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Abstract
In this paper, by using an augmented Riesz decomposition method, we obtain sharp
estimates of harmonic functions with certain boundary integral condition, which
provide explicit lower bounds of functions harmonic in a cone. The results given here
can be used as tools in the study of integral equations.
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1 Introduction
Let Rn be the n-dimensional Euclidean space, where n ≥ . Let V = (X, y) be a point in
Rn, where X = (x, x, . . . , xn–). Let E be a set in Rn, the boundary and the closure of it are
denoted by ∂E and E, respectively.

For P = (X, y) ∈ Rn, it can be re-expressed in spherical coordinates (l,�), � = (θ, θ,
. . . , θn) via the following transforms:

x = l
n–∏

j=

sin θj (n ≥ ), y = l cos θ

and, if n ≥ ,

xn–k+ = l cos θk

k–∏

j=

sin θj ( ≤ k ≤ n – ),

where  ≤ l < +∞,  ≤ θj ≤ π ( ≤ j ≤ n – ; n ≥ ), and – π
 ≤ θn– ≤ π

 (n ≥ ).
The unit sphere in Rn is denoted by Sn–. Let � ⊂ Sn–. A point (,�) on Sn– and the set

{�; (,�) ∈ �} are often identified with � and �, respectively. By � × � we denote the set
{(l,�) ∈ Rn; l ∈ �, (,�) ∈ �}, where � ⊂ R+. The set R+ × � is denoted by Tn(�), which
is called a cone. We denote the sets I × � and I × ∂� by Tn(�; I) and Sn(�; I), respectively,
where I ⊂ R. The two sets Tn(�)∩Sl and Sn(�; (, +∞)) are denoted by Sn(�; l) and Sn(�),
respectively.
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If the Green’s function on Tn(�) is denoted by G�(V , W ) (P, Q ∈ Tn(�)), then the Poisson
kernel on Tn(�) is defined by

cn PI�(V , W ) =
∂G�(V , W )

∂nW
,

where

cn =

{
π if n = ,
(n – )wn if n ≥ ,

and ∂/∂nW denotes the differentiation at W along the inward normal into Tn(�).
Consider the boundary value problem (see [])

(
�∗ + ι

)
η =  on �, ()

η =  on ∂�, ()

where �∗ is the spherical Laplace operator and � (⊂ Sn–) has a twice smooth boundary.
The least positive eigenvalue of () and () is denoted by ι. By η(�) we denote the normal-
ized eigenfunction corresponding to ι. Define


± = –n +  ±
√

(n – ) + ι,


+ – 
– will be denoted by λ.
We denote f + = max{f , } and f – = – min{f , }, where f is a function defined on Tn(�).

Throughout this paper, let A denote various constants independent of the variables in
questions, which may be different from line to line. Let σ (t) be a nondecreasing real valued
function on [, +∞) satisfying σ (t) > 
+ for any t ≥ .

In a recent paper, Li and Zhang (see [], Theorem ) solved boundary behavior problems
for functions harmonic on Tn(�), which admit some lower bounds.

Theorem A Let h(V ) be a harmonic function on Tn(�) and a continuous function on Tn(�),
where V = (R,�). If

h(V ) ≤ KRσ (R)

for any V = (R,�) ∈ Tn(�; (, +∞)) and

–K ≤ h(V )

for any V = (R,�) ∈ Tn(�; (, ]). Then we have

h(V ) ≥ –MK
(
 + σ (R)Rσ (R))η–n(�),

where V ∈ Tn(�), K is a constant and M denotes a constant independent of R, K , and the
two functions h(V ) and η(�).



Wang et al. Boundary Value Problems  (2016) 2016:156 Page 3 of 10

2 Main results
Now we state our main results in this paper.

By using a modified Carleman formula and an augmented Riesz decomposition method,
we obtain sharper estimates of harmonic functions with certain boundary integral condi-
tions. Compared with the original proof in [], the new one is more easily applied.

Theorem  Let h(V ) be a function harmonic on Tn(�) and continuous on Tn(�), where
V = (R,�). Suppose that the two conditions (I) and (II) hold:

(I) For any V = (R,�) ∈ Tn(�; (,∞)), we have
∫

Sn(�;(,R))
h–t
–

∂η/∂n dσW ≤ MKσ (dR)Rσ (dR)–
–
()

and

λ

∫

Sn(�;R)
h+R
––η dSR ≤ MKRσ (dR)–
–

. ()

(II) For any V = (R,�) ∈ Tn(�; (, ]), we have

h(V ) ≥ –K . ()

Then

h(V ) ≥ –MK
(
 + σ (dR)Rσ (dR))η–n(�),

where V ∈ Tn(�), K is a constant,  < d ≤ , and M denotes a constant independent of R,
K , and the two functions h(V ) and η(�).

Remark  By virtue of Theorem , we easily see that Theorem (I) is weaker than corre-
sponding condition in Theorem A in the case d ≡ .

Theorem  The conclusion of Theorem  remains valid if Theorem (I) is replaced by

h(V ) ≤ KRσ (dR), V = (R,�) ∈ Tn
(
�; (,∞)

)
, ()

where  < d ≤ .

Remark  In the case d ≡ , Theorem  reduces to Theorem A.

3 Lemmas
The following result is an augmented Riesz decomposition method, which was used to
study the boundary behaviors of Poisson integral. For similar results for solutions of the
equilibrium equations with angular velocity, we refer the reader to the paper by Wang et
al. (see []).

Lemma  For W ′ ∈ ∂Tn(�) and ε > , there exist a positive number R and a neighborhood
B(W ′) of W ′ such that


cn

∫

Sn(�;(R,∞))

∣∣g(W )
∣∣∣∣PI�(V , W )

∣∣dσW < ε ()
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for any V = (r,�) ∈ Tn(�) ∩ B(W ′), where g is an upper semi-continuous function. Then

lim sup
V∈Tn(�),V→W ′

PI�[g](V ) ≤ g
(
W ′). ()

Proof Let W ′ = (l′,�′) be any point of ∂Tn(�) and ε (> ) be any number. There exists a
positive number R′ satisfying


cn

∫

Sn(�;(R′ ,∞))

∣∣PI�(V , W )
∣∣∣∣g(W )

∣∣dσW ≤ ε


()

for any V = (r,�) ∈ Tn(�) ∩ B(W ′) from ().
Let φ be continuous on ∂Tn(�) such that  ≤ φ ≤  and

φ =

{
 on Sn(�; (, R′]) ∪ {O},
 on Sn(�; (R′,∞)).

Let GTn(�;(,j)) be a Green’s function on Tn(�; (, j)), where j is a positive integer. Since
�j(V , W ) = GTn(�)(V , W ) – GTn(�;(,j))(V , W ) on Tn(�; (, j)) converges monotonically to 
as j → ∞. Then we can find an integer j′, j′ > R′ such that


cn

∫

Sn(�;(,R′))

∣∣∣∣
∂

∂nW
�j′ (V , W )

∣∣∣∣
∣∣φ(W )g(W )

∣∣dσW <
ε


()

for any V = (r,�) ∈ Tn(�) ∩ B(W ′).
Then we have from () and ()


cn

∫

∂Tn(�)
PI�(V , W )g(W ) dσW

≤ 
cn

∫

Sn(�;(,R′))

∂GTn(�;(,j′))(V , W )
∂nW

φ(W )g(W ) dσW

+

cn

∫

Sn(�;(,R′))

∣∣φ(W )g(W )
∣∣
∣∣∣∣
∂�j′ (V , W )

∂nW

∣∣∣∣dσW

+

cn

∫

Sn(�;(R′ ,∞))

∣∣PI�(V , W )
∣∣∣∣g(W )

∣∣dσW

≤ 
cn

∫

Sn(�;(,R′))

∂GTn(�;(,j′))(V , W )
∂nW

φ(W )g(W ) dσW +



ε ()

for any V = (r,�) ∈ Tn(�) ∩ B(W ′).
Consider an upper semi-continuous function

η(W ) =

{
φ(W )g(W ) on Sn(�; (, R′]) ∪ {O},
 on ∂Tn(�; (, j′)) – Sn(�; (, R′]) – {O},

on ∂Tn(�; [, j′)) and denote the PWB solution of the Dirichlet problem on Tn(�; (, j′)) by
Hη(P;Tn(�; (, j′))) (see, e.g., []); we know that


cn

∫

Sn(�;(,R′))

∂GTn(�;(,j′))(V , W )
∂nW

φ(W )g(W ) dσW = Hη

(
P;Tn

(
�;

(
, j′

)))
()
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(see [], Theorem ). If Tn(�; (, j′)) is not a Lipschitz domain at O, we can prove ()
by considering a sequence of the Lipschitz domains Tn(�; ( 

m , j′)) which converges to
Tn(�; (, j′)) as m → ∞. We also have

lim sup
V∈Tn(�),V→W ′

Hη

(
P;Tn

(
�;

(
, j′

))) ≤ lim sup
Q∈Sn(�),Q→W ′

η(W ) = g
(
W ′)

(see, e.g., [], Lemma .). Hence we know that

lim sup
V∈Tn(�),V→W ′


cn

∫

Sn(�;(,R′))
φ(W )

∂GTn(�;(,j′))(V , W )
∂nW

g(W ) dσ ≤ g
(
W ′).

With () this gives (). �

The following growth properties play important roles in our discussions.

Lemma  (see []) Let V = (r,�) ∈ Tn(�) and W = (t,�) ∈ Sn(�). Then we have

PI�(V , W ) ≤ Mr
–
t
+–η(�)

(
 <

t
r

≤ 


)

and

PI�(V , W ) ≤ Mr
+
t
––η(�)

(
 <

r
t

≤ 


)
.

Let V = (r,�) ∈ Tn(�) and W = (t,�) ∈ Sn(�; ( 
 r, 

 r)). Then we have

PI�(V , W ) ≤ M
η(�)
tn– + M

rη(�)
|P – Q|n .

Let GTn(�;(t,t)) be the Green’s function of Tn(�; (t, t)). Then we have

∂GTn(�;(t,t))((t,�), (r,�))
∂t

≤ M
(

t

r

)–
–
η(�)η(�)

tn–


and

–M
(

r
t

)
+
η(�)η(�)

tn–


≤ ∂GTn(�;(t,t))((t,�), (r,�))
∂t

,

where  < t < r < 
 t < +∞.

Many previous studies (see [, ]) focused on the following lemma with respect to the
half space and its applications.

Lemma  (see [], Lemma ) If h is a function harmonic in a domain containing
Tn(�; (, R)), where R > , then we have

λ

∫

Sn(�;R)
hηR
––dSR +

∫

Sn(�;(,R))
h
(
t
–

– t
+
R–λ

)
∂η/∂n dσW + d +

d

Rλ
= ,
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where

d =
∫

Sn(�;)

–hη – η(∂h/∂n) dS

and

d =
∫

Sn(�;)
η(∂h/∂n) – 
+hη dS.

4 Proof of Theorem 1
By Lemma  we have

–h(V ) =
∫

Sn(�;(,R))

(
–h(W )

)
PI�(V , W ) dσW

+
∫

Sn(�;R)

(
–h(W )

)∂G�,R(V , W )
∂R

dSR ()

for any V = (l,�) ∈ Tn(�; (, R)).
Case . V = (l,�) ∈ Tn(�; ( 

 ,∞)) and R = 
 l.

From () we know that

–h =
∑

i=

Ui, ()

where

U(V ) =
∫

Sn(�;(,])

(
–h(W )

)
PI�(V , W ) dσW ,

U(V ) =
∫

Sn(�;(, 
 l])

(
–h(W )

)
PI�(V , W ) dσW ,

U(V ) =
∫

Sn(�;( 
 l,R))

(
–h(W )

)
PI�(V , W ) dσW ,

and

U(V ) =
∫

Sn(�;R)

(
–h(W )

)
PI�(V , W ) dσW .

We obtain from Lemma 

U(V ) ≤ MKη(�) ()

and

U(V ) ≤ MKσ (dR)Rσ (dR)η(�). ()

Put

U(V ) ≤ U(V ) + U(V ), ()
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where

U(V ) = M
∫

Sn(�;( 
 l,R))

(
–h(W )

)
t–nη(�)

∂φ(�)
∂n�

dσW

and

U(V ) = Mrη(�)
∫

Sn(�;( 
 l,R))

(
–h(W )

)|V – W |–nlη(�)
∂φ(�)
∂n�

dσW .

From () we obtain

U(V ) ≤ MKσ (dR)Rσ (dR)η(�). ()

To estimate U(V ). There exists a sufficiently small number d satisfying d >  and

Sn

(
�;

(



l, R
))

⊂ B
(

V ,
l


)

for V = (l,�) ∈ �(d), where

�(d) =
{

Q = (r,�) ∈ Tn(�); inf
(,z)∈∂�

∣∣(,�) – (, z)
∣∣ < d,  < l < ∞

}
.

We divide Tn(�) into the two sets �(d) and Tn(�) – �(d).
For any V = (l,�) ∈ Tn(�) – �(d), we can find a number d′ satisfying d′ >  and

d′l ≤ |V – W |

for W ∈ Sn(�), and hence

U(V ) ≤ MKσ (dR)Rσ (dR)η(�). ()

If V = (l,�) ∈ �(d), then we have

Hi(V ) =
{

W ∈ Sn

(
�;

(



l, R
))

; i–ξ (V ) ≤ |V – W | < iξ (V )
}

,

where

ξ (V ) = inf
W∈∂Tn(�)

|V – W |.

Since {W ∈ Rn : |V – W | < ξ (V )} ∩ Sn(�) = ∅, we get

U(V ) = M
i(V )∑

i=

∫

Hi(V )

(–h(W ))rη(�)
|V – W |n

∂η(�)
∂n�

dσW ,

where l(P) is an integer such that l(P)ξ (V ) ≤ r < l(P)+ξ (V ).
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Since

η(�) ≤ Ml–ξ (V ),

where V = (l,�) ∈ Tn(�), we have

∫

Hi(V )

(
–h(W )

)|V – W |–nrη(�)
∂η(�)
∂n�

dσW ≤ MKσ (dR)Rσ (dR)η–n(�),

where l = , , , . . . , l(P).
Thus

U(V ) ≤ MKσ (dR)Rσ (dR)η–n(�). ()

We see that

U(V ) ≤ MKσ (dR)Rσ (dR)η–n(�) ()

from (), (), (), and ().
On the other hand, we have from ()

U(V ) ≤ MKRσ (dR)η(�). ()

We thus obtain (), (), (), and () that

–h(V ) ≤ MK
(
 + σ (dR)Rσ (dR))η–n(�). ()

Case . V = (l,�) ∈ Tn(�; ( 
 , 

 ]) and R = 
 l.

It follows from () that

–h = U + U + U,

where U(V ) and U(V ) were defined in the former case and

U(V ) =
∫

Sn(�;(,R))

(
–h(W )

)
PI�(V , W ) dσW .

Similarly, we have

U(V ) ≤ MKσ (dR)Rσ (dR)η–n(�),

which, together with () and (), gives ().
Case . V = (l,�) ∈ Tn(�; (, 

 ]).
It is evident from () that we have

–h ≤ K ,

from which one also obtains ().



Wang et al. Boundary Value Problems  (2016) 2016:156 Page 9 of 10

We finally have

h(V ) ≥ –KM
(
 + σ (dR)Rσ (dR))η–n(�)

from (), which is required.

5 Proof of Theorem 2
By applying Lemma  to h = h+ – h–, we obtain

λ

∫

Sn(�;R)
h+R
––η dSR +

∫

Sn(�;(,R))
h+(

t
–
– t
+

R–λ
)
∂η/∂n dσW + d + dR–λ

= λ

∫

Sn(�;R)
h–R
––η dSR +

∫

Sn(�;(,R))
h–(

t
–
– t
+

R–λ
)
∂η/∂n dσW . ()

From () we see that

λ

∫

Sn(�;R)
h+R
––η dSR ≤ MKRσ (dR)–
+ ()

and
∫

Sn(�;(,R))
h+(

t
–
– t
+

R–λ
)
∂η/∂n dσW ≤ MKRσ (dR)–
+

. ()

Notice that

d + dR–λ ≤ MKRσ (dR)–
+
. ()

We have from (), (), (), and ()

∫

Sn(�;(,R))
h–(

t
–
– t
+

R–λ
)
∂η/∂n dσW ≤ MKRσ (dR)–
+

. ()

Hence () gives (), which, together Theorem , gives the conclusion of Theorem .
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