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Abstract Doubled haploids of triticale are of interest for

plant breeders due to hybrid breeding programs based on

cytoplasmic male sterility Tt phenomenon. However,

(epi)mutations appearing during in vitro culture regenera-

tion may lead to a phenotypic variation that makes the

uniformity of plant materials questionable. Using RP-

HPLC genomic DNA methylation of donor doubled hap-

loid plants utilized as a source of tissues for the in vitro

regeneration (via androgenesis and somatic embryogene-

sis) of triticale cv. Bogo and their consecutive generative

progeny was evaluated. It was demonstrated that in vitro

cultures induced a decrease of the DNA methylation of the

regenerants independently of the approach used for plant

regeneration. The decrease in DNA methylation of geno-

mic DNA proceeded up to the first/second successive

generations followed by the beginning of its reestablish-

ment. Moreover, somatic embryogenesis resulted in a

higher level of genomic DNA demethylation in regenerants

than androgenesis and the process of methylation seems to

be affected by donor plant. It is being speculated that long

term changes in genomic DNA methylation may be a

source of off-type individuals that may spontaneously arise

during plant breeding.

Keywords Androgenesis � Doubled haploid �
Epigenetics � RP-HPLC � Somatic embryogenesis �
Triticosecale

Abbreviations

2,4-D 2,4-Dichlorophenoxyacetic

acid

DAPI 40-60 Diamidino-2-

phenylindole

DH Doubled haploid

IAA Indole-3-acetic acid

ISSR Inter-simple sequence repeat

MSAP Methylation sensitive

amplified polymorphism

NAA a-Naphthaleneacetic acid

Introduction

Triticale is an artificial species that originated ca. 130 years

ago from a cross between wheat and rye, with the first

cultivars useful for breeders available in the 1960s (Mer-

goum et al. 2009). It exhibits high yield potential, grain

quality, resistance to pathogens, favourable amino acid

composition and adaptation to adverse conditions (Heger

and Eggum 1991). Hybrid breeding based on cytoplasmic

male sterility is a promising direction in its cultivation

(Oettler et al. 2005). However, homozygous, genetically

uniform and stable doubled haploids (DHs) are necessary

to maximize heterosis. Such forms could be derived via
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androgenesis employing anther cultures or isolated mi-

crospores (Eudes and Amundsen 2005; _Zur et al. 2008;

Lantos et al. 2013; Würschum et al. 2013).

Tissue culture induced variation (TCIV) in regenerants

(Li et al. 2007; González et al. 2013) and somaclonal

variation (SV) in progeny of such regenerants (Linacero

and Vazquez 1992; Ivanov et al. 1998) have been observed

in crops. TCIV may be manifested at the morphological

level of regenerants (Jaligot et al. 2000). Usually, off-type

plants are eliminated from the breeding population. How-

ever, epigenetic changes without obvious morphological

effect, are mostly not easily recognized (Bednarek et al.

2007) and may spontaneously come into being even after

several generations (Brettell and Dennis 1991). Evidently,

tissue culture may induce alterations in DNA methylation

pattern (González et al. 2011; Shan et al. 2013) since it

may impose stressful conditions (González et al. 2013).

Additionally, cell reprogramming may require resetting

of the DNA methylation pattern (Baroux et al. 2011)

causing epimutations. Relatively low levels of epigenetic

change related to tissue culture were described in barley

(Bednarek et al. 2007). Those changes occurred whether

regeneration was through either androgenesis or somatic

embryogenesis. However, it is not evident whether genome

methylation of triticale regenerants derived via androgen-

esis and somatic embryogenesis and their progeny behaves

similarly. Possibly, the complex genome of triticale may

react differently as suggested by genomic studies (Bento

et al. 2011) as well as molecular and cytological analyses

(Brettell et al. 1986).

In triticale, off-type forms derived from tissue culture

regeneration are not rare (Pauk et al. 2000). Cytogenetic

analysis showed that triticale is genetically unstable during

tissue culture manipulation (Lapitan et al. 1984). Chro-

mosome analysis of the root tip cells of regenerated plants

revealed that the rye genome was more frequently involved

in chromosomal rearrangements than wheat genome

(Charmet et al. 1986). Not only tissue culture regeneration,

but also generative reproduction may cause genome

instability (Suenaga and Nakajima 1993) of the progeny

derived from regenerants.

To study the extent of changes induced by tissue culture

and inherited by the progeny different methods have been

used (Hossain et al. 2003; Peredo et al. 2009; Linacero

et al. 2011; Dı́az-Martı́nez et al. 2012). Most of them

involved isoschizomers differing in their sensitivity

towards DNA methylation sites (Ochogavı́a et al. 2009;

Wang et al. 2013; Machczyńska et al. 2014). The limitation

of the system to restriction sites recognized by the endo-

nucleases is apparent (Schrey et al. 2013). Contrary to

marker-based approaches, high performance liquid chro-

matography (HPLC) has been applied in studies of DNA

methylation of plants regenerated via tissue culture (Re-

nau-Morata et al. 2005; Rival et al. 2013). This technique

supports general information on global DNA methylation

and could be applied for the evaluation of differences

among plant materials that could be related to spontane-

ously arising off-type plants (Johannes et al. 2009; Yi et al.

2010).

Tissue culture is a stressful environment that may lead

to numerous epigenetic changes. These changes may be

transmitted to the next generations. However, it is not clear

how long such changes may persist in the progeny. The

purpose of the study was to evaluate the level of global

epigenetic changes related to genomic DNA methylation

among donor triticale plants, their regenerants derived via

different in vitro culture methods and consecutive gener-

ative progenies of the regenerants using RP-HPLC

approach.

Materials and methods

Plant material

Four lines of DH donor plants (each line was represented

by vegetatively multiplicated clones, Table 1) of winter

triticale cv. Bogo (Oleszczuk et al. 2004) were used to

generate regenerants via shed microspore culture (M),

anther culture (A), and immature zygotic embryo culture

(E). The regenerants were used to obtain the first, the

second and the third generative progenies. Donor plants,

their homozygous regenerants and their consecutive prog-

enies formed a set. Each plant within the set had its com-

plete pedigree to a specific donor from which it was

derived. There were four of such sets encoded S1, S2, S3

and S4. The arrangement of the plant material is given in

Table 1.

Androgenesis

Anther culture

Plants of winter triticale cv. Bogo have grown under con-

trolled conditions in a chamber room at a photoperiod of

16 h day and 8 h night at 16 and 12 �C, respectively. The

tillers were collected, when the microspores were at the

mid to the late uninucleate stage and pretreated in a cool

room for 4 weeks at 4 �C. Next, the spikes were sterilized

(70 % ethanol then 10 % sodium hypochlorite) and rinsed

three times for 1 min with sterile water. Subsequently,

anthers from one half of the spikes were excised and cul-

tured on solid induction medium 190-2 (Zhuang and Xu

1983) with Phytagel and supplemented with 90 g/l maltose,

290 Plant Cell Tiss Organ Cult (2014) 119:289–299

123



400 mg/l glutamine, 2 mg/l 2,4-D and 0.5 mg/l kinetin at

26 �C in the dark, for a maximum of 8 weeks. Calli and

embryo-like structures were transferred onto regeneration

medium (190-2 with 0.5 mg/l NAA and 0.5 mg/l kinetin),

when they were 2–5 cm in size. Afterwards, green plantlets

were kept in an Erlenmeyer flasks, in rooting medium (190-

2 with 2 mg/l IAA). After roots appeared, plants were

vernalized for 6 weeks in 4 �C and transferred to soil in a

greenhouse, then grew to maturity.

Shed microspore culture

The same protocol as for anther culture was used for shed

microspore culture from anthers taken from the second half

of the same spikes except with a liquid induction medium.

Then, appearing callus pieces, as well as proembryos were

transferred to solid regeneration medium.

Somatic embryogenesis

Immature zygotic embryo culture

Caryopses obtained after self-pollination of the DH mother

plants were cut to remove the embryos at the coleoptile

stage under aseptic conditions. Immature embryos were

isolated and placed with the scutellum exposed onto MS

medium (Murashige and Skoog 1962) with 30 g saccharose

and 30 lM dicamba. Developing embryos were transferred

onto medium supplemented with 0.9 lM 2,4-D for con-

version of somatic embryos to plantlets. Cultures were

maintained in controlled conditions at 26 �C under 16/8 h

(day/night) photoperiod. Afterwards, the plantlets were

transferred to the regeneration medium. The 5 cm long

plantlets were transferred on a root formation medium

(regeneration and rooting media are the same as for

androgenesis). Next, small plants were kept in 4 �C for

6 weeks, then they were placed into soil in a greenhouse

and grown to maturity.

Progeny

Individual DH regenerants derived via anther cultures and

shed microspore cultures as well as regenerants derived

from immature zygotic embryo cultures were selfed by bag

isolation. Seeds of those regenerants were advanced to

obtain progeny. Some plants were again bag isolated to

obtain the second and third generations of progeny.

Flow cytometry

Ploidy status of regenerants after in vitro androgenesis was

determined by flow cytometry (Partec; PAII; HBO lamp;

Germany). Young regenerated plants were prepared

according to Galbraith et al. (1983) with minor modifica-

tion. Nuclei were isolated from leaves which were chopped

with a razor blade in 2 ml of a lysis buffer containing

DAPI, afterwards the suspension was filtered through a

30 lm pore diameter filter prior to analysis. Subsequently,

histograms of the cell nuclei were generated. The ploidy

level of regenerants was determined by comparing the G1

peaks of each sample to a reference (diploid plant).

DNA isolation

Total genomic DNA isolation was performed from young

leaves (with flag leaf emerging) of donors, regenerants and

their progeny following Plant DNeases MiniKit 250 (Qia-

gen) manufacturer protocol. DNA quantity was evaluated

spectrophotometrically (NanoDrop 1000 Overview). The

samples were tested for their integrity and purity on aga-

rose gel with ethidium bromide (1.2 % gel, 19 TBE buffer,

160 V).

RP-HPLC analysis

The plant material used for the RP-HPLC is arranged in

Table 1.

Table 1 Number of plants encompassing four sets used for the RP-

HPLC analyses

Plant material Four sets derived from four lines of donor plants

S1 S2 S3 S4

No. of regenerants and progenies comprising the sets

D 9 8 12 10

RM 13 8 6 12

PM
1 23 14 14 18

PM
2 20 19 16 16

PM
3 18 12 18 15

RA 25 20 22 14

PA
1 20 13 14 22

PA
2 15 17 18 24

PA
3 15 15 18 15

RE 26 15 15 17

PE
1 22 14 14 15

PE
2 15 12 18 18

PE
3 17 9 18 9

Total 238 176 203 205

S1, S2, S3, S4 stands for the first, the second, the third and the fourth

set, respectively. Each set consists of donors, regenerants and prog-

eny. D, vagetatively multiplicated doubled haploid donor plants; RM,

regenerants derived from shed microspore; RA, regenerants derived

from anthers; RE, regenerants derived from immature zygotic

embryos; PM
1 , PA

1 and PE
1, the first progeny derived from RM, RA and

RE, respectively. PM
2 , PA

2 , PE
2 and PM

3 , PA
3 , PE

3 stands for the second and

third generative progeny, respectively
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Sample preparation

DNA samples (6 lg) were dissolved in 100 ll deionised

water and denatured by heating to 100 �C for 2 min fol-

lowing immediate placing on ice for 5 min. DNA hydrolysis

was performed in a total volume of 135 ll consisting of 5 ll

of 10 mM ZnSO4 and 10 ll of 1.0 U ml-1 of P1 nuclease (in

30 mM NaOAc pH 5.4), the samples were gently stirred and

incubated for 17 h at 37 �C. After nuclease digestion 10 ll

0.5 M Tris pH 8.3 and 10 ll of 10 U ml-1 of alkaline

phosphatase (in 2.5 M (NH4)2SO4) were added, followed by

gentle mixing and incubating at 37 �C for 2 h. After diges-

tion, the samples were centrifuged at 12,000 rpm for 5 min.

Chromatographic assessment of global DNA methylation

RP-HPLC quantification of overall DNA methylation was

performed according to the procedure of Johnston et al.

(2005) using Waters 625 LC System. Briefly, the 4u Max-RP

C12 (250 9 4.6 mm, Phenomenex) column combined with

4u Max-RP C12 pre-column were applied using linear gra-

dient of the eluent A comprising of 0.5 % methanol plus

10 mM KH2PO4 at a pH of 3.7 (v/v) and eluent B comprising

of 10 % methanol in 10 mM KH2PO4, pH 3.7 (v/v) that

changed from 100 % of A to 100 % of B within 10 min

following 15 min of 100 % B eluent and ending with 100 %

of the A eluent for 5 min at a flow rate equal to 1 ml min-1.

The absorbance was measured spectrophotometrically (UV

detector, k = 280 nm). Chromatograph was calibrated with

external standards consisting of each DNA nucleosides

(5–50 lM), 15–150 lM for RNA nucleosides and

1.5–15 lM of 5-methyldeoxycytidine dissolved in deion-

ised water. On the basis of that data the calibration curves

were evaluated and used for the quantification of the

nucleosides in the samples with Millennium 32v 4.0 soft-

ware. The percentage of deoxycytidine methylation in

relation to the total content of cytidine was calculated

according to the following equation: 5mdC % = [5mdC/

(5mdC ? dC)] 9 100, where 5mdC and dC states for

5-methyldeoxycytidine and deoxycytidine, respectively.

Each RP-HPLC analysis was conducted in three repeats

using DNA samples from plant material arranged in Table 1.

Statistics

One-way analysis of variance (ANOVA) with Tukey’s

contrasts analysis were performed in R CRAN software

(stats and multcomp packages, respectively). The regression

analysis was performed in R CRAN software using stats

package and polynomial regression was evaluated. For all

statistical analyses significance level a = 0.01 was applied.

All RP-HPLC results (including three repeats for each

sample) based on the whole plant material arranged in

Table 1 were used for Tukey’s contrasts and regression

analysis.

Results

Donor plants

Each donor’s genotype was represented by several vege-

tatively multiplicated individuals (Table 1). No morpho-

logical variation among multiplicated plants (representing

the given genotype as well as all genotypes) was observed.

Plant regeneration

Embryos and embryo-like structures were observed after

4–8 weeks of culture in darkness in shed microspore cul-

ture (Fig. 1a). Microspore development resulted in com-

plete embryo formation with visible cotyledons and

embryo axis (Fig. 1b). Androgenesis in anther cultures

resulted in lumpy embryo-like structures visible after ca.

6 weeks of culture (Fig. 1c). After transmission of such

structures into the light some albino plants were detected

(Fig. 1d). Somatic embryogenesis from cultured immature

zygotic embryos is shown in Fig. 1e, f. Embryos appeared

after 4 weeks of culture on MS medium with dicamba

(Fig. 1e) and converted to plants on regeneration medium

(Fig. 1f). Self-pollination of regenerants (Fig. 1g) resulted

in formation of the first generative progeny (Fig. 1h).

With the exception of albinos, no obvious morphological

changes were observed among fertile regenerants as well as

among the first, second and third generations of the progeny.

However, morphological differences were visible between

haploids and diploids. The haploid plants were smaller, had

thinner stems and narrower leaves compared to DH plants.

Analysis of ploidy level

There were 63.3 and 71.7 % haploids among regenerants

derived via shed microspore and anther culture, respec-

tively (Table 2) with spontaneous diploidization amounting

to 27.1 and 27.7 % for the two approaches, severally.

Aneuploids were observed for 0.6 and 0.62 % of cases,

respectively (Table 2).

Changes in global DNA methylation

The RP-HPLC approach resulted in clearly distinguishable,

well-separated peaks corresponding to dC and 5mdC, with

retention time equal to 5.44 and 8.43 min, respectively.

The greatest degree (25.4 %) of average global DNA

methylation was observed for donors. In case of all regener-

ants (R) the level of DNA methylation was equal to 24.1 %
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and was the lowest for the first generative progeny (P1)

(23.6 %). Starting from the second generative progeny, global

DNA methylation was slightly greater than for P1 (Table 3).

Comparison of global DNA methylation for D, R, P1,

P2 and P3 without considering sets and regeneration

method

According to Tukey’s grouping (Fig. 2) donor plants dif-

fered from regenerants due to genomic DNA methylation.

No difference between R and P1 was observed, however, R

and P1 differed from P2 and P3 that formed separate group

(Table 4). Polynomial regression (Table 5) calculated for

the abovementioned data demonstrated that global DNA

methylation decreased from donors to the first generative

progeny and then reversed (Fig. 3).

Comparison of global DNA methylation for regenerants

and their three generations of progeny by regeneration

method

Comparison (ANOVA) of the global DNA methylation of

the regenerants derived via shed microspore (M), anther

(A) and immature zygotic embryos (E) tissue culture

approaches revealed (Fig. 4) that plants obtained via

androgenesis differed from those regenerated via somatic

embryogenesis (Table 4). The first generative progeny of

shed microspore derived regenerants differed from those

Fig. 1 Triticosecale Wittmack cv. Bogo regenerants derived via in vitro

culture and their progeny; a androgenesis on liquid induction medium,

b embryo formation from shed microspore culture, c androgenesis on

solid induction medium, d albino plant derived from anther culture,

e somatic embryogenesis from immature zygotic embryo, f germinating

embryo, g fertile anther culture-derived plants, h progenies of

regenerants

Table 2 Flow cytometry data. RM and RA states for the regenerants

derived from shed microspore and anthe culture, respectively

Plant

material

No. of plants

analyzed

No. of plants with various ploidy levels

Haploid Doubled

haploid

Aneuploid

RM 166 105 45 1

RA 318 228 88 2
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obtained via anthers and the first progeny from somatic

embryogenesis derived regenerants (Table 4). PM
2 and PA

2

did not differ from each other according to 5mdC content,

although they were distinct from PE
2 (Table 4). In the case

of the third generative offspring, overall DNA methylation

in PM
3 differed from PE

3 (Table 4), whereas DNA methyla-

tion level in PA
3 was similar both to PM

3 and PE
3.

Regression analysis (Fig. 5) performed for donors, RA,

RM, RE and their three generations demonstrated that glo-

bal genomic DNA methylation decreased in regenerants

compared to the donors. The decrease in DNA methylation

was observed up to the first/second generative progeny

following by reversion of the process. Independently of the

tissue culture approach used for plant regeneration the

observed trends were significant and followed the poly-

nomial function (Table 5). A little bit higher level of DNA

demethylation for RE than for RA and RM was observed.

Comparison of global DNA methylation for sets

Tukey’s test revealed significant differences in global DNA

methylation of plant material encompassing each of the S1,

S2, S3 and S4 sets (Fig. 6). In detail, in the first set D, R, P2

differed from each other, whereas differences between P1

and P3 were insignificant (Table 4). In the S2–D, P1, P2, P3

differed from each other, whereas R were similar both to P1

and P3 (Table 4). In the third set D, R, P1, P2, P3 differed

from each other (Table 4) while in the fourth one D, R, P2,

P3 differed from each other, whereas P1 were similar both

to R and P2 (Table 4).

Global genomic DNA methylation changes followed

polynomial regression in the case of all sets with local

minimum at the level of the first/second generative progeny

(Table 5; Fig. 7). All trends were significant. In the case of

S2 and S4 local minimum was deeper compared with S1 and

S3.

Discussion

There is ample evidence suggesting that tissue culture is a

stressful environment that may be responsible for the

induction of abiotic stress during plant regeneration

Table 3 Arrangement of the mean values of the genomic cytosine methylation evaluated based on RP-HPLC analyses of donor plants, their

regenerants divided according to the tissue culture approach and consecutive progeny of those regenerants

Plant materials

D R P1 P2 P3

Regeneration method Mean value of total genomic cytidine methylation (±standard error)

M 25.39 ± 0.14 24.68 ± 0.41 23.81 ± 0.41 23.96 ± 0.64 24.02 ± 0.22

A 24.43 ± 0.47 23.53 ± 0.47 23.88 ± 0.89 23.90 ± 0.39

E 23.19 ± 0.44 23.40 ± 0.44 23.52 ± 0.86 23.84 ± 0.35

D, Donor plants; R, regenerants; P1, P2, P3, the first, the second, the third generations of regenerants; M, shed microspore culture; A, anther

culture; E, immature zygotic embryo culture

Fig. 2 Tukey’s grouping of donors (D), regenerants (R), the first (P1),

the second (P2) and the third (P3) generative progeny of the

regenerants without considering sets or tissue culture regeneration

method, based on global DNA methylation evaluated via RP-HPLC.

Global DNA methylation is expressed as the amount of methylated

cytosine to the total amount of cytosine converted to percentages.

Materials forming the same group are indicated by either ‘a’, ‘b’ or

‘c’ letters

Table 4 Arrangement of the ANOVA for means comparisons

Plant material ANOVA for means

comparison

D–R–P1–P2–P3 F = 37.94; p \ 0.01

RM–RA–RE F = 99.67; p \ 0.01

PM
1 –PA

1 –PE
1 F = 55.11; p \ 0.01

PM
2 –PA

2 –PE
2 F = 16.67; p \ 0.01

PM
3 –PA

3 –PE
3 F = 3.57; p \ 0.01

S1 F = 61.14; p \ 0.01

S2 F = 51.91; p \ 0.01

S3 F = 70.5; p \ 0.01

S4 F = 53.09; p \ 0.01

For the explanation of the abbreviations see Tables 1 and 3
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Table 5 Arrangement of the

polynomial regression models

For the explanation of the

abbreviations see Tables 1

and 3

Plant material Polynomial regression model

D–R–P1–P2–P3 F = 31.56; p \ 0.01; Y = 24.81031 - 20.74299x ? 0.11423x2

D–RA–PA
1 –PA

2 –PA
3 F = 44.03; p \ 0.01; Y = 26.45975 - 21.522122x ? 0.20587x2

D–RM–PM
1 –PM

2 –PM
3 F = 85.61; p \ 0.01; Y = 26.40839 - 21.22876x ? 0.14997x2

D–RE–PE
1–PE

2–PE
3 F = 44.51; p \ 0.01; Y = 25.04682 - 21.13266x ? 0.18040x2

S1 F = 5.698; p \ 0.01; Y = 24.65436 - 20.52956x ? 0.07611x2

S2 F = 79.79; p \ 0.01; Y = 26.91769 - 21.94924x ? 0.27377x2

S3 F = 17.65; p \ 0.01; Y = 25.4608 - 20.9356x - 20.1274x2

S4 F = 73.56; p \ 0.01; Y = 26.72317 - 2.28005x ? 0.35598x2

Fig. 3 Polynomial regression of donors (D), regenerants (R), the first

(P1), the second (P2) and the third (P3) progenies of the regenerants

(without considering sets and regeneration method). Global DNA

methylation is expressed as the amount of methylated cytosine to the

total amount of cytosine converted to percentages

Fig. 4 Tukey’s grouping of the regenerants (R), the first (P1), the

second (P2) and the third (P3) generative progeny of the regenerants

based on tissue culture method used. Grouping is indicated by small

letters. The materials with the same letter (e.g. ‘a’) form the same

group and are distinct from those classified as ‘b’ within the group of

R, P1, P2 and P3, respectively. Global DNA methylation is expressed

as the amount of methylated cytosine to the total amount of cytosine

converted to percentages. The regenerants derived either via M (dark

grey), A (grey) or E (white) approach and their progeny are indicated

by colours

Fig. 5 Polynomial regression analysis of global DNA methylation

changes exhibited between D, R, P1, P2 and P3 materials according to

the tissue culture regeneration method. The regression line for D–RM–

PM
1 –PM

2 –PM
3 , D–RA–PA

1 –PA
2 –PA

3 and D–RE–PE
1–PE

2–PE
3 are given in

black, dotted and dashed lines, respectively

Fig. 6 Tukey’s grouping of the donor plants, regenerants and

consecutive generative progeny within sets without considering tissue

culture approach used for plant regeneration. S1, S2, S3 and S4 state for

sets comprising D, R, P1, P2 and P3. For detailed description of the

abbreviation see Fig 2. Materials with the same small letter (indicated

on graph) of the given set belong to the same group
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(Miguel and Marum 2011). Such stress may cause the

regeneration of the off-type plants that could be detected at

the morphological (Li et al. 2010), cytological (Linacero

and Vazquez 1992), genetic or epigenetic level (Bednarek

et al. 2007; Vining et al. 2013). Some of the changes may

subsequently arise among progeny originated from tissue

culture-derived regenerants even after many generative

cycles (Bregitzer et al. 1998; Kirikovich et al. 2003).

Thus, it is essential to have several sets of plant

material encompassing homozygous donor plants, the re-

generants derived from them and the progenies obtained

from the regenerants to be able to identify epigenetic

differences among such materials. The plant material used

in our study originated from DH plants that became the

source of tissues for the regeneration. The donor plants

represented distinct genotypes but did not exhibit any

morphological variation. Moreover, generative progeny

was obtained by self-pollination under controlled condi-

tions. Thus, any variation among our materials within sets

(donor plants, regenerants and their progenies) should be

attributed to the changes induced in tissue cultures and

transmitted to the next generations. However, possibly

due to highly homozygous plant material, as well as the

limited number of plants analyzed in our study, we failed

to observe at the morphological level any off-type plants

among regenerants and their progeny within as well as

and among sets. Nevertheless, the differences were

revealed for haploids and a few aneuploids detected via

flow cytometry among regenerants. The level of sponta-

neously derived DH plants and aneuploids was similar to

prior report (Oleszczuk et al. 2004).

The lack of morphological variation or even cytologi-

cal uniformity does not, however, exclude changes at the

DNA level and especially those related to DNA methyl-

ation, which may take place under tissue culture

conditions, as showed in barley (Bednarek et al. 2007).

Our RP-HPLC study demonstrated that the triticale gen-

ome was affected by global DNA demethylation which

occurred during tissue culture regeneration. The same

direction of DNA methylation changes was observed in

our preliminary study on triticale cv. Bogo with metAFLP

approach (Machczyńska et al. 2014), where demethylation

prevailed over de novo methylation. Our data are con-

gruent with the MSAP studies of genomic DNA methyl-

ation changes performed between rye donor plants and

their regenerants where the level of demethylation was

greater for the regenerants (González et al. 2013). Similar

results were obtained also in rye using HpaII and MspI

digested DNA amplified with ISSR markers (Linacero

et al. 2011). It was demonstrated that the decrease in

DNA methylation at the level of regenerants may be

caused by the necessity of genes activation during cell

reprogramming to facilitate plant regeneration (Kaeppler

and Phillips 1993).

Our RP-HPLC results showed no difference in the geno-

mic DNA methylation level between shed microspore and

anther culture approaches while androgenic regenerants

exhibited greater methylation than somatic embryogenesis

derived ones. It is well documented that a callus phase

induces variation during plant regeneration (Bouman and

Klerk 2001). In our experiment immature zygotic embryo

plant regeneration encompassed an obvious callus stage

whereas androgenesis, especially in the case of shed micro-

spore cultures, largely circumvents callus. Thus, the longer

callus duration of somatic embryogenesis compared to

androgenesis may have been responsible for the differences

in the level of DNA methylation evaluated between regen-

erants derived via two paths (Xu et al. 2004). Alternatively,

the tissue culture medium composition could be also

responsible for the difference in global DNA methylation.

Plant growth regulators may enhance in vitro induced vari-

ation resulting from epigenetic modifications (Nehra et al.

1992; Bairu et al. 2006). Study on Malus xiaojinensis

revealed increased DNA methylation with increasing 2,4-D

(Huang et al. 2012). To induce the androgenic response in our

experiment 2,4-D was supplemented to the induction med-

ium, which may have been responsible for the greater gen-

ome-wide methylation in androgenic than in somatic

embryogenesis derived regenerants. Immature zygotic

embryos were cultured on a medium containing dicamba

reported to cause more negative changes than 2,4-D (Rak-

oczy-Trojanowska 2002). It might be suggested that higher

demethylation in somatic embryogenesis derived regenerants

in triticale was caused by the presence of dicamba. Alterna-

tively, the differences in global DNA methylation observed

between androgenesis and somatic embryogenesis derived

regenerants could have been due to cold stress used to convert

the gametophytic pathway to a sporophytic one. Studies on

Fig. 7 Polynomial regression reflecting global DNA methylation

changes among donors (D), regenerants (R), their successive gener-

ative progeny (P1, P2 and P3) within each of the S1, S2, S3 and S4 sets
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stress-induced epigenetic changes confirm that cold treat-

ment induces DNA demethylation (Fan et al. 2013; Shan

et al. 2013). Moreover, the differences in DNA methylation

observed between androgenesis and somatic embryogenesis

derived regenerants could be also attributed to the ploidy

level. The relationship between DNA methylation and hap-

loids versus diploids was studied in rice (Zhang et al. 2006).

The authors concluded that the higher methylation level in

haploids might be a readjusting reaction to the decrease in

ploidy because of survival. If DH plants inherit the increased

DNA methylation e.g. via replication mechanisms then our

data is congruent with the abovementioned results.

In our study significant methylation change induced

in vitro and revealed by ANOVA affected not only re-

generants but also their consecutive generative progeny.

Reversion of the DNA demethylation in the first/second

generation demonstrated by polynomial regression analysis

may have reflected the very beginning of the genomic

DNA methylation re-establishment. Apparently, plant

regeneration via tissue cultures resulted in epigenetic

changes that were not fully compensated even after several

generative cycles. Based on our experiment, however, it

was not possible to predict whether further generative

cycles would result in DNA methylation comparable to that

of donor plants or whether the process would behave dif-

ferently. Although, in general, the trend of global DNA

demethylation and its reversion was observed for all sets,

the differences among them were obvious. Most probably

this may reflect genotypic differences existing between

donor plants. Obviously, revealed DNA methylation

changes observed among sets suggest that triticale plant

material derived via in vitro cultures and its progeny may

be prone to epimutations dependent on DNA methylation

that maybe exhibited among e.g. regenerants’ progeny.

Based on our HPLC analysis, we demonstrated for the

first time that the level of genomic DNA methylation alter-

ations between donor triticale plants, their regenerants

derived via different in vitro culture methods and consecu-

tive generative progenies of the regenerants was affected by

in vitro culture. Moreover, genomic DNA demethylation of

the regenerants depended on both regeneration method and

genotype of donor plants. Evidently, re-establishment of the

triticale genomic DNA methylation level after tissue culture

treatment may take time and special care needs to be taken to

control epimutations in regenerants.
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