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for high-quality meshes in terms of accuracy and it outper-
forms them in the case of low-quality scans where noises, 
holes and obscure parts are prevalent.

Keywords Human body modeling · Statistical shape 
model · Non-rigid registration

1 Introduction

The modeling of accurate 3D human body is a fundamental 
problem for many applications such as design, animation, 
and virtual reality. The modeling of human body meshes 
is performed on a corpus of registered scans. However, the 
acquirement of high-quality human body meshes and reg-
istration of meshes are challenging. Current publicly avail-
able high-quality human body datasets, such as SCAPE [3], 
FAUST [5], TOSCA [8] are built either from costly laser 
scanners or need other assistance (e.g makers, texture or 
professional tools). With the appearance of low-cost scan-
ners such as Kinect, it is now possible for an object, a 
room or even a person to be quickly scanned, modeled and 
tracked [12, 14, 27, 28, 30, 31, 44]. Nowadays human body 
meshes could be captured for different identities in different 
poses in a few minutes. However, the prevalent noises, out-
liers and holes in the scans acquired with low-cost scanners 
bring in more challenges for mesh registration.

To register the 3D scans, several 3D fitting methods 
are proposed [1, 2, 5, 14, 32, 49]. The invertible finite 
volume method [14] is used to control the template tetra-
hedral mesh to the target point clouds. The stitched pup-
pet model [49] adopts the DPMP algorithm which is a 
particle-based method to align a graphical model to target 
meshes. More efforts are made to perform the nonrigid 
ICP (iterative closest point) [1, 2] which computes the 
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affine transformation at each vertex of template to allow 
non-rigid registration of template and scans. Although 
these ICP-based nonrigid registration methods demon-
strate high accuracy, it is sensitive to missing data, which 
might lead to an erroneous fitting result. For Kinect-like 
scanners, due to self-occluded parts like crotch and arm-
pit, holes and distortion on the mesh are inevitable.

To faithfully register the body scans captured from 
low-cost scanners, like Kinect, we present a multilevel 
active body registration (MABR) approach to build a 
watertight and high fidelity virtual human body in an 
automatic way. We aim to align a template mesh with the 
target scans acquired with Kinect as close as possible. 
Here, a template mesh is the mean shape which is learned 
from an existing high-quality human body mesh dataset. 
In our method, multilevel registration is performed. In 
the first level, the overall template and target are roughly 
aligned. In the second level, a region-based registration 
is performed where the template is divided into 16 parts 
and each part is fitted to the target separately. For the 
main body parts where the scan is complete and full of 
details such as torso, legs and arms, the local affine trans-
formation for each vertex is computed. As for impaired 
parts such as foot and hand, we deform the correspond-
ing parts of the template at a coarse-grained level for 
completeness.

With the proposed method, we are able to automatically 
reconstruct high-quality 3D mesh from low-quality scans 
or point clouds. This technique can be employed in a vari-
ety of applications such as in virtual dressing applications 
to show the clothes from different stereo views and help the 
customers to choose the best fitting clothes. In the virtual 
games, the systems can generate realistic full body avatars 
according to rough scans of the users instantly, which bene-
fit from algorithm’s robustness to missing data which com-
monly exist in scans from low-cost scanners. The approach 
manages to avoid the tediously manual work of build-
ing high-fidelity 3D models with professional tools and is 
capable of building a complete and high-quality meshes 
within 2 min automatically, which can be beneficial to the 
television production. This method may also be integrated 
in software as a tool for preprocessing raw scans, filling in 
missing parts automatically and registering scans.

Our main contributions reported in this paper are:

•	 First, we propose a fully automatic registration method 
which performs well even on noisy low-quality data. 
Our method follows the region-based approach to regis-
ter the human body scans, which improves the accuracy 
of registration. According to the nature of different body 
parts, our approach adopts particular registration strat-
egies, which makes the method robust to noisy Kinect 
scans.

•	 Second, we provide a dataset of 250 real human body 
scans acquired with Microsoft Kinect for XBOX 360. 
This dataset can be used to evaluate the robustness of 
registration algorithms in case of low-quality scans. The 
dataset is available for research purposes at http://www.
eecs.qmul.ac.uk/~zx300/k3d-hub.html.

The rest of this paper is structured as follows. In Sect.  2, 
the literature review of mesh registration is presented. Our 
proposed method is described in detail in Sect.  3 and we 
also introduce the Kinect scanning platform which is used 
to build our K3D-Hub dataset in Sect. 4. The experimental 
evaluation results are shown in Sect. 5 and a brief summary 
is given in Sect. 6.

2  Related work

Although shape matching has been deeply researched, 
finding full correspondences for non-rigid and articulated 
meshes is still challenging. Geometry information is usu-
ally used to extract local features. Histogram of Oriented 
Normal Vectors [40] and Local Normal Binary Patterns 
(LNBPs) [37] are descriptors presented based on surface 
normal. Since the colour information cannot represent the 
unique feature in 3D mesh domain, it usually is used as an 
auxiliary information to other features [5]. Besides using 
the local geometric features, many works extend the exist-
ing 2D features to the 3D domain [13, 33, 38]. 3D-Harris 
[33] is the 3D extension of the 2D corner detection method 
with Harris operator. Local depth SIFT (LD-SIFT) [13] 
extends SIFT feature by representing the vicinity of each 
interest point as a depth map and estimating its dominant 
angle using the principal component analysis to achieve 
rotation invariance. MeshSIFT [38] characterizes the sali-
ent points neighbourhood with a feature vector consist-
ing of concatenated histograms of shape indices and slant 
angles. MeshSIFT presents robustness to expression varia-
tions, missing data and outliers when it is used to 3D face 
shape matching. Clearly, both of these methods rely on the 
local shape features such as curvature or angles. Since they 
are not pose independent, they cannot be used for shapes 
undergoing affine transformation, like human  body shape 
with different poses.

Since human body is isometric shape, many works 
make use of isometry to find the correspondences. If two 
shapes are perfectly isometric, then there exists an isometry 
i.e., a distance-preserving mapping, between these shapes 
such that the geodesic distance between any two points 
on one shape is exactly the same as the geodesic distance 
between their correspondences on the other [36]. Differ-
ent approaches are proposed to exploit isometry for shape 
correspondences [14, 15, 20, 29, 35]. One way is to embed 

http://www.eecs.qmul.ac.uk/~zx300/k3d-hub.html
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shape into a different domain where geodesic distances are 
replaced by Euclidean distance so that isometric deviation 
can be measured and optimized in the embedding space 
[15]. Euclidean embedding can be achieved using various 
techniques such as classical MDS (Multidimensional Scal-
ing) [20, 35], least-squares MDS [15], and spectral analy-
sis of the graph Laplacian [29] or of the Laplace–Beltrami 
operator [14]. However, when it comes to the meshes from 
low-cost scanners, the above isometry-based methods are 
not applicable as they usually require watertight meshes 
and suffer from self-symmetry of human body shape.

Another approach is to fit a common template mesh to 
noisy scans. Once fitted, these scans share a common topol-
ogy with the template and are fully registered. By removing 
noises and completing holes in the low-quality scans, a 
high-quality mesh is built straightforwardly. To perform 
registration,  traditional methods tend to rely on auxiliary 
modeling tools, such as Maya,1 Blender,2 manual markers 
and texture information. Recently, authors in [26] deform a 
high-quality template mesh to scans which are from a ste-
reo scanning system consisting of multiple RGB-D cam-
eras in a circle. Various non-rigid ICP algorithms [2, 16, 
17, 22, 24] are proposed to register 3D mesh. They usually 
combine the classic ICP with some regularization terms to 
make the surface deformation smooth. However, the ICP-
based methods are sensitive to missing data and outliers. 
When they are used in noisy Kinect scans, the hand/foot 
parts and top of the head are usually distorted severely.

Besides the ICP-based registration methods mentioned 
above, statistical shape models are employed to improve 
the smoothness and robustness, as the prior knowledge 
are embedded. Scape [3] learns a shape model with PCA 
to describe the body shape variations using 45 instances 
in a similar pose. It also builds a pose model which is 
a mapping from posture parameters to the body shape 
with a dataset that includes 70 poses of one subject. 
With the learnt model, it builds a human body dataset 
but only pose dataset is released which contains meshes 
of 70 different poses of a particular person. Since the 
body shapes of different people vary greatly for a par-
ticular pose (for example, considering the same pose of 
arm lifting, the muscle variations of normal people and 
the athlete are definitely different.), TenBo [9] proposes 
to model 3D human body with variations on both pose 
and body shape. It trained the Tenbo model with the data-
set from [18]. The model is used to estimate shape and 
pose parameters with the depth map and skeleton pro-
vided by Microsoft Kinect sensors. The FAUST [5] con-
tains 300 scans of 10 people in 30 different poses. The 

1 http://www.autodesk.co.uk/products/maya/overview.
2 https://www.blender.org/.

authors make use of the texture information to assist the 
alignment of the meshes. The registered mesh has 6890 
vertices and 13,776 faces. Compared with SCAPE data-
set, the resolution is lower but the mesh is still realistic. 
Nonetheless, its registration method is not fully auto-
matic for the reason that it is based on the texture infor-
mation which is added by hand. The CAESAR dataset 
[34] contains 2400 male and female laser scans with tex-
ture information and hand-placed landmarks. Each range 
scan in the dataset has about 150,000–200,000 vertices 
and 73 markers. Unfortunately, this dataset does not pro-
vide correspondences and contains many holes. The MPI 
[18] captures 114 subjects in a subset of 35 poses using 
a 3D laser scanner. All the aforementioned models are 
captured from expensive scanners or under the condition 
of complex and large scale scanning platform. Compared 
with scans acquired with low-cost scanners, they have 
much less noises floating on the surface, no big holes and 
no hierarchical outliers. The methods working on these 
high-quality meshes might not be directly applied to low-
quality scans from cheap scanners, like Kinect, to get sat-
isfactory results.

The statistical shape model also has been introduced 
for 3D face reconstruction, face modeling and face ani-
mation [4, 41–43]. Unlike human body,  the facial land-
marks [21, 45–47] can be detected accurately and used as 
reliable constraints to initialize the fitting of morphable 
model. In [25], for aligning two faces, the authors extract 
the facial features before performing ICP registration. 
Accurate landmarks are extracted in [7] to guide the face 
modeling from large-scale facial dataset. In [23], a pre-
processing algorithm is proposed to fill holes and smooth 
the noisy depth data from Kinect before performing face 
recognition. A high-resolution face model is constructed 
in [6] from low-resolution depth frames acquired with a 
Kinect sensor. In this work, an initial denoising opera-
tion which is based on the anisotropic nature of the error 
distribution with respect to the viewing direction of the 
acquired frames and a following manifold estimation 
approach based on the lowess nonparametric regression 
method which is used to remove outliers from the data 
are proposed to generate high-resolution face models 
from Kinect depth sequences. However, these approaches 
detect landmarks with the help of RGB images or depth 
images as clear and strong initialization or preprocessing 
steps are performed to fill holes or smooths the data. In 
the case of human body registration where texture infor-
mation is often missing, accurate initial landmarks are 
hard to be detected automatically. Compared with human 
faces, the magnitude of changes of human body surface 
is larger even though the subjects are asked to perform 
the same pose, which brings in more challenges in human 
body registration.

http://www.autodesk.co.uk/products/maya/overview
https://www.blender.org/
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3  Region‑based human body registration

Region-based modeling technique has been prevalent in 
face [10, 41] and human body [49] modelling, as it allows 
for richer shape representation and enables the fitting of 
different parts to be specifically tailored. Inspired by [10], 
we combine the statistical shape model with non-rigid 
iterative closest point algorithm. However, the direct appli-
cation of this fitting method to low-cost, noisy and incom-
plete Kinect scans could lead to inconsistent and erroneous 
results. This happens particularly often when it comes to 
hands and feet fitting (examples of failed fitting shown in 
Fig. 9). The main reason is that Kinect scan of the feet can 
barely be separated from the stand; while, during data cap-
turing, negligible movement of hands is inevitable, caus-
ing serious artifacts in hand scan. Even if we perform the 
coarse level registration, the distance of these parts between 
source and target might be large, the nearest neighbors tend 
to be incorrect and non-rigid ICP easily gets trapped in 
local minima [19]. Therefore, we propose a different fitting 
method that takes special care of foot and hand modeling. 
The pipeline of the proposed MABR method is shown in 
Fig. 1. First, a 3D morphable shape model is trained from 
200 pre-aligned high-quality meshes. The mean shape is 
used as template. Second, coarse registration is employed 
to roughly align the template and target. Then different 
non-rigid deformation techniques are applied on the main 
body parts and hand/foot parts, respectively, with our 
trained morphable shape model.

3.1  Rigid registration

The target mesh is captured from a Kinect scanner and the 
template mesh is the mean shape from the public dataset. 
The goal of rigid registration is to unify their coordinate 

systems. In traditional rigid transformation, correspond-
ences are needed to compute the rigid transformation 
matrix. Some works use markers to establish correspond-
ences manually. Some 3D mesh features like Heat Kernel 
Signature [39] are based on surface properties like geodesic 
distance, curvature, or face normals. These features work 
well on public human mesh dataset as they are processed 
to share topology and high-quality without noises or fold-
ing faces so that the geometry distance is measurable. 
However, in our case, the number of vertices of targets var-
ies while the template mesh has fixed number of vertices. 
Moreover, it is obvious that the physique such as height and 
muscle properties of the template are different from those 
of scans. Lastly, noises and holes exist in our data. There-
fore, the feature which works on the high-quality surface 
cannot be used in our work.

Without using correspondence, we choose to build a 
shape-aware coordinate system for each model and trans-
form the source to align its origin and axes with the target. 
PCA is used to identify the most important parts from the 
vertex set. PCA-based alignment is to align the principle 
directions of the vertex set. First, given a set of vertices 
Sp = {pi} and its centroid location �, we have � formulated 
as Eq. 1.

where pix, piy, piz and cx, cy, cz are the coordinates of vertex 
�� and centroid � respectively. The covariance matrix � is 
formulated as:

The eigenvectors of the covariance matrix � represent 
principle directions of shape variation. They are orthogonal 

(1)� =

⎡⎢⎢⎣

p1x − cx, p2x − cx,… , pnx − cx
p1y − cy, p2y − cy,… , pny − cy
p1z − cz, p2z − cz,… , pnz − cz

⎤⎥⎥⎦
,

(2)� = ��T
.

Fig. 1  The work flow of the proposed method. We first train a statis-
tical shape model from 200 aligned meshes in SPRING dataset using 
PCA techniques. The mean shape is used as the template mesh. The 
registration between template and target mesh includes two levels 

illustrated as follows. In the coarse registration level, we deform the 
template mesh non-rigidly into the target, making the template over-
lap with target in most parts. In the fine registration level, a region-
based deformation is used to deform the template more accurately
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to each other while the eigenvalues indicate the amount of 
variation along each eigenvector. Therefore, the eigenvec-
tor with largest eigenvalue is the direction where the mesh 
shape varies the most. In the human body mesh, the princi-
ple direction should be along the height direction. The next 
two directions should be along the width and thickness of 
the human body, respectively.

Given two human body meshes Sa and Sb, their covariance 
matrices �� and �� can be computed with Eq. 2. We form 
two matrices �� and �� where columns are the eigenvectors 
of �� and ��, respectively. To align these two orthogonal 
matrices, we compute the rotation � such that

Finally, the PCA-based alignment can be performed with 
the following formula.

where �� and �� are the centroids of Sa and Sb correspond-
ingly. After we perform the rigid registration, Sb′ should be 
aligned with Sa in terms of main directions. One of the ini-
tially rigid alignment examples is shown in Fig. 2. We can 
see that both of meshes look forward after we align them 
rigidly. However, in terms of height, body shapes, they still 
differ a lot.

3.2  Morphable shape models

In this part, we introduce the statistical body shape model 
trained from 200 entire human body meshes using PCA 
technique. The training set is from the SPRING dataset [48] 
which includes 3038 high-resolution body models and each 
mesh has 12,500 vertices and 25,000 faces. All the meshes 
have been placed in point to point correspondence. This 
large aligned dataset allows for a reliable model to be learnt 
robustly. Given a set of training shapes, the statistical shape 
model can be represented as:

(3)��� = ��,

(4)��
� = �� + �(�� − ��),

(5)� = �� +�,

where � ∈ ℜ4N×1 are the 3D coordinates (x,  y,  z) plus 
corresponding homogeneous coordinates of all N verti-
ces; � ∈ ℜ4N×k are the eigenvectors of the PCA model, 
� ∈ ℜ4N×1 is the mean shape, and � ∈ ℜk×1 contains the 
non-rigid parameters for shape deformation.

Apart from a holistic body shape model, to further 
describe the large amount of shape variability in human 
body, we model each region of the body with its own PCA 
model. In this paper, we employ the body segmentation 
model provided by the SCAPE [3] dataset. Assume that 
we have p independent parts in the segmented template 
 = {�i}

p

i=1
, and the ith part �i can also be modeled using 

Eq. 6:

Here, �i, �i and �i are the shape coordinates, eigenbasis 
and mean shape of the model for ith region, respectively, 
and �i is the latent variable controlling deformation of the 
model. As a result, we trained two levels of shape model: 
the first level is a holistic model for the entire body and the 
second ones is region-based model that models each body 
part separately.

3.3  Coarse level registration

The main goal of this registration is to overlap the template 
and target scan, while minor details of the body can be 
ignored in this level. After rigid transformation, we apply 
the holistic PCA model trained in the Sect. 3.2 to get the 
deformed template that would sit closer to the target point 
clouds. Here, with target point clouds � retrieved by near-
est neighbors search using the k-d tree algorithm, the cost 
function to be minimized can be formulated as:

To solve this equation, we take the partial derivative with 
regard to � and take the minimum when it approaches to 
zero:

and get the closed-form solution,

3.4  Fine level registration

After the coarse level registration, to capture the non-rigid 
nature of body surface and provide an accurate fitted mesh, 
we make use of the region-based statistical shape model 
described in Sect. 3.2 and combine it with non-rigid itera-
tive closest points (NICP) algorithm [2]. Note that during 
scanning, the subject is unlikely to hold the exact pose 
like template, especially in the parts of arm and leg, thus 
the hand and foot parts could easily appear as outliers. 

(6)�i = �i�i +�i
.

(7)E(�) = ||� − �||2 = ||(�� +�) − �||2.

(8)�T�� + �T (� − �) = �,

(9)� = −(�T�)−1�T (� − �).

Fig. 2  One of the examples of initial rigid alignment
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Although the first level fitting alleviates this effect, original 
NICP algorithm still might not generate satisfactory fitting 
result. Therefore, for the parts of hand and foot, we use only 
the non-rigid parameters to control the deformation in a 
coarse grained level and add a regularization term to make 
it smooth on the boundary. In this way, we can recover the 
hand and foot parts which are impaired in the scanning pro-
cess. The clear and semantic hands and feet allow for the 
shape statistical modeling in the next stage.

3.4.1  Main body registration

We define the body parts that exclude feet and hands as 
the main body. For the main body parts, we combine the 
statistical shape model with NICP algorithm. Our goal is 
to find a set of affine matrices X = {�i}

p

i=1
 and non-rigid 

parameters C = {�i}
p

i=1
 such that the sum of Euclidean dis-

tances between pair of points of each region is minimal. 
Here, �i is a 3 × 4ni matrix that consists of affine matrix for 
every template vertex in the ith part. As shown in Fig. 3, 
we describe our technique for fitting a template S to tar-
get mesh T. Each of these surface is represented as a tri-
angle mesh. Each vertex vi is influenced by a 4 × 3 affine 
matrix Xi and non-rigid parameter Ci. We define data error 
with these two parameters. The data error, indicated by the 
arrows in Fig. 3, is a weighted sum of the squared distances 
between template surface S′ and target surface T. Besides 
data error, to deform the template smoothly, we also define 
a stiffness term to constraint the vertices, which do not 
move directly towards the target, but may move parallelly 
along it. These error terms are summarized in Fig.  3 and 
described in detail in the following.

Distance term The distance term is used to minimize 
the Euclidean distances between source and the target. 
We assume each part has ni points and the cost function is 
denoted as the sum of error of each pair of vertices:

where Xi
j
 is the transformation matrix for jth vertex in the 

ith part.
Since each part is modeled by the shape model 

�i
j
= �i

j
�i
j
+�i

j
, based on Eq.  6, the distance term could be 

rewritten and rearranged as:

We can see that the above equation is not in the standard 
linear form of �� − � = �. To differentiate, we need to 
swap the position of the unknown � and � = [�̂�

�
,… , �̂�

��
]T. 

Therefore, we obtain the following form.

where the term �i = diag(�i
1

T
, �i

2

T
, ..., �i

ni

T
), and the set of 

closest points �i = [�i
1
, �i

2
, ..., �i

ni
]T.

Stiffness term The stiffness term penalizes the difference 
between the transformation matrices of neighboring vertices. 
Similar to [2], it is defined as:

here, for the ith body part, �i = (1, 1, 1, � i), where � i is used 
to balance the scale of rotational and skew factor against 
the translational factor. It depends on the units of the data 
and the deformation type to be expressed. �i is the node-
arc incidence matrix of the template mesh topology [2].

Complete cost function: We combine Eqs.  11 and 13 to 
obtain the complete cost function:

Equation 14 is not a quadratic function and it is difficult to 
obtain the optimal local affine transformation �i and non-
rigid parameters �i simultaneously. In [10], an alternating 

(10)Ed(�) =

p∑
i=1

ni∑
j=1

||�i
j
�i
j
− �i

j
||2,

(11)

Ed(�) =

p�
i=1

ni�
j=1

���i
j
(�i

j
�i
j
+�i

j
) − �i

j
��2
F

=

p�
i=1

��������

⎡⎢⎢⎣

�i
1

⋱

�i
ni

⎤⎥⎥⎦

⎡
⎢⎢⎢⎣

�̂�
�

⋮

�̂�
��

⎤
⎥⎥⎥⎦
−

⎡⎢⎢⎣

�i
1

⋮

�i
ni

⎤⎥⎥⎦

��������

2

F

.

(12)Ed(�) =

p∑
i=1

||�i�i − �i||2,

(13)Es(�) =

p∑
i=1

||(�i ⊗�i)�i||2
F
,

(14)

E(�) = Ed(�) + Es(�)

=

p∑
i=1

‖‖‖‖‖

[
�i

�i ⊗�i

]
�i −

[
�

�i

]‖‖‖‖‖

2

F

.

Fig. 3  The summary of our matching framework. Our target is 
to find a set of affine transformations X

i
 and local PCA parameters 

C
i
, such that, when applied to the vertices v

i
 of the template mesh 

S, result in a new surface S′ that matches the target surface T. This 
diagram shows the match in progress; S′ is moving towards the tar-
get but has not reached it. The whole vertices are divided into three 
parts which are controlled by three local PCAs. The transformation of 
each vertex is controlled by affine transformation as well as the local 
parameters of the part which the vertex belongs to
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optimization scheme is employed to solve this problem. In 
this paper, we use the same optimization method to find the 
optimal set of parameters. For details of the solution, please 
refer to [11].

3.4.2  Hands and feet registration

Although the main body parts are roughly aligned after 
the first level registration, the distance between source 
hands/feet and corresponding target is large in most 
cases. In this situation, the ICP-based methods easily get 
trapped in local minima [19]. To address this problem, 
we perform a PCA-based fitting for the individual part of 
hand/foot. Given one particular part model of hand/foot 
that has eigenbasis �∗ and mean shape �∗, we define our 
objective function that consists of a distance term and a 
regularization term, and try to obtain the optimal non-
rigid parameters �∗ by minimizing it.

Distance term It is defined similar to Eq. 11, but with-
out the affine transformation matrix,

Boundary smoothness term To stitch hand/foot with its 
neighboring part smoothly, we define a boundary smooth-
ness term as follows:

where �∗ is the selection matrix of hand/foot parts that 
picks out the boundary points. �∗ is the boundary points 
of the neighboring part. By enforcing the boundary con-
straints between two parts, we can regulate the part fitting 
process to avoid erroneous result caused by outlier.

Complete cost function The fitting objective function 
can be formulated as:

where � is the weighting factor between two terms, 
�∗ = [��, (1 − �)�∗]T and �∗ = [��∗, (1 − �)�∗]T. This is 
a well-known linear least square problem. The minimum 
occurs where the gradient vanishes, that is �E�∗∕��

∗ = �. 
Thus, Eq. 17 has closed-form solution:

The proposed fitting method for hand and feet has a nice 
convergence property, we show one example of residual 
error curve for all iterations of fitting in Fig. 11.

(15)Ed(�
∗) = ||(�∗�∗ +�∗) − �∗||2

F
.

(16)Eb(�
∗) = ||�∗(�∗�∗ +�∗) − �∗||2

F
,

(17)

E(�∗) = �Ed(�
∗) + (1 − �)Eb(�

∗)

=
‖‖‖‖‖

[
��

(1 − �)�∗

]
(�∗�∗ +�∗) −

[
��∗

(1 − �)�∗

]‖‖‖‖‖

2

F

= ‖‖�∗(�∗�∗ +�∗) − �∗‖‖2F ,

(18)�∗ = −[(�∗�∗)T (�∗�∗)]−1(�∗�∗)T (�∗�∗ − �∗).

4  Kinect scanning platform

In this part, we introduce the 3D scanning platform with 
single Microsoft Kinect for Xbox 360. The setup is shown 
in Fig. 4. The platform is built upon ReconstructMe appli-
cation3 which is based on Kinect Fusion [30].

To get the best mesh, we choose to keep the Kinect 
position still at three different heights when the subject is 
standing on a running turntable at a certain speed (30  s 
per round). After we scan one round at the first height, 
we adjust the height of the Kinect to the second height 
and scan the second round around the subject. The self-
occluded parts such as armpit and crotch are rescanned 
if the Kinect does not see them in the first time. For each 
mesh, from our experience, it takes about 90 s to build with 
this platform. During data capturing, we require the partici-
pants to wear tight clothes. Each person is captured 5 poses 
which include a natural pose, and other 4 poses (The pose 
examples are shown in Fig. 13). The capturing process is 
displayed in Fig. 5.

Although some occluded parts can be rescanned, holes 
still exist on the top of the head and the soles of the feet 
which the Kinect cannot see. To the best of our knowl-
edge, there is no public Kinect-based human body mesh 
dataset. Therefore, we utilise the platform above to build a 

3 http://reconstructme.net/.

Fig. 4  The top view of spatial arrangement of offline 3D capturing 
platform

http://reconstructme.net/
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low-quality mesh dataset, named Kinect-based 3D Human 
Body (K3D-Hub) Dataset. So far, our K3D-Hub dataset 
contains 50 different identities and 5 poses for each person. 
We show examples of our dataset in Fig. 13.

5  Performance evaluation

To evaluate the performance of our MABR method, we 
conducted experiments on both high- and low-quality 
meshes, and showed the shape root mean square (RMS) 
error curve as well as some fitting results for visualization 
purpose.

5.1  High‑quality mesh evaluation

For the evaluation on high-quality data, we use the 
SPRING [48] dataset that contains 3038 meshes with vari-
ous human body shapes. These good quality meshes are 
complete and points are evenly distributed. Furthermore, 
it has the point-to-point correspondences with each other, 
which means it can be used as our ground truth for quan-
titative analysis. Also, the SPRING dataset is divided into 
male and female subsets. To train a model whose muscle 
and tissue properties are specific to female and male, we 
separately train male and female shape models. For each 
gender, 200 meshes from SPRING dataset are used as the 
training set and the remaining meshes are regarded as the 
testing set.

To show the superior performance of our method, we 
compare MABR method with NICP in [2], ANICP in [11], 
and PCA deformation on SPRING dataset. We compute 
the 3D shape root mean square error (RMS Error) with the 
Eq. 19 to measure the accuracy of four methods.

(19)RMSError =

�∑n

i=1
(pi − p̂i)

2

n
,

Fig. 5  The screenshot of our capturing process

Fig. 6  The comparison of 3D shape RMS error of ANICP, NICP, 
PCA and our MABR

Fig. 7  The front view of fitted results of ANICP, NICP and MABR 
in the case that the shape of general template differs a lot from the 
target mesh

Fig. 8  The detail comparison of fitting results on SPRING dataset. 
The side of the raw scan and the fitted results of ANICP (column 2), 
NICP (column 3), PCA (column 4) and MABR (column 5). Besides 
the comparison of the full body, the details of the face, hand and 
elbow from each method are also compared subsequently
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where points pi and p̂i are corresponding points of the 
ground truth and the fitted results. n is the number of the 
points in 3D template mesh. As shown in Fig. 6, the accu-
racy of our method is comparable with ANICP and is much 
higher than NICP and PCA. In PCA method, the whole 
model is only controlled by the trained orthogonal basis 
which cannot cover all the shape variations. Consequently, 
the accuracy of PCA is the lowest.

Moreover, when the body shape of template is very dif-
ferent from the shape of target, MABR is able to present 

better fitting results, showing more complete and meaning-
ful limb parts. When the shapes of the template and target 
scans vary a lot, it will be easier for the icp-based algo-
rithms to find the nearest neighbor incorrectly and more 
meaningful vertices will be regarded as outliers. We show 
the front view of some fitted results in Fig. 7, which illus-
trates the robustness of MABR to outliers. Due to the poor 
accuracy of PCA method, we do not show the PCA results 
here. In Fig. 7, we compare the fitting results of two differ-
ent body shapes from a general template. The first target 

Fig. 9  Fitting results from Kinect scans. Column 1 shows the raw body scans, the second to the last columns illustrate the shapes from ANICP, 
NICP, PCA and the proposed MABR method, respectively
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mesh differs a lot from the template in the arm part and we 
can see that neither ANICP nor NICP can obtain a com-
plete arm for the given target while the proposed MABR 
method can not only get a meaningful arm but also make 
the results similar with the target mesh (which is reflected 
by the face). What is more, the contour of hands of MABR 
is clearer than ANICP and NICP. This is shown by the fact 
that the hole of the fist is visible in MABR results. In the 
second line, the left arm of the target mesh is bent. Due to 
the low overlapping degree, the limbs parts are regarded as 
outliers in ANICP and NICP. As a result, the fitting results 
of NICP and ANICP in the hand and foot parts are dis-
torted and erroneous while our MABR method successfully 
fits to the target mesh and keeps complete arm shapes at the 
same time.

We also compare the details of fitted results from the 
above four methods in Fig. 8. We can see that for the hand 
and elbow parts, the PCA method and the proposed MABR 
method are much better than the other two approaches. In 
Fig.  8, compared with PCA and MABR, the hand parts 
of ANICP distorted severely and the fitted hand of NICP 
is obscure. As for elbow, the results of ANICP and NICP 
are broken while PCA and MABR are able to preserve the 
continuity of the fitted mesh. Although PCA can get mean-
ingful results, MABR outperforms it in terms of accuracy, 
which is reflected by the fitted results in face parts. It can be 
seen obviously that the face of MABR is much more simi-
lar with the raw scan than face of PCA. Basically, MABR 
successfully recovers the shape of the target mesh. In the 
elbow part, we can see that the curvature of the mesh from 
MABR is much closer to the target than PCA’s result.

5.2  Low‑quality scans evaluation

We evaluate the proposed method on low-quality scans 
which are captured by Microsoft Kinect for XBOX 360. 
A Kinect is used to scan the person standing at a running 
turntable from three different heights. The scans are pre-
processed to remove background. We compared our pro-
posed MABR method with NICP [2] and ANICP in [11].

Fitting results of these three methods are shown in Fig.  
9. It is obvious to see that the proposed MABR method 
is the only one that models the hand and foot parts com-
pletely and, meanwhile, keep high accuracy of the fit-
ting results. We can see that the raw scans have a lot of 
noises which are close to surface. Large holes exist on 
top of the head. All these challenges require the regis-
tration method be robust to noises, outliers and holes at 
the same time. From the results, we can see that neither 
ANICP nor NICP is not robust enough to obtain complete 
and accurate registered mesh. The hand parts of ANICP 
and NICP tend to be distorted and incomplete while the 
MABR method enables meaningful and complete hands. 

The reason for the failure of NICP and ANICP is that, 
in real scans, the human pose is hard to control so that 
the limbs are usually not completely overlapped with the 
template.

Therefore, the shape of the closest points of the limbs 
cannot keep the limb shape of scans, resulting in unex-
pected fitted shapes. Since our fitting procedures are 
active, the limb parts of the template can be stretched 
along with the direction of PCA basis before performing 
non-rigid ICP, recovering the size of the hand and foot 
roughly. In this way, our MABR method is not only able 
to keep a good shape of the scan but also robust to noises. 

Fig. 10  The comparison of NICP, ANICP and MABR in the case of 
hierarchical noises

Fig. 11  Example of residual error changes as the fitting of left hand 
in the second level progresses

Fig. 12  The comparison of hole tolerance
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Fig. 13  Examples of K3D-Hub 
human body scans dataset. We 
invited both male and female 
subjects. The ages of subject 
ranges from 18 to 40. The 
nationalities of the subjects 
mainly include Asia and 
Europe. Each subject performs 
5 different poses
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The hierarchical noises are common in the Kinect scans. 
On one hand, some subtle movements are inevitable 
when the subjects are trying to keep a certain pose for a 
few minutes. In this case, hierarchical noises may appear 
around arms. On the other hand, the subjects are standing 
on a running turntable. The resulting movements of body 
may cause hierarchical noises around body surface. In 
Fig. 10, we compare the fitting results of NICP, ANICP 
and the proposed MABR in the case of hierarchical 
noises. We can see that hierarchical noises are distributed 
on the face, hand, and chest in the raw scans. The fitting 
results of NICP are ambiguous, without presenting the 
shape of hands; while, the results of ANICP and MABR 
can keep hand shapes. The MABR also shows more simi-
lar fitting results in faces and hands.

We also show the robustness to holes of MABR in 
Fig.  12. Even though there exist big holes on top of the 
head in the raw scan, MABR and ANICP can fill the hole 
smoothly, which benefits from the training of the prior 
knowledge. NICP merely relies on finding the nearest 
points on the target, which is sensitive to holes. Therefore, 
as illustrated in Fig. 12, the fitted result of NICP is uneven.

In addition, our MABR method has very nice conver-
gence properties. In Fig. 11, we show one example of resid-
ual error changes as the fitting of left hand progresses. As 
can be seen, the residual error monotonically decreases and 
gradually converges to a minimum value.

All the fitting results in the above experiments are 
deformed from the same template mesh, the mean shape 
of the training set. As shown in Figs.  9 and 10, the lift-
ing angles of arms of the test data are not the same and in 
Fig. 8 the arms of test data are bent, while the arms of tem-
plate are straight. Arms in these scans tend to be regarded 
as outliers in NICP and ANICP methods but the proposed 
method is able to keep the meaningful shape in the registra-
tion process, which shows that our method can be applied 
to scans with different poses in some degree. However, 
when the target presents different postures with the tem-
plate like the 2–6 columns shown in Fig. 13, it is still chal-
lenging for our method to obtain a reasonable fitting result 
from the natural standing template for the reason that the 
searched nearest points cannot keep the shape of hands dur-
ing fitting. The resulting fitting results will be erroneous. 
Hence, we reckon that fitting on various poses could be one 
of our future works.

6  Conclusions

In this paper, we propose a multilevel active registration 
method which combines the non-rigid ICP with the sta-
tistical shape model to automatically fit the body template 
model to the target point clouds. Since the PCA shape 

model is trained with 200 registered mesh, the combina-
tion of PCA makes our method robust to noise, outliers and 
holes. We have shown that the performance of proposed 
algorithm is comparable with the state-of-the-art non-rigid 
registration methods and outperforms them when it comes 
to the alignment of hands/foot parts. Experiments verify 
that our approach is robust to both noisy Kinect scans and 
high-quality meshes. Besides the robust MABR method, 
a Kinect-based human body dataset, named K3D-Hub, is 
collected which is the first publicly available low-quality 
human body scans dataset.

Limitations Our registration algorithm manages to regis-
ter a high-quality template mesh to noisy Kinect scans with 
similar poses. However, when the initial poses of template 
and target scans differ much, it is still challenging for our 
method to generate a reasonable fitting result, particularly 
in the limb parts. We believe that fitting on various poses 
will be one of our future work. What is more, our targets 
are scans captured from subjects with tight clothes and hats. 
It is still challenging to deform the template to meshes with 
loose clothes like dresses/skirt. This is because the defor-
mation of loose clothes and hair does not follow the defor-
mation of human body muscle. Unexpected results will 
appear if we apply our trained morphable model to loose 
cloths and hair. Moreover, in the future, we plan to speed 
up the fitting algorithm to support real-time applications.
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