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Abstract

Let E/Q be an elliptic curve with complex multiplication (CM), and for each prime p of
good reduction, let aE(p) = p + 1 − #E(Fp) denote the trace of Frobenius. By the
Hasse bound, aE(p) = 2

√
p cos θp for a unique θp ∈ [ 0,π ]. In this paper, we prove that

the least prime p such that θp ∈ [α,β]⊂ [ 0,π ] satisfies

p �
(

NE

β − α

)A

,

where NE is the conductor of E and the implied constant and exponent A > 2 are
absolute and effectively computable. Our result is an analogue for CM elliptic curves of
Linnik’s Theorem for arithmetic progressions, which states that the least prime
p ≡ a (mod q) for (a, q) = 1 satisfies p � qL for an absolute constant L > 0.

1 Introduction
Let E be an elliptic curve over Q, and for each prime p, let #E(Fp) be the number of
rational points of E over the finite field Fp. Taking aE(p) = p+ 1− #E(Fp) to be the trace
of Frobenius as usual, we recall the following important result of Hasse, which holds when
E has good reduction at p: ∣∣aE(p)∣∣ ≤ 2√p.

It follows that for each prime p, there is a unique angle θp ∈ [ 0,π ] (which we call the
“Sato-Tate” angle) such that ap = 2√p cos θp. For a fixed elliptic curve E, it is natural
to study the distribution of the angles θp as p ranges across the primes at which E has
good reduction. The now-proven Sato-Tate Conjecture provides an asymptotic for this
distribution that depends on whether or not E has complex multiplication (CM). While
the CM case was established by Hecke, the non-CM case was recently proven in [1] by
Barnet-Lamb, Geraghty, Harris, and Taylor.

Theorem (Sato-Tate Conjecture). Fix an elliptic curve E/Q, and let I = [α,β]⊂ [ 0,π ]
be a subinterval. Then we have that

lim
x→∞

#{p ≤ x : θp ∈ I}
#{p ≤ x} =

{ ∫
I
2
π
sin2 θ dθ if E is non-CM,

δI
2 + β−α

2π if E is CM

where δI = 1 if π/2 ∈ I and δI = 0 otherwise.
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Because the Sato-Tate conjecture provides an equidistribution result for the angles θp
in a given subinterval I ⊂ [ 0,π ], it is natural to ask whether one can determine the least
prime p such that θp ∈ I. In this paper, we address the CM case of this question by proving
the following theorem:

Theorem 1.1. Let E/Q be a CM elliptic curve of conductor NE. There exists a prime p
such that θp ∈ I and

p �
(

NE
β − α

)A
,

where the implied constant and exponent A > 2 are absolute and effectively computable.

Observe that Theorem 1.1 is analogous to Linnik’s Theorem, which provides an upper
bound on the least prime in an arithmetic progression. Specifically, Linnik showed in
[11, 12] that the least prime p ≡ a (mod q), for relatively prime integers a and q, satisfies
p � qL (where the implied constant and the exponent L > 0 are absolute and effectively
computable). This analogy between Theorem 1.1 and Linnik’s Theorem is reasonable to
expect; indeed, the least prime p with θp ∈ I should grow inversely with the length of I
and should depend in some way on the arithmetic properties of E (such as its conductor),
just as the least prime p in an arithmetic progression modulo q should grow with q.

Remark. The non-CM analogue of Theorem 1.1 was proven by Lemke Oliver and
Thorner in [10]. Their bound depends on the number of symmetric-power L-functions
of E that are known to have analytic continuations and functional equations of the usual
type.
Also, it is well-known that for a given elliptic curve E/Q, the traces of Frobenius aE(p)

are the pth Fourier coefficients of a weight 2 newform of levelNE . One can thus formulate
this problem in the more general context of newforms of even weight k ≥ 2 with complex
multiplication; the proof is essentially the same as the proof of Theorem 1.1.

The rest of this paper is organized as follows. Section 2 presents an introduction to
the analytic theory of CM elliptic curves and L-functions associated to Hecke Grössen-
charaktere, which are the fundamental tools that we employ in our proof of Theorem 1.1.
Then, Section 3 employs the tools developed in Section 2 to give a detailed proof of
Theorem 1.1.

2 CM elliptic curves and Hecke L-functions
In this section, we provide a brief description of the relevant facts about CMelliptic curves
over Q and L-functions of Hecke Grössencharaktere that are employed in our proof of
Theorem 1.1; a standard reference is [5]. Note that throughout the rest of the paper, all
implied constants are absolute unless otherwise specified.
Let K/Q be an algebraic number field, and let m ⊂ OK be a nonzero integral ideal. Let

ξ denote a Hecke Grössencharakter over K of modulus m and frequency k. When K is an
imaginary quadratic field, every Hecke Grössencharakter can be thought of as the product
of a ray-class character χ : (OK/m)∗ → S1 with an angle character χ∞ : C∗ → S1, where
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S1 = {z ∈ C : |z| = 1}. (Here, by frequency of ξ , we mean the frequency of χ∞. See [6]
for details.) The Hecke L-function L(s, ξ) associated to ξ is defined as the Euler product

L(s, ξ) =
∏

p⊂OK

(1 − ξ(p)N(p)−s)−1,

which converges absolutely for σ > 1. Hecke showed that the above product can bemero-
morphically continued to the entire complex plane, giving an L-function whose degree
equals [K : Q]. Furthermore, he proved that L(s, ξ) is entire if ξ is nontrivial and that
L(s, ξ) has a simple pole at s = 1 when ξ is trivial.
As described in [2] and [15], the theory of Hecke Grössencharaktere is fundamental to

the study of CM elliptic curves. Let E/Q be an elliptic curve of conductorNE , and suppose
that E has complex multiplication by the ring of integers OK of a number field K/Q with
absolute discriminant |dK |. Recall that in this case,K is necessarily an imaginary quadratic
field of class number 1, so that OK is a principal ideal domain. For prime ideals p ⊂ OK
at which E has good reduction, set

aE(p) = N(p) + 1 − #E(Fp)

where Fp := OK/p. Then, the Hasse bound tells us that

|aE(p)| ≤ 2
√
N(p).

Thus, for each prime ideal p ⊂ OK at which E has good reduction, we can define θp ∈
[ 0,π ] such that ap = 2

√
N(p) cos θp. Now, consider a totally multiplicative map ξE that

is defined on unramified prime ideals p ⊂ OK by

ξE(p) = exp
(±iθp

)
where the symbol “±” indicates a sign that depends on p and E. It is a well-known result
of Weil (see [16]) that if the signs ± are chosen appropriately for each p, then ξE is a
Hecke Grössencharakter over K. We note that ξE has frequency 1, and as discussed in
[14], the modulusm of ξE has normN(m) = NE/|dK |. For k ∈ Z\{0}, we denote by ξ kE the
map defined by ξ kE (a) := ξE(a)k for nonzero ideals a ⊂ OK ; observe that this is a Hecke
Grössencharakter of modulus m and frequency k.
Taking the analytic conductor q(s, ξ) of an L-function L(s, ξ) to be defined as in

Equation 5.7 of [6], it is easy to deduce the following useful bound on the analytic
conductor of L

(
s, ξ kE

)
:

log q
(
s, ξ kE

)
� log ((|s| + 3) · N(m) · k) . (2.1)

We devote the remainder of this section to presenting a few relevant results on the dis-
tribution of nontrivial zeros of Hecke L-functions; we will apply these results in Section 3
to L

(
s, ξ kE

)
. The following lemma, which is adapted from Theorem 5.10 in [6], provides a

zero-free region for Hecke L-functions over quadratic fields of class number 1.

Lemma 2.1. Let K be a quadratic number field of class number 1, let m ⊂ OK be a
nonzero integral ideal, and let ξ be a Hecke Grössencharakter modulo m. Then L(s, ξ) has
at most one zero in the region

σ ≥ 1 − c1
log q(it, ξ)
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for some absolute constant c1 > 0. The exceptional “Siegel zero” can only exist if ξ is a real
quadratic character and is necessarily both real and simple.

Note that the region defined in Lemma 2.1 is free of zeros when the Hecke Grössen-
charakter is trivial or has infinite order. Since the character ξ kE is trivial if k = 0 and
has infinite order if k �= 0, we need not consider Siegel zeros in applying Lemma 2.1 to
L

(
s, ξ kE

)
. The next lemma, which is adapted from part (1) of Proposition 5.7 in [6], pro-

vides an estimate on the vertical distribution of zeros of Hecke L-functions over quadratic
fields:

Lemma 2.2. Retain the setting of Lemma 2.1. For any t ≥ 2, the number of zeros ρ of
L(s, ξ) with γ ∈ [ t − 1, t + 1] is less than

c2 log q(it, ξ)

for some absolute constant c2.

A key input into the proof of Linnik-type theorems is a logarithm-free zero-density
estimate. In our proof of Theorem 1.1, we will employ the following estimate, which we
have adapted from [3]:

Lemma 2.3. Fix an integer H ≥ 1, an imaginary quadratic number field K of class
number 1, and a nonzero integral ideal m ⊂ OK . Consider the product

L(s;m,H) =
∏
ξ

L(s, ξ),

where ξ ranges over all Hecke Grössencharaktere with modulus m and frequency at most
H. Let N(λ,T) denote the number of zeros of L(s;m,H) that lie in the rectangle

1 − λ < β < 1 and |γ |≤ T .

Then there exists an absolute constant c3 ∈ (0, 1) and an absolute constant c4 such that
if λ ∈ (0, c3) and T ≥ N(m)(1 + H), then

N(λ,T) ≤ Tc4λ.

Remark. Similar zero-density estimates were obtained by Koval’̌cik in [9]. These density
estimates are unlikely to produce Linnik-type theorems because they are not logarithm-
free. However, they do have applications in studying primes of the form p = a2 + b2

where |b| < p1/4+ε and in producing an analogue of the Bombieri-Vinogradov theorem
for primes p = a2 + b2 where arg(a + bi) lies in a given sector. We thank Professor
Jean-Pierre Serre for introducing us to this paper.

3 Proof of Theorem 1.1
In this section, we provide a complete proof of the main result in this paper, namely
Theorem 1.1. Let E/Q be an elliptic curve of conductor NE with CM by OK , where K
is necessarily an imaginary quadratic field of class number 1. Recall from Section 2 that
we can associate to E a Hecke Grössencharakter ξE over K of modulus m ⊂ OK and
frequency 1. Fix a subinterval I = [α,β]⊂ [ 0,π ] with indicator function denoted by χI ,
and put
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x = N(m)

β − α
. (3.1)

Notice that x has a positive lower bound of 1/π , and recall that

N(m)

β − α
= NE

|dK |(β − α)
≤ NE

β − α
.

Thus, to prove Theorem 1.1, it suffices to show that if x is sufficiently large, we can pick
a constant A > 2 so that there exists a prime p � xA with θp ∈ I. The method we employ
in this section is based on the work of Graham and Jutila on computing explicit Linnik
constants (see [4, 7]) as well as that of Kaufman (see [8]).

3.1 Initial setup of the proof

Let A > 2 be a sufficiently large absolute constant. Let R : (0,∞) → R be supported on
[ xA−2, xA]. Consider the sum S defined by

S :=
∑

p⊂OK
fp=1

logN(p)R(N(p))χI(θp)

N(p)
. (3.2)

Here, the sum is taken over unramified prime ideals p (henceforth all sums over primes
will implicitly be taken over unramified primes). By fp we mean the inertial degree of p,
which is the degree of OK/p as an Fp-vector space (recall that N(p) = pfp ). In our case,
since K is a quadratic field, we have fp ∈ {1, 2}. We will show that S > 0.
As in [4], we construct the function R(y) by means of a kernel. For s ∈ C, define a

kernel1 K(s) by

K(s) := x
A−2
2 ·s

(
xs − 1
s log x

)
,

and take the function R(y) to be given by

R(y) := 1
2π i

∫ 2+i∞

2−i∞
K(s)2y−s ds. (3.3)

As stated in [4, 7], the function R(y), as defined above, vanishes outside of the inter-
val [ xA−2, xA] and satisfies R(y) � (log x)−1 when y ∈ [ xA−2, xA]. We will utilize the
following bound on our function K(s):2

Lemma 3.1 (Graham, [4]). Let B1 = A − 2. For σ < 0, we have that

|K(s)|2 ≤ xB1σ min
(
1,

4
|s|2 (log x)2

)
.

3.2 Estimating S

In order to rephrase our problem into one that concerns the Hecke Grössencharaktere
ξ kE , we use the following lower approximation to χI with symmetric, compactly supported
Fourier coefficients:

Lemma 3.2. Let I = [α,β]⊂ [ 0,π ] be a subinterval, and let M ∈ Z>0. There exists a
trigonometric polynomial

SI,M(θ) =
∑

|n|≤M
bn exp(inθ)
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satisfying the following properties: For all θ ∈ [ 0,π ], we have SI,M(θ) ≤ χI(θ), and for all
n ∈ {−M, . . . ,M} \ {0} we have that bn = b−n and that∣∣∣∣b0 − β − α

π

∣∣∣∣ ≤ 2
M + 1

and |bn| ≤
(

2
M + 1

+ min
{

β − α

π
,

2
π |n|

})
. (3.4)

Proof. The lemma follows by modifying the Beurling-Selberg minorant polynomials
(see [13], §1.2, p. 5–6, for a formal definition of these polynomials) to be even and periodic
modulo 2π .

We are now in a position to estimate the indicator function χI of the interval I= [α,β]⊂
[ 0,π ] in terms of the Hecke Grössencharaktere ξ kE . We set M = x1+ε for an absolute
ε ∈ (0, 1/2). From Lemma 3.2, we find that for each unramified prime ideal p ⊂ OK ,

χI(θp) ≥
∑

|k|≤M
bk exp(ikθp) = b0 +

∑
|k|≤M
k �=0

bkξ kE (p),

where the Fourier coefficients bk satisfy the conditions specified in (3.4). Applying this
lower approximation to χI to (3.2), we obtain the following estimate on S:

S =
∑
fp=1

logN(p)R(N(p))χI(θp)

N(p)
≥

∑
fp=1

∑
|k|≤M

bk
logN(p)R(N(p))ξ kE (p)

N(p)
.

Since R(y) is nonzero for only finitely many integers y, the sum over primes in the right-
hand-side of the above inequality is a finite sum. Thus, we can exchange the order of
summation to conclude that

S ≥
∑

|k|≤M
bkSk , Sk =

∑
fp=1

logN(p)R(N(p))ξ kE (p)

N(p)
. (3.5)

In what follows, we denote the inner sum on the right-hand-side of (3.5) by Sk .

3.3 Estimating Sk
To estimate Sk using our knowledge of the Hecke L-function L

(
s, ξ kE

)
, we will introduce

for every k ∈ {−M, . . . ,M} an integral Ik defined as follows:

Ik := 1
2π i

∫ 2+i∞

2−i∞
K(s)2

(
−L′

L

(
s + 1, ξ kE

))
ds

Evaluating the logarithmic derivative of L
(
s + 1, ξ kE

)
, we find that

−L′

L

(
s + 1, ξ kE

)
=

∑
a

�K (a)ξ kE (a)

N(a)s+1 , (3.6)

where �K is the von Mangoldt function over the number field K, defined as

�K (a) =
{
logN(p) if a = pm,
0 otherwise.

Substituting (3.6) into the definition of the integral Ik and integrating term by term, we
obtain the following series representation of Ik :

Ik =
∑
a

�K (a)R(N(a))ξ kE (a)

N(a)
. (3.7)
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Recall from (3.7) that Ik can be expressed as a sum over prime powers, whereas the
desired sum Sk is a sum over primes p with fp = 1. We bound the difference between Ik
and Sk as follows.

Lemma 3.3. For any k we have |Ik − Sk| = O(x−2).

Proof. Recall the fact that R(y) = 0 for y /∈[ xA−2, xA], and moreover that R(y) �
(log x)−1 for y ∈ [ xA−2, xA]. Thus, when N(a) ∈ [ xA−2, xA], we have that∣∣∣∣∣�K (a)R(N(a))ξ kE (a)

N(a)

∣∣∣∣∣ � log(xA) · (log x)−1

xA−2 = A
xA−2 .

The number N of nonzero terms in the sum (3.7) corresponding to ideals a = pk with
k > 2 is at most twice the number of prime powers ≤ xA, so we have that N � xA/2.
Moreover, the number of prime ideals with fp = 2 is also at most xA/2 (since the norm of
such a prime ideal is necessarily a perfect square). Thus, the difference between Sk and Ik
can be bounded as follows:

|Sk − Ik| � A
xA−2 · xA/2 � x−2

provided that A ≥ 8.

On the other hand, we can evaluate the integral Ik by shifting the contour from σ = 2
to σ = −5/4.3 To this end, we prove the following lemma:

Lemma 3.4. We have that

Ik = δ(k) −
∑
ρ

k
K(ρ − 1)2 + O(x−2)

where the superscript “k” on the sum indicates that the sum is taken over nontrivial zeros
ρ of L

(
s, ξ kE

)
and where δ(k) denotes the Kronecker delta function.

Proof. Consider the truncated integral Ik(T) defined for T > 0 by

Ik(T) := 1
2π i

∫ 2+iT

2−iT
K(s)2

(
−L′

L

(
s + 1, ξ kE

))
ds,

where T does not coincide with the ordinate of a zero of L
(
s, ξ kE

)
. We want to shift the

contour from

σ = 2 to σ = −5/4.

In doing so, the nontrivial zeros of L
(
s + 1, ξ kE

)
, which occur when s + 1 = ρ, con-

tribute residues that sum to −∑
ρ
kK(ρ − 1)2. When k = 0, we know that L

(
s, ξ kE

)
has a

simple pole when s + 1 = 1, which contributes a residue of δ(k). Moreover, if k = 0, then
L

(
s, ξ kE

)
has a trivial zero at s = −1, which contributes a residue that is bounded by

� x2−A(1 − x−1)2

(log x)2
� x−2
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provided that A > 4. It is easy to check that the integrand of Ik has no other poles in the
range −5/4 ≤ σ ≤ 2. Thus, by the Residue Theorem, we have that

Ik(T) = δ(k) −
∑
ρ

K(ρ − 1)2 + O(x−2) + 1
2π i

∫
�T

K(s)2
(

−L′

L

(
s + 1, ξ kE

))
ds

where �T is the rectangular path consisting of the three legs

2 − iT −→ −5
4

− iT −→ −5
4

+ iT −→ 2 + iT .

In order to evaluate the above integral, we require a bound on the logarithmic derivative
of L

(
s, ξ kE

)
. To this end, one can obtain from (2.1), Lemma 2.2, and part (2) of Proposition

5.7 in [6] that for s satisfying − 1
4 ≤ σ ≤ 3 and |t| = T sufficiently large, we have∣∣∣∣L′

L

(
s, ξ kE

)∣∣∣∣ = O
((
log k(T + 3)

)2) .

Note that the condition of having T sufficiently large can be removed if σ = −5/4,
because −5/4 is bounded away from 0, 1, and all local parameters of L

(
s, ξ kE

)
at infinity.

This is important for estimating the integral along the vertical leg σ = − 5
4 of �T . Now,

the integral along the first leg (horizontal leg at t = −T) is bounded in absolute value by

� sup
− 5

4≤σ≤2
t=−T

∣∣∣∣∣x(A−2)s
(
xs − 1
s log x

)2 L′

L

(
s + 1, ξ kE

)∣∣∣∣∣ � x2(A−2)(x2 + 1)2

T2
(
log k(T + 3)

)2 ,
which vanishes as T → ∞. By an analogous argument, the integral along the third leg
(horizontal leg at t = T) vanishes as T → ∞. Finally, the integral along the second leg
(the vertical leg at σ = −5/4) is bounded in absolute value by

� sup
σ=− 5

4|t|≤T

∣∣∣∣∣x(A−2)s
(
xs − 1
log x

)2
∣∣∣∣∣
∫ T

−T

(
log k(|t| + 3)

)2∣∣− 5
4 + it

∣∣2 dt

� x− 5
4 (A−2)

(
x− 5

4 + 1
log x

)2 ∫ T

−T

(
log k(|t| + 3)

)2∣∣− 5
4 + it

∣∣2 dt.

Notice that as T → ∞, the integral in the above expression converges by the p-test.
Therefore, provided that A > 6, we have that the above term is � x−2 in the limit as
T → ∞, which proves the lemma.

3.4 Estimating the sum over zeros

We now combine our Fourier estimate of S with our estimate of Sk . By (3.5), Lemma 3.2
and the results of Section 3.3, we have

S ≥
∑

|k|≤M
bkSk =

∑
|k|≤M

bk(Ik + O(x−2))

=
∑

|k|≤M
bk

(
δ(k) −

∑
ρ

k
K(ρ − 1)2 + O(x−2)

)

= β − α

π
−

∑
|k|≤M

bk
∑
ρ

k
K(ρ − 1)2 + O(x−2) ·

∑
|k|≤M

bk

= β − α

π
−

∑
|k|≤M

bk
∑
ρ

k
K(ρ − 1)2 + o(x−1),

(3.8)
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where we have used our choice of M = x1+ε . We now wish to provide a tight bound on
the sum in (3.8). We now prove the central lemma in our estimate:

Lemma 3.5. We have that for sufficiently large x,∑
|k|≤M

∑
ρ

k |K(ρ − 1)|2 <
9
10

.

Proof. First, notice that since ξ kE has infinite order for any k �= 0, we may apply
Lemma 2.1 without consideration of Siegel zeros. Now, let B1 = A − 2 and M = x1+ε as
before, set T = M2 = x2+2ε , and let B2 = B1 − (2 + 2ε)c4 (see Lemma 2.3 for the def-
inition of c4) and assume B2 > 0 (by selecting A large enough). We begin by computing
the following Stieltjes integral over λ using the bounds given by Lemmas 2.3 and 3.1, the
former of which will apply if we take x sufficiently large so that T > N(m)(M + 1):∫ b

a
x−B1λ dN(λ,T) = x−B1λN(λ,T)

∣∣b
a + B1 log x

∫ b

a
N(λ,T)x−B1λ dλ

≤ ∣∣x−B1a · Tc4a
∣∣ +

∣∣∣x−B1b · Tc4b
∣∣∣ +

∣∣∣∣∣B1 log x ·
∫ b

a
Tc4λx−B1λ dλ

∣∣∣∣∣
= x−B2a + x−B2b + B1 log x

∣∣∣∣∣
∫ b

a
x−B2λdλ

∣∣∣∣∣
≤ B1 + B2

B2

(
x−B2a + x−B2b

)
.

(3.9)

We will now bound the contribution of zeros in the rectangle defined by 1− c3 < β < 1
and |γ | < T using (3.9). We first need to choose a, b appropriately. Applying the zero-free
region stated in Lemma 2.1 to L

(
s, ξ kE

)
, we can pick

a = c1
log q

(
iT , ξ kE

) and b → ∞.

Given our choices of T and M as well as the fact that |k| ≤ M, we deduce from (2.1)
log q

(
iT , ξ kE

)
< C log x for some absolute constant C > 0. Substituting these choices

of a, b into (3.9), we find that for sufficiently large x, the contribution of zeros in this
rectangle is at most B3, where

B3 := B1 + B2
B2

(
exp

(
−B2c1

C

))
. (3.10)

Next, we bound the contribution of zeros in the rectangle 0 < β < 1 − c3 and |γ | < T ;
we show that it yields a negligible contribution of o(1/x). The contribution of each zero
with β < 1−c3 is at most x−B1c3 by Lemma 3.1. Therefore, if we sum over zeros in vertical
strips [ t − 1, t + 1] for t = 0, 1, . . . ,T and appeal to Lemmas 2.2 and 3.1, we obtain the
bound

∑
|k|≤M

∑
0<β<1−c3|γ |<T

|K(ρ − 1)|2 � M ·
T∑
t=0

x−B1c3 log x

� MTx−B1c3 log x

� x3+3ε−B1c3 log x,
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which is o(1/x) as long as B1 = A − 2 is sufficiently large. Finally, we will show that
the contribution of zeros with |γ | ≥ T is also negligible. By Lemmas 2.2 and 3.1, this
contribution is

∑
|k|≤M

∑
ρ

k 4x−B1(1−β)

|ρ − 1|2 (log x)2
�

∑
|k|≤M

∑
ρ

k 1
|ρ − 1|2 (log x)2

� 1
(log x)2

∑
|k|≤M

∑
t>T

log(kt)
t2

� M logT
T(log x)2

,

which is o(1/x). In the last step above, we used the fact that k ≤ M ≤ T and bounded the
sum over t with an integral. To obtain the lemma, we simply need to select A in such a
way that B3 < 9/10, which is possible because B3 can be made arbitrarily small by taking
A sufficiently large.

3.5 Completing the Proof

For convenience, put τ = β−α
π

≤ 1. Observing that 2
M+1 = O(x−1−ε) = o(x−1) and

recalling our bound on S, we see that

S ≥ τ −
∑

|k|≤M
bk

∑
ρ

k
K(ρ − 1)2 + o(x−1)

≥ τ −
(

τ + 2
M + 1

) ∑
|k|≤M

∑
ρ

k|K(ρ − 1)|2 − o(x−1)

≥ τ −
(

τ + 2
M + 1

) (
9
10

+ o(x−1)

)
− o(x−1)

≥ 1
10

τ − o(x−1).

As x = πN(m)/τ , it follows that S > 0 for x sufficiently large. Using our definitions of
S in (3.2) and R in (3.3), it follows that there exists a p such that fp = 1, θp ∈ [α,β] and
N(p) ∈ [ xA−2, xA]. Since fp = 1, we can write p = (p) for a rational prime p. We then have
that θp = θp, from which we deduce that

θp = θp ∈ [α,β] and p ≤ xA.

This completes the proof of the main result, Theorem 1.1.

Remark. Notice that if a rational prime p is inert in OK , then aE(p) = 0, so that θp =
π/2. Thus, whenever π/2 ∈ I, we have that all inert primes p � NE satisfy θp ∈ I. Thus,
in this case, the bound in Theorem 1.1 can be improved substantially. In particular, the
bound no longer depends on the length β − α of the interval I.

Endnotes
1The kernel, as defined in §7 of [4] is missing a factor of s in the denominator. We have

corrected the kernel in our definition of K(s).
2This bound, as stated in (22) of [4], has an extraneous minus sign in the exponent of

x. We have corrected the statement in Lemma 3.1.
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3In performing an analogous calculation, Kaufman shifts the contour to σ = −3/2
(see [8]), but this is not possible because for a Hecke Grössencharakter ξ with frequency
1, the logarithmic derivative of L(s + 1, ξ) has a pole at s = −3/2.
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