive integer N .

∑

m∈Zd

E

∣∣∣∣φ
(

Xm,1(nt) − [n�vt]√
n

)
− φ

(
Xm,1(ns) − [n�vs]√

n

)∣∣∣∣

k

≤ cN

∑

m∈Zd

[
E

[(
ψ

(
Xm,1(ns) − [n�vs]√

n

))k∣∣∣∣
Xm,1(nt) − [n�vt]√

n

− Xm,1(ns) − [n�vs]√
n

∣∣∣∣

k

× 1
{∣∣∣∣

Xm,1(nt) − [n�vt]√
n

∣∣∣∣ ≥
∣∣∣∣
Xm,1(ns) − [n�vs]√

n

∣∣∣∣

}]
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+ E

[(
ψ

(
Xm,1(nt) − [n�vt]√

n

))k∣∣∣∣
Xm,1(nt) − [n�vt]√

n
− Xm,1(ns) − [n�vs]√

n

∣∣∣∣

k

× 1
{∣∣∣∣

Xm,1(ns) − [n�vs]√
n

∣∣∣∣ >

∣∣∣∣
Xm,1(nt) − [n�vt]√

n

∣∣∣∣

}]]

by applying the mean value theorem and |Dφ(x)| ≤ cNψ(x).
We will treat one of the terms in the above inequality, the other being similar.

cN

∑

m∈Zd

[
E

[(
ψ

(
Xm,1(ns) − [n�vs]√

n

))k∣∣∣∣
Xm,1(nt) − [n�vt]√

n
− Xm,1(ns) − [n�vs]√

n

∣∣∣∣

k

× 1
{∣∣∣∣

Xm,1(nt) − [n�vt]√
n

∣∣∣∣ ≥
∣∣∣∣
Xm,1(ns) − [n�vs]√

n

∣∣∣∣

}]

≤ cN

∑

m∈Zd

∑

L≥0

E

[
1

(1 + L)kN

∣∣∣∣
Xm,1(nt) − [n�vt]√

n
− Xm,1(ns) − [n�vs]√

n

∣∣∣∣

k

× 1
{

Xm,1(ns) − [n�vs]√
n

∈ Bc
L ∩ B(L+1)

}]

≤ cN

∑

m∈Zd

∑

L≥0

1

(1 + L)kN
E

[∣∣∣∣
X(nt) − X(ns) − [n�vt] + [n�vs]√

n

∣∣∣∣

k

× 1
{
X(ns) ∈ Bc

L
√

n
∩ B(L+1)

√
n + [n�vs] − m

}]

≤ cN

∑

L≥0

1

(1 + L)kN

(
(L + 1)

√
n

)d−1√
nE

∣∣∣∣
X(nt) − X(ns) − [n�vt] + [n�vs]√

n

∣∣∣∣

k

by summing over m

≤ cN

[∑

L≥0

(1 + L)−kN+d−1
]
nd/2[(t − s)k/2 + n−k/2]

using central limit theorem

≤ cnd/2[√t − s + n−1/2]

by choosing N large enough so that the sum in parentheses is finite and by bounding

(t − s)k/2 ≤ (2T )
k−1

2
√

t − s and n−k/2 ≤ n−1/2. �
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Lemma 4.3 There exists a constant C depending on r such that

E

( ∑

m∈Zd

Ām

)2r

≤ C
{
1 + (

n−r/2 + (t − s)r/2)nrd/2} (4.6)

The proof of the above lemma uses Lemma 4.2 and is along the same lines as
Lemma 8 in [7]. (In fact Lemma 8 in [7] is a special case where r is 6.) We omit the
proof. The reader is referred to Lemma 8 in [7] for the idea of the proof.

By (4.4) and the above lemma we get, when |t − s| ≥ n−β ,

E
∣∣ξ̄n(t, φ) − ξ̄n(s,φ)

∣∣2r ≤ c
[
n−rd/2 + n−r/2 + (t − s)r/2]

≤ c
[(

n−β
) rd

2β + (
n−β

) r
2β + (t − s)r/2]

≤ c(t − s)σ

where σ > 1 by our choice of r > 2β > 2 in (4.2) and where c is a constant depending
on r . �

4.2 Verifying the Second Tightness Condition

The second tightness condition involves proving that

lim
n→∞P

(
wξn

(
n−β

)
> ε

) = 0, (4.7)

where

wξn

(
n−β

) := sup
|t−s|<n−β

∣∣ξn(t, φ) − ξn(s,φ)
∣∣

is the modulus of continuity.
Recall the definition of the step function [·] in (2.1). For each n, we will divide

[0, T ] into subintervals such that [n�vt] is constant in each subinterval and each subin-
terval has length less than n−β . We construct a family In of left-closed right-open
subintervals by following the steps below.

Step 1: Set a = 0.
Step 2: Let b1 be the largest real number greater than a such that [n�vt] is constant as
t varies over interval [a, b1).

Step 3: Set b = min{b1, a + n−β}.
Step 4: Include [a, b) in In.
Step 5: If b > T then stop, otherwise set a = b and repeat from Step 2.

Clearly In forms a minimal covering of [0, T ] that satisfies the following two
conditions:

(1) ∀[a, b) ∈ In, |b − a| < n−β and [n�vt] is constant in [a, b),

(2) the subintervals in In are disjoint.
(4.8)
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A little thought gives us

|In| ≤ d
[
T nβ + 1

]
for large n

(i.e. number of such subintervals is at most d[T nβ + 1] where d is the dimension).
To verify the second tightness condition, it is sufficient to show

Lemma 4.4 For any 0 < T < ∞ and ε > 0,

lim
n→∞

∑

[a,b)∈In

P
(

sup
t∈[a,b)

∣∣ξn(t, φ) − ξn(a,φ)
∣∣ > ε

)
= 0. (4.9)

The reason that Lemma 4.4 is sufficient to prove (4.7) is the following. For any 0 ≤
s ≤ t ≤ T with t − s < n−β , there exist [a1, b1), [a2, b2) ∈ In such that s ∈ [a1, b1)

and t ∈ [a2, b2) ([a1, b1) may be equal to [a2, b2)). By the triangle inequality we get
∣∣ξn(t, φ) − ξn(s,φ)

∣∣

≤ ∣∣ξn(t, φ) − ξn(a2, φ)
∣∣ + ∣∣ξn(a2, φ) − ξn

(
a2 + n−β,φ

)∣∣

+ ∣
∣ξn

(
a2 + n−β,φ

) − ξn(a1, φ)
∣
∣ + ∣

∣ξn(a1, φ) − ξn(s,φ)
∣
∣ (4.10)

By applying Lemma 4.1 and |In| ≤ d[T nβ + 1], we get

P
(
wξn

(
n−β

)
> ε

) ≤ 2
∑

[a,b)∈In

P
(

sup
t∈[a,b)

∣∣ξn(t, φ) − ξn(a,φ)
∣∣ > ε/4

)
+ cnβ(1−σ)

As n → ∞, the second term in the above inequality goes to 0 as σ > 1.

Proof of Lemma 4.4 Let

(†) :=
∑

[a,b)∈In

P
(

sup
t∈[a,b)

∣∣ξn(t, φ) − ξn(a,φ)
∣∣ > ε

)
. (4.11)

We want to show that

lim
n→∞ (†) = 0.

We start by giving a general idea of the proof. The current process is written as
the sum of two parts: contributions from particles starting inside the box Bn1/2+α

(recall α > 0 from beginning of this section) and contributions from particles starting
outside the box Bn1/2+α . In the first case we bound the current by the number of jumps
executed by particles initially within the box Bn1/2+α . In the second case we conclude
that particles starting outside the box Bn1/2+α can either travel a distance of order
greater than

√
n toward the origin, which would be a large deviation, or they would

remain sufficiently far from the origin, in which case the value of φ at that distance
from the origin would be small.

Choose γ such that

0 < γ < α. (4.12)



J Theor Probab (2011) 24:1170–1195 1189

We first find a bound on the expected number of particles starting outside the box
Bn1/2+α , which enter the box Bn1/2+γ at some point in time interval [0, nT ].

Lemma 4.5 Define

N1 :=
∑

|m|>n1/2+α

η0(m)∑

j=1

1
{
Xm,j (nt) ∈ Bn1/2+γ + [n�vt]

for some 0 ≤ t ≤ T
}
. (4.13)

Let l ≥ 1. Then there exists a constant c independent of n such that EN1 ≤
cnd/2−lα+dγ .

Proof Recall that X(nt) denotes a random walk starting at the origin, with the same
distribution as the evolution of the particles. Let X̄(nt) := X(nt) − [n�vt].

EN1 = ρ0

∑

|m|>n1/2+α

P
(
X̄(nt) ∈ Bn1/2+γ − m for some t ∈ [0, T ])

since η0 is independent of the random walks

= ρ0

∑

i∈B
n1/2+γ

P
(
X̄(nt) /∈ Bn1/2+α + i for some t ∈ [0, T ])

≤ ρ0

∑

i∈B
n1/2+γ

P
(
X̄(nt) /∈ B 1

2 n1/2+α for some t ∈ [0, T ])

for large enough n, 1
2n1/2+α ≤ n1/2+α − n1/2+γ , as γ < α

= ρ0

∑

i∈B
n1/2+γ

P

(
sup

0≤t≤T

∣∣X̄(nt)
∣∣ >

1

2
n1/2+α

)

≤ cnd/2(nγ
)d E|X̄(nT )|l

( 1
2n1/2+α)l

by Doob’s inequality for any l ≥ 1

≤ cnd/2(nγ
)d

nl/2n−lα−l/2

as E|X̄(nT ))|l is O(nl/2)

≤ cnd/2−lα+dγ . �
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Let [a, b) ∈ In. Define

h
[a,b)
m,j (t) := φ

(
Xm,j (nt) − [n�vt]√

n

)
− φ

(
Xm,j (na) − [n�va]√

n

)
.

We can rewrite (†) in (4.11) as

(†) =
∑

[a,b)∈In

P

(

sup
t∈[a,b)

∣∣∣
∣∣

∑

m∈B
n1/2+α

η0(m)∑

j=1

h
[a,b)
m,j (t)

∣∣∣
∣∣
>

nd/4ε

2

)

(4.14a)

+
∑

[a,b)∈In

P

(

sup
t∈[a,b)

∣∣∣∣∣

∑

m∈Bc

n1/2+α

η0(m)∑

j=1

h
[a,b)
m,j (t)

∣∣∣∣∣
>

nd/4ε

2

)

(4.14b)

The two sums reflect the split in contributions to the current process from particles
starting within Bn1/2+α in (4.14a), versus particles starting outside Bn1/2+α in (4.14b).

We first show that the second term (4.14b) goes to 0 as n → ∞. To do this we
split (4.14b) into two sums, the first containing contributions from particles that enter
Bn1/2+γ at some time in [0, nT ] and the second containing contributions from parti-
cles that never enter Bn1/2+γ .

∑

[a,b)∈In

P

(

sup
t∈[a,b)

∣∣∣∣∣

∑

m∈Bc

n1/2+α

η0(m)∑

j=1

h
[a,b)
m,j (t)

∣∣∣∣∣
>

nd/4ε

2

)

≤
∑

[a,b)∈In

P

(
∑

m∈Bc

n1/2+α

η0(m)∑

j=1

c1
{
Xm,j (nt) ∈ Bn1/2+γ + [n�vt]

for some t ∈ [0, T ]} >
nd/4ε

4

)

(4.15a)

+
∑

[a,b)∈In

P

(

sup
t∈[a,b)

∑

m∈Bc

n1/2+α

η0(m)∑

j=1

∣∣h[a,b)
m,j (t)

∣∣

× 1
{
Xm,j (nt) ∈ Bc

n1/2+γ + [n�vt], ∀t ∈ [a, b)
}

>
nd/4ε

4

)

(4.15b)

To get (4.15a), we bounded h
[a,b)
m,j by some constant c times the indicator function,

since φ is a bounded function.
Now using Lemma 4.5, we get

(4.15a) ≤
∑

[a,b)∈In

P

(
cN1 ≥ nd/4ε

2

)

≤ cnβn−d/4EN1
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by Markov inequality and since |In| ≤ d[T nβ + 1]

≤ cnβn−d/4nd/2−lα+dγ

by Lemma 4.5. Choose ‘l’ large enough so that β + d/4 − lα + dγ < 0. Then the
right hand side → 0 as n → ∞.

We use the property that Schwartz functions are rapidly decreasing to show (4.15b)
goes to 0.

(4.15b) ≤
∑

[a,b)∈In

P

(
∑

m∈Bc

n1/2+α

η0(m)∑

j=1

∑

L≥nγ

cN(1 + L)−N

× 1
{
L ≤ inf

t∈[a,b)

∣∣
∣∣
Xm,j (nt) − [n�vt]√

n

∣∣
∣∣ ≤ (L + 1)

}
>

nd/4ε

4

)

since |φ(x)| ≤ cN(1 + |x|)−N

≤ n−d/44

ε
ρ0

∑

[a,b)∈In

∑

m∈Bc

n1/2+α

∑

L≥nγ

cN(1 + L)−N

× P

(
Xm,1(nt) − [n�vt]√

n
∈ Bc

L ∩ B(L+1) for some t ∈ [a, b)

)

by the Markov inequality and since η0 is independent of the random walks

= n−d/44

ε
ρ0

∑

[a,b)∈In

∑

m∈Bc

n1/2+α

∑

L≥nγ

cN(1 + L)−N

× P
(
X(nt) − [n�vt] ∈ Bc

L
√

n
∩ B(L+1)

√
n − m for some t ∈ [a, b)

)

≤ n−d/4

ε
cN

∑

[a,b)∈In

∑

L≥nγ

(1 + L)−N
(
L

√
n

)d−1√
n

by summing over m and allowing cN to absorb all the other constants

≤ cN

nd/4+β

ε

∑

L≥nγ

L−N+d−1

since |In| ≤ d[T nβ + 1]

≤ cNnd/4+β−γ (N−d) → 0

by choosing N large enough so that d/4 + β − γ (N − d) < 0.
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We finally turn to (4.14a). To prove (4.14a) goes to 0, we show that the number
of particles initially inside Bn1/2+α that jump during a time interval of length n1−β , is
stochastically smaller than O(nd/4).

Recall, by definition of In, [n�vt] is constant for t ∈ [a, b) ∈ In.Therefore for t ∈
[a, b),

∣∣h[a,b)
m,j (t)

∣∣ ≤ C1
{
G

[a,b)
m,j

}
,

where G
[a,b)
m,j := {Xm,j (nt) jumps during time interval t ∈ [a, b)} and C =

2 supx∈Rd φ(x). Define

Λ[a,b)
n := logE

[

exp

{
∑

m∈B
n1/2+α

η0(m)∑

j=1

1
{
G

[a,b)
m,j

}
}]

and

Λ̃[a,b)
n := logE

[
exp

{
1
{
G[a,b)

m,1

}}]
.

Let �(n1−β) be a Poisson(n1−β) random variable.

Λ̃[a,b)
n = log

{
1 + (e − 1)P

(
Xm,1(nt) jumps during time interval t ∈ [a, b)

)}

≤ log
{
1 + (e − 1)P

(
�

(
n1−β

) ≥ 1
)}

since b − a ≤ n−β

≤ (e − 1)P
(
�

(
n1−β

) ≥ 1
)

= cn1−β (4.16)

by the Markov inequality.

Λ[a,b)
n =

∑

m∈B
n1/2+α

logE exp
{
η0(m)Λ̃[a,b)

n

}

by independence of η0 from the random walks

≤
∑

m∈B
n1/2+α

log
[
1 + ρ0cn

1−β(e − 1) + o
(
n1−β

)]

by (4.16) and since η0(m) has exponential moments

≤
∑

m∈B
n1/2+α

cn1−β ≤ cnd/2+dα+1−β (4.17)
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Putting all this together, we get

(4.14a) ≤
∑

[a,b)∈In

P

(
∑

m∈B
n1/2+α

η0(m)∑

j=1

1{G[a,b)
m,j } >

nd/4ε

2C

)

since |h[a,b)
m,j (t)| ≤ C1{G[a,b)

m,j } for t ∈ [a, b)

≤
∑

[a,b)∈In

exp

{−nd/4ε

2C

}
E

[

exp

{
∑

m∈B
n1/2+α

η0(m)∑

j=1

1{G[a,b)
m,j }

}]

by the Markov inequality

≤
∑

[a,b)∈In

exp

{−nd/4ε

2C

}
exp

{
Λ[a,b)

n

}

≤ d
[
T nβ + 1

]
exp

{−cnd/4(1 − nd/4+dα+1−β
)}

by applying (4.17) and |In| ≤ d[T nβ + 1]

→ 0

as n → ∞, since β ≥ d/4 + dα + 1 by definition (4.1).
This proves Lemma 4.4 and thus verifies the second tightness condition (4.7). �

Proof of Proposition 4.1 Lemma 4.1 and (4.7) satisfy the tightness criteria in Propo-
sition 5.7 of [2], thus we get ξn(·, φ) is tight in D([0, T ],R). �

Proof of Theorem 2.1 We invoke Theorem 4.1 in [9] which states that Proposition 4.1
is sufficient to prove that the sequence {ξn(·, ·)} is tight in D([0, T ], S ′(Rd)). This,
together with Lemma 3.1 proves the theorem. �

Proof of Theorem 2.2 The proof of this theorem follows almost verbatim from that
of Theorem 2.1. A few places where the proof differs from that of Theorem 2.1 are
highlighted below.

When proving tightness, the proof of Lemma 4.2 is different. From (4.5) onward
in Lemma 4.2, the proof differs as follows.

∑

m∈Zd

E|Ām|k ≤ c22r

[ ∑

m∈Zd

E

∣∣∣∣φ
(

Xm,1(nt) − [n�vt]√
n

)
− φ

(
Xm,1(ns) − [n�vs]√

n

)∣∣∣∣

k]

≤ c22r
∑

m∈Zd

[
P(Cm) + P(Dm)

]
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where Cm = {Xm,1(nt) ∈ BM
√

n + [n�vt],Xm,1(ns) /∈ BM
√

n + [n�vs]} and Dm =
{Xm,1(nt) /∈ BM

√
n + [n�vt],Xm,1(ns) ∈ BM

√
n + [n�vs]}.

∑

m∈Zd

P (Cm) = P
(
X(nt) ∈ BM

√
n + [n�vt] − m,X(ns) /∈ BM

√
n + [n�vs] − m

)

=
∑

m∈Zd

∑

j /∈BM
√

n

P
(
X(nt) − X(ns) ∈ BM

√
n + [n�vt] − [n�vs] − j

|X(ns) = j + [n�vs] − m
) × P

(
X(ns) = j + [n�vs] − m

)

=
∑

j /∈BM
√

n

P
(
X

(
n(t − s)

) ∈ BM
√

n + [n�vt] − [n�vs] − j
)

=
∑

j /∈BM
√

n

P
(
X̄n(t, s) ∈ BM

√
n + j

)

where X̄n(t, s) = X(n(t − s)) − [n�vt] + [n�vs]

=
∑

k∈Zd

P
(
X̄n(t, s) = k

) ∑

j /∈BM
√

n

1{k ∈ BM
√

n + j}

≤
M

√
n∑

l=0

∑

k∈Zd :|k|=l

P
(
X̄n(t, s) = k

)
n

d−1
2 |k|

+
∑

|k|>M
√

n

P
(
X̄n(t, s) = k

)
cnd/2

≤ n
d−1

2 E
∣∣X̄n(t, s)

∣∣ + cnd/2P
(
X̄n(t, s) > M

√
n

)

≤ c

[
n

d−1
2

(√
n(t − s) + 1

) + nd/2 E|X̄n(t, s)|2
M2n

]

since E|X(n(t − s)) − n(t − s)�v| is O(
√

n(t − s))

≤ c

[
n

d−1
2

(√
n(t − s) + 1

) + nd/2 n(t − s) + 1

M2n

]

≤ cnd/2[√t − s + n−1/2].

Similarly,
∑

m∈Zd

P (Dm) ≤ cnd/2[√t − s + n−1/2].

The proof of (4.7) holds for indicator functions without any modifications. �
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