
J Grid Computing (2016) 14:283–297
DOI 10.1007/s10723-015-9357-4

IaaSMon: Monitoring Architecture for Public Cloud
Computing Data Centers

Juan Gutierrez-Aguado · Jose M. Alcaraz Calero ·
Wladimiro Diaz Villanueva

Received: 2 June 2014 / Accepted: 23 November 2015 / Published online: 4 March 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Monitoring of cloud computing infrastruc-
tures is an imperative necessity for cloud providers
and administrators to analyze, optimize and discover
what is happening in their own infrastructures. Current
monitoring solutions do not fit well for this purpose
mainly due to the incredible set of new requirements
imposed by the particular requirements associated to
cloud infrastructures. This paper describes in detail
the main reasons why current monitoring solutions
do not work well. Also, it provides an innovative
monitoring architecture that enables the monitoring
of the physical and virtual machines available within
a cloud infrastructure in a non-invasive and trans-
parent way making it suitable not only for private
cloud computing but also for public cloud comput-
ing infrastructures. This architecture has been vali-
dated by means of a prototype integrating an existing
enterprise-class monitoring solution, Nagios, with the

J. Gutierrez-Aguado · W. Diaz Villanueva
Departament d’Informàtica, Universitat de València, Avda.
De la Universitat, s/n 46100 Burjassot, Valencia, Spain

J. Gutierrez-Aguado
e-mail: juan.gutierrez@uv.es

W. Diaz Villanueva
e-mail: wladimiro.diaz@uv.es

J. M. Alcaraz Calero (�)
School of Engineering and Computing, University
of the West of Scotland, Paisley Campus, Paisley,
PA1 2BE, Scotland
e-mail: jose.alcaraz-calero@uws.ac.uk

control and data planes of OpenStack, a well-known
stack for cloud infrastructures. As a result, our new
monitoring architecture is able to extend the exiting
Nagios functionalities to fit in the monitoring of cloud
infrastructures. The proposed architecture has been
designed, implemented and released as open source to
the scientific community. The proposal has also been
empirically validated in a production-level cloud com-
puting infrastructure running a test bed with up to
128 VMswhere overhead and responsiveness has been
carefully analyzed.

Keywords Cloud computing · Monitoring ·
Distributed monitoring · Network management ·
Infrastructure-as-a-service

1 Introduction

Cloud computing is changing radically the way in
which businesses, governments, researches and con-
sumers are using computational power. Cloud Compu-
ting enables them to make better use of their own com-
putational resources (private cloud) and to rent com-
putational resources to third-parties on-demand (pub-
lic cloud) to satisfy their constantly changing compu-
tational requirements. Public cloud infrastructures are
associated to scenarios where cloud users do not have
any control over the management of the physical
topology of the infrastructures where they are renting
virtual machines (aka VMs), i.e. virtual topologies.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10723-015-9357-4-x&domain=pdf
mailto:juan.gutierrez@uv.es
mailto:wladimiro.diaz@uv.es
mailto:jose.alcaraz-calero@uws.ac.uk

284 J. Gutierrez-Aguado et al.

However, users have control over their rented VMs
and what services are being executed therein.

From the point of view of the cloud provider, it
is imperative to analyze, optimize and discover what
is happening in their entire infrastructure. To do so,
monitoring tools are essential to identify anomalies,
analyze behavior, optimize infrastructure resources,
provide feedback to consumer, check infrastructure
healthy, perform auto-scaling of resources [11], allo-
cate resources in multi-clouds [9, 15], or monitor
Service Level Agreement [3]. The vast majority of
monitoring tools available in the market do not fit
for the purpose of monitoring cloud infrastructures.
On the one hand, their architectural design usually
imposes the installation of a software agent in the
resources to be monitored to extract metrics. However,
cloud users are especially reluctant to run any kind
of services/software in their rented VMs for providing
information to third parties so that this requirement
is simply not acceptable in cloud environments. On
the other hand, current monitoring tools do not deal
efficiently with the new life-cycle associated to vir-
tual topologies. For example, current monitoring tools
assume that monitored resources will remain always
with the same IP address. Then, if such address is not
responding, it is assumed that resources are shutdown
or failing. However, this is not true at all in cloud
infrastructures where IP addresses are being highly
reused and dynamically assigned to different VMs in
a matter of seconds. Traditional monitoring solutions
will not realize of this re-use of IP addresses and will
consider the monitored resource always to be same
one even when they are now monitoring a completely
different resource. These facts make difficult for cloud
providers to implement effective monitoring solutions
for their infrastructure and it is required the design
of novel non-intrusive monitoring solutions running
in a transparent way from the point of view of the
cloud users whereas they provide accurate informa-
tion for the cloud provider. This is exactly the main
motivation of this research work. Our contribution
is, to the best of our knowledge, the first attempt to
integrate both the control and data planes of a cloud
computing infrastructure with an existing monitoring
tool to fit in the monitoring of the completely new
life-cycle associated to virtual cloud infrastructures.
This novel integration provides an effective monitor-
ing solution for public cloud infrastructures allowing

a transparent monitoring of the customer s VMs, and
at same time, an agent-based monitoring of the rest of
the resources such as physical machines, hard disks,
etc. The following list of requirements summarizes the
key and unique features and requirements that make
the monitoring of public cloud computing infrastruc-
tures a challenge. Some of these items are already
available in almost all the current monitoring solu-
tions; however, some others are simply not supported
nowadays:

– R1. To perform a transparent monitoring of VMs
(no tools installed in the customer s VM)

– R2. To perform an agent-based monitoring of the
management VMs

– R3. To perform an agent-based monitoring of the
physical machines

– R4. To enable correlation between metrics from
VMs and physical machines where they are allo-
cated.

– R5. To quickly adapt against frequent changes in
the virtual topology using efficient auto-discovery
protocols.

– R6. To quickly adapt against IP address re-
assignation.

– R7. To quickly adapt against changes in VM state
(VM life-cycle).

– R8. To integrate the monitoring architecture with
the management plane of the cloud stack to keep
continuously synchronized the status of the cloud
stack and the monitoring tool.

– R9. To integrate the monitoring architecture with
the data plane of the cloud stack to keep continu-
ously synchronized the status of the VMs and the
monitoring tool.

– R10. To be high scalable, suitable for monitoring
large amount of resources efficiently.

More than 50 different monitoring solutions have
been analyzed in this work. None of them meet all
these requirements simultaneous. It is not our purpose
to provide a completely new monitoring framework
designed from scratch. An analysis of existing moni-
toring tools has been done (lately explained in detail
in Section 2) to select a good candidate to be extended
and adapted to fulfill all these requirements and thus
making it suitable for the monitoring of cloud infras-
tructures. According to a recent study performed by

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 285

Dataloop,1 Nagios is the dominant monitoring tool for
cloud infrastructures in the market even if it has not yet
completely being adapted for such purpose. Nagios
has been selected as a base monitoring software to
be extended in this research work due to its flexibil-
ity, world-wide acceptance, suitability for large-scale
deployments, due to the incredibly large number of
extensions available and specially due to the fact
that auto discovery algorithms of new resources is
completely customizable.

The proposed architecture described in this con-
tribution provides support for all the above list of
requirements. To achieve it, the architecture is based
on the integration between the monitoring tool, and
its resource discovery protocol, and the control and
data planes of the cloud computing infrastructure.
This integration is in fact our main contribution. The
architecture has been prototypically implemented by
means of the integration between OpenStack, a well-
known enterprise-class cloud computing stack used
for both private and public cloud computing infras-
tructure and Nagios, an enterprise-class distributed
monitoring tool. When users interact with OpenStack,
a series of messages are interchanged between the
different modules available in the cloud stack. Our
architecture intercepts all these messages and extracts
topology information to be lately integrated in Nagios.
The proposal has been implemented and released as
open source project to the community. It has also
been validated in a production-level cloud computing
infrastructure running a mid-size test bed with 128
VMs.

To describe the contribution, this paper has been
organized as follows: Section 2 provides an updated
state-of-the-art in monitoring solutions for cloud
infrastructures. After that, Section 3 shortly describes
the basic concepts about the different components
involved in the cloud computing infrastructure to
have a self-contained contribution. Then, Section 4
provides an overview of a traditional high scalable
distributed monitoring solution to enable the reader
to realize what the changes are required to fit in
cloud computing infrastructures. After that, Section 5
is focused on the main contribution, explaining the

1What we learnt talking to 60 companies about monitoring,
Information available at http://blog.dataloop.io/2014/01/30/
what-we-learnt-talking-to-60-companies-about-monitoring/

design of the monitoring architecture proposed. Then,
Section 6 provides implementation details of the pro-
posed architecture. Section 7 describes the different
test beds carried out and the intensive testing done
in order to validate both the architecture and proto-
type presented. And finally, Section 8 describes some
conclusions about this contribution.

2 Related Works

Open source monitoring solutions for cloud infras-
tructures are really scarce and only a few proofs of
concept are available. Brandt et al. [2] provide OVIS, a
distributed monitoring infrastructure for High Perfor-
mance Computing (HPC).Wuhib and Stadler [18] also
provide a distributed monitoring framework for large
cloud infrastructures. Kertesz [8] provides an archi-
tecture where different cloud providers collect infor-
mation to decide where to allocate new resources in a
federated environment. Dhingra et al. [6] also provide
a solution for monitoring resources in cloud infras-
tructures. Although these works are good attempts,
they cannot really fit in public cloud computing infras-
tructures because they impose the installation of soft-
ware in the customer s VMs. This is not acceptable
in production-level scenarios. Would you enable other
people to install software in your machine?

Other approaches such as Moses et al. [14],
Romano et at. [17], Massonet et at. [12] and Koenig
et al. [10] are designed to monitor specific metrics
to provide an added value in the cloud infrastructure
like efficient VM migrations, QoS, Data Location and
cross-layer monitoring, respectively. Although they
are good contributions to the state-of-the-art, they are
optimized for specific purposes and do not provide
support for: i) monitoring of the virtualization layer;
ii) monitoring for large-scale infrastructures; iii) trans-
parent monitoring from the customer s perspective; iv)
general purpose and extensible monitoring.

An alternative is to take traditional network mon-
itoring tool for IT infrastructures and to adapt them
to the new requirements imposed by the public cloud
computing environment. Nagios,2 Icinga,3 Zennoss,4

2http://www.nagios.org/
3https://www.icinga.org/
4http://www.zenoss.com/

http://blog.dataloop.io/2014/01/30/what-we-learnt-talking-to-60-companies-about-monitoring/
http://blog.dataloop.io/2014/01/30/what-we-learnt-talking-to-60-companies-about-monitoring/
http://www.nagios.org/
https://www.icinga.org/
http://www.zenoss.com/

286 J. Gutierrez-Aguado et al.

Zabbix5 and OpenNMS6 are good examples of tra-
ditional free tools whereas Nimsoft Monitoring Solu-
tion7 and LiveAction8 are good examples of com-
mercial ones. From more than 50 tools have been
analyzed. Then, those that impose the use of monitor-
ing agents like, for example, Pandora FMS, Ganglia,
and XyMon have been discarded due to the fact that it
is required a transparent monitoring approach for cus-
tomer s VMs. It has also been discarded commercial
solutions and those that do not provide source code
required to enable the integration and/or extension of
the monitoring tools to fit in cloud infrastructures.
As a result, the five free tools previous indicated
were identified as the best candidates. None of these
tools are suitable for monitoring cloud infrastructure
mainly due to the fact that they do not detect: frequent
changes in the topology of the virtual infrastructure,
IP address re-assignation to different resources and
destruction of virtual resources. Concretely, Zabbix,
Zenoss and OpenNMS come with auto-discovery pro-
tocols that are not suitable for virtual topologies for
the same reasons previous described. The proposed
architecture described in this contribution is based
on the integration of the control and data planes of
the cloud infrastructure providing a new auto-discover
protocol. This fact requires the selection of a monitor-
ing architecture that enables the customization of such
protocol and thus these three solutions were discarded.
Between Icinga and Nagios, Nagios seems to be the
better candidate due to its incredible dominance in the
market and due to the fact that it has been proven to
be suitable for monitoring very large enterprise-class
infrastructures. This is the main reason why we have
seleceted Nagios.

Aceto et al. [1] have recently provided a com-
plete survey about monitoring architectures for cloud
computing infrastructures. This survey describes a
number of commercial solutions like CloudWatch,9

AzureWatch,10 CloudKick,11 and CloudStatus,12 to
name a few. However, these commercial vendors have

5http://www.zabbix.com/
6http://www.opennms.org/
7http://www.nimsoft.com/solutions/nimsoft-monitor.html
8http://www.actionpacked.com/products/qos-monitor
9http://aws.amazon.com/es/cloudwatch/
10http://www.paraleap.com/azurewatch
11http://www.rackspace.com/cloudkick/
12https://status.rackspace.com/

not published how they implement internally their
monitoring architecture. In fact, the main intention
of this paper is to describe an open-source proto-
type which possibly provides most of the services
available in such commercial products. In this sur-
vey, it is also described several open-source and
commercial downloadable monitoring architectures
like OpenNebula Monitoring Subsystem [13], Nim-
bus Project,13 CloudStack ZenPack,14 Hyperic-HQ,15

PCMONS [5], Sensu,16 Nagios and Dargos [16].
Dargos [16] comes with a small set of built-in sen-

sors so that this is a clear disadvantage when compared
with the available number of plugins already devel-
oped for Nagios. Extensibility is a property that mon-
itoring systems should fulfil to be suitable for cloud
infrastructures. There are some approximations in the
literature that follows the approach of adapting Nagios
to fit in cloud infrastructures. Aparecida de Chaves et
al. [5] developed an architecture designed for running
in private clouds so that the solution does not fulfill
the requirements indicated in Section 1. For instance,
they install scripts into the VMs leading to a valid
solution only for private clouds where all the VMs
belong to the same organization. However, this is not
admissible in public clouds where VMs are belong-
ing to customers. G. Katsaros et al. [7] proposed a
component for monitoring cloud infrastructure that is
notified through the Nagios Event Broker API. This
component exposes the data received from Nagios
through a REST service. The idea of good, however,
authors do not described how Nagios is adapted to
reflect the allocation/ de-allocation of VMs and IP
addresses which is one of the main adaptions required
to fit in cloud infrastructures. Also, there is not any
empirical validation of the proposed architecture so
that it is impossible to validate and reproduce it.
Finally, M. Barbosa et al. [4] proposed a set of Nagios
plugins to make Nagios aware of VMs. They pro-
posed two strategies to discover VMs: an active check
where a plugin is installed in each physical machine
and then Nagios execute them periodically using
NRPE;17 and, a passive checks in which each physical

13http://www.nimbusproject.org/downloads/
14http://wiki.zenoss.org/ZenPack:CloudStack
15http://www.hyperic.com/downloads
16http://sensuapp.org/
17http://exchange.nagios.org/directory/ Addons/Monitoring-A
gents/NRPE–2D-Nagios-Remote-Plugin-Executor/details

http://www.zabbix.com/
http://www.opennms.org/
http://www.nimsoft.com/solutions/nimsoft-monitor.html
http://www.actionpacked.com/products/qos-monitor
http://aws.amazon.com/es/cloudwatch/
http://www.paraleap.com/azurewatch
http://www.rackspace.com/cloudkick/
https://status.rackspace.com/
http://www.nimbusproject.org/downloads/
http://wiki.zenoss.org/ZenPack:CloudStack
http://www.hyperic.com/downloads
http://sensuapp.org/
http://exchange.nagios.org/directory/ Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
http://exchange.nagios.org/directory/ Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 287

machine runs a cron task that informs Nagios server
through NSCA.18 Their solution allows also the map-
ping between physical and virtual machines using the
Nagios Event Broker. This solution involves a signifi-
cant generation of network traffic during VM discov-
ery phase. Also, it makes Nagios aware of new VMs
and any topology changes with a significant delay
determined by the time interval in active checks or the
cron task interval in passive checks which is a clear
trade-off with respect to the network traffic generated.
In our solution, VMs are registered in Nagios even
before they can be reached by ICMP ping and no addi-
tional network traffic is generated in the VM discovery
phase which is a clear advantage and differentiating
point.

Ceilometer19 is an OpenStack optional module that
provides services to collect measurements of the uti-
lization of the physical and virtual resources deployed
in the clouds infrastructure. Although, this module
has been designed for billing purposes, it could be
considered as a monitoring tool suitable for cloud
infrastructures. Ceilometer is integrated in the control
plane of the cloud infrastructure. It can retrieve a num-
ber of metrics directly form the physical machines. It
also can extract metrics from the control plane about
the virtual machines by interrogating the hypervisor
and thus achieving a transparent monitoring. How-
ever, Ceilometer has not been designed as monitoring
tool and thus, it has not been integrated with the data
plane of the cloud infrastructure. In consequence, it
does not have real connectivity with the VMs avail-
able in the infrastructure. This fact limits significantly
the number of metrics Ceilometer can extract from
the VMs. Our proposed architecture goes a step for-
ward in the state of the art achieving a complete
integration with both control and data planes and then
achieving a wide range of metrics gathered directly
from the VMs using agent-less monitoring approach.
This is a differentiating aspect of our proposed
architecture.

Table 1 shows a complete analysis of the require-
ments that a monitoring tool should fulfill to be

18http://exchange.nagios.org/directory/Addons/
Passive-Checks/NSCA--2D-Nagios-Service-Check-Acceptor/
details
19https://wiki.openstack.org/wiki/celiometer

suitable for cloud infrastructures (previously listed in
Section 1) compared against all the relevant related
works indicated in this section and how the pro-
posed architecture is going a step forward in the state
of the art. As the reader can see, IaaSMon is the
only one simultaneously providing support for all the
requirements identified.

3 Cloud Computing Architecture

Figure 1shows the basic components available in a
cloud computing stack for managing cloud infrastruc-
tures. Each component in this figure has in parenthesis
the name of such service inside OpenStack, this infor-
mation clarifies the correspondence between design
and implementation. In summary, there is a graphical
interface where users can ask for new computational
resources (see 1 in Fig. 1). These requests are received
by the cloud API (see 2 in Fig. 1) which inserts the
request into the communication middleware (see 3 in
Fig. 1). This middleware interconnects all the mod-
ules available in the cloud stack. Depending on the
type of request, the messages will travel along differ-
ent modules in order to achieve its original goal. There
are modules for: managing volume storage (see 4 in
Fig. 1) deployed in specialized storage computer; for
registering new physical machines (see 5 in Fig. 1)
that lately are used for placing VMs; for managing
the networking of VMs (see 6 in Fig. 1); for manag-
ing users and authentication schemes (see 7 in Fig. 1);
and finally, there are also services for deciding where
to place new VMs (see 8 in Fig. 1) by means of
scheduling algorithms. We refer the reader to Open-
Stack documentation for further details about such
modules.

Cloud computing systems are designed to work
in highly distributed systems so that the commu-
nication middleware may provide approaches for
asynchronously decoupling the different modules
of the architecture. Generally, this decoupling is
achieved using message buses based on queues used
to send/receive messages to/from the different mod-
ules. These modules are distributed in the physi-
cal machines where the infrastructure is deployed.
Besides, the physical machines run a virtualization
layer that manages VMs. The complete overview of
this virtualization stack can be seen in the lower-right
side of Fig. 1.

http://exchange.nagios.org/directory/Addons/Passive-Checks/NSCA--2D-Nagios-Service-Check-Acceptor/details
http://exchange.nagios.org/directory/Addons/Passive-Checks/NSCA--2D-Nagios-Service-Check-Acceptor/details
http://exchange.nagios.org/directory/Addons/Passive-Checks/NSCA--2D-Nagios-Service-Check-Acceptor/details
https://wiki.openstack.org/wiki/celiometer

288 J. Gutierrez-Aguado et al.

Table 1 Comparative Analysis of current monitoring tools against the proposed architecture

Monitoring Platform R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Brandt et al. [2] × � � × × × × × × �
Wuhib and Stadler [18] × � � × × × � × × �
Kertesz et al. [8] × � � × × × � × × �
Dhingra et al. [6] × � � × × × � × × �
PCMONS [5] � � � � × × � × � �
Nagios � � � � × × × × × �
Ganglia × � � × × × × × × �
DARGOS [16] × � � � � × � × � �
Zabbix � � � � × × × × × �
Sensu × � � � � × × × � �
Hiperic-HQ × � � × � × × × × �
Celiometer �c × � � � � � � × �
Azure Watch �c × � × � � � � × �
CloudKick �c × � × � � � � × �
IaasMon � � � � � � � � � �

The title of the columns matches with the IDs available in the list of requirements listed in Section 1. �∗ means that only a set of
metrics are directly provided by the hypervisor

4 Traditional Monitoring Architecture

The lower-left part of Fig. 1 depicts the conceptual
architecture of enterprise-class distributed monitor-
ing. In essence, there is a core service in charge of
monitoring capabilities. This core is divided in, at
least, 4 different modules.Notification module notifies
admins when some monitored success occurs (see 9 in
Fig. 1); Event module processes actions when a mon-
itoring alert occurs (see 10 in Fig. 1); Performance
module controls the performance of the monitoring
software balancing the load between peers (see 11 in
Fig. 1); And,monitoring module carrying out the mon-
itoring of machines (see 12 in Fig. 1). These modules
generate the database that represents the current sta-
tus of all the monitored machines and services (status
file) and the log files with all actions done internally
in the monitoring architecture (log files). A graphi-
cal interface shows graphically the current status of
all the monitored machines and services using the
information available in such databases.

Metrics are gathered by a set of plugins. These plu-
gins gather locally and/or remotely metrics from the
different components of the infrastructure. In turn, the
remote monitoring of infrastructures and services can
be done following an active or passive monitoring,

usually associated to push and pull methods, respec-
tively. Also, it can be done using either an agent-based
or agent-less approach. Agent-based approach relies
on the installation of agent software inside the mon-
itored components in charge of gathering the metrics
in the device and sending them back to the monitor-
ing architecture. Agent-less approach relies on differ-
ent techniques to gather metrics without the need of
installing an agent in the monitored component which
in turn leads to transparent monitoring approaches.
Some examples of agentless monitoring can be: i) the
scanning of a particular port in order to determine if
the service is responding correctly; ii) the usage of
ICMP echo request to get reachability and round trip
time metrics; iii) The usage of plugins in the hypervi-
sor of VMs to gather performance information about
the VMs.

The monitoring software uses the config files to
determine what machines and services have to be
monitored. These files also specify how to gather these
metrics. The Configuration Management Interface,
NConf20 for Nagios, enables the dynamic definition
of the resources to be monitored by means of an API
interface.

20http://nconf.org/dokuwiki/doku.php?id=main

http://nconf.org/dokuwiki/doku.php?id=main

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 289

Fig. 1 Proposed Monitoring Architecture for Cloud Computing

5 Proposed Monitoring Architecture for Cloud
Computing

The architecture proposed in this paper integrates
Nagios with the control and data planes of Open-
Stack. This integration is achieved by means of the
insertion of new architectural components to enable
such integration. On the one hand, the Infrastructure
Monitoring Manager (IMM), highlighted in different
color in Fig. 1 (see 13 Fig. 1), is the first innovation
and clear differentiating point of our architecture with
respect to other ones.

As can be seen in Fig. 1, IMM is attached to
the communication middleware of OpenStack so it
receives the messages interchanged in the control
plane between the components of the cloud infras-
tructure. As soon as IMM captures the messages from
the communication middleware, they are processed
producing a set of actions to dynamically adapt the

configuration of the monitoring architecture with the
up-to-date information. Notice that the messages can
be processed by the IMM concurrently with the pro-
cessing done by the associated modules in OpenStack.
This simultaneous processing reduces significantly
the overhead time of the monitoring architecture and
increases substantially its responsiveness. This mes-
sage interception enables IMM to capture changes in
the topology, changes in the IP re-assignation, changes
in the VM states, as they are happening i.e. close
to real time. Table 2 shows a detailed description
of the different messages intercepted and the associ-
ated actions design to be performed in the new IMM
architectural component.

IMM receives messages when new VMs are cre-
ated (#1-#4 in Table 2) or deleted (#5 in Table 2)
and also when new physical machines are inserted or
removed in the data center (#6 in Table 2). When these
messages are received in the IMM, it immediately

290 J. Gutierrez-Aguado et al.

Table 2 Messages intercepted by the Infrastructure Monitoring Manager (IMM) and the action done accordingly

Message Type/ Destination Description Action to be performed in

Name in OpenStack IMM

1 Run VM (run instance) Scheduler This message ask the scheduler

for the best place to allocate

a VM

2 Run VM (run instance) Compute This message ask the physical Get user, Tenant, and VM

machines to allocate/create name and store them

a VM

3 Allocate VM Multiple This message ask for resources Get IP and MAC of the VM

(allocate for instance) for a VM (storage, networking) and store them.

4 Get New Instance Info Multiple This message provides status The VM is registered in the

(get instace nw info) information about the VMs monitoring architecture

using the information

previous stored about it.

5 Deallocate VM Multiple This message ask for destroying The VM is unregistered in the

(deallocate for instance) a VM monitoring architecture

and IP address is released

6 Update Physical Machine Multiple This message is a heartbeat to The Physical Machines is

(update service capabilities) update the status of physical registered and/or updated

machines in the monitoring

architecture

registers the new changes in the monitoring software
by means of invocations to theConfigurationManage-
ment Interface of the monitoring software. So, IMM
acts as a highly scalable auto-discovery process for
both physical and virtual topologies which fits per-
fectly in public cloud computing. It enables to perform
the monitoring of all the physical and virtual machines
in the cloud infrastructure without any manual con-
figuration of the monitoring architecture, detecting
quickly any change in the virtual topology, any re-
assignation of IP addresses and any change in the VM
states and also it will keep synchronized the status
of the complete cloud stack and the monitoring tool.
This integration provides an effective coupling of the
control plane of the monitoring framework and cloud
infrastructure.

However, the integration needs to be done in the
data plane as well. Concretely, the monitoring tool
needs to have also connectively in the data plane to
enable the communication with all the VMs and phys-
ical machines of the cloud infrastructure. The reader
may be aware that communications between VMs
are isolated between them, using different VLANs,
different IP ranges, etc. Then, only VMs belong to

the same cloud user can communicated between them.
This is a challenge due to the fact that the monitor-
ing tool needs to interact in a secure way with all
the VMs of the cloud infrastructure (with different IP
ranges) in a transparent way. To achieve this integra-
tion in the data plane, it has been provided another
novel architectural component, the Cloud monitor-
ing Checks (CMC) (see 14 Fig. 1). CMC enables the
monitoring tool to communicate with any VMs of
the cloud infrastructure regardless its location and/or
owner. OpenStack networking (Neutron) makes use
of Linux namespaces to create different communi-
cation networks and secure boundaries between all
the VMs associated to a particular cloud user and to
isolate these networks between them. So, the CMC
enables the monitoring tool to communicate with any
Linux namespace achieving communication with all
the VMS to be monitored. The novel CMC module is
another clear differentiating point of our contribution
and enables the monitoring tool to have network-
ing admin privileges to monitor efficiently all the
machines of the architecture. We have defined two
types of Nagios checks: those that collect metrics from
physical machines (performing the checking through

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 291

the control plane), and those that collect metrics from
virtual machines (performing the checking through the
data plane - using the namespace of the network where
the VM are located).

In scenarios where there are different types of
resources (physical and virtual machines) to be mon-
itored, it is important to be able to define hierarchical
groups of resources to display and manage them as
a whole, for example, assigning a monitoring met-
ric to a whole group in order to make easier the
management of the monitoring architecture. Figure 2
represents the hierarchical structure proposed for the
monitoring of public cloud infrastructures and ser-
vices. Figure 2 represents all the machines in the top
of the tree. These machines are subdivided in three
logical groups, representing physical machines of the
infrastructure (see 3 in Fig. 2), virtual machines used
internally for the own cloud infrastructure for spe-
cific purposes, usually referred as Management VMs
(see 4 in Fig. 2), and also customer s VMs (see 2 in
Fig. 2) belonging to the different customers (indis-
tinctly referred as tenants) (see 1 in Fig. 2). White
nodes in Fig. 2 represent those automatically gener-
ated and managed by IMM as part of the dynamic
auto-discovery process and grey node are statically
created as part of the bootstrapping process of the pro-
posed architecture. This division enables us to assign
different metrics to each logical group. For example,
the ping service shown in Fig. 2 and attached to all
machines group means that all the machines will be

pinged to know their status whereas the free disk
service shown in Fig. 2 is also attached to Manage-
ment VMs. Thus, the hierarchical groups of resources
that are under the complete control of the public
cloud provider can be exhaustively monitored using an
agent-based approach since installing software inside
of such resources is not a problem. Also, customer
s VMs can be monitored using only and exclusively
transparent and non-intrusive techniques like ICMP
connections, TCP/UDP connections, metrics extracted
directly from the hypervisor, etc.

When the IMM captures a message from the mes-
sage bus, it recognizes the type of resource to be
monitored from the type of message being intercepted
being able to differentiate between physical and vir-
tual machines. This enables to differentiate types of
resources. Also, management VMs are identifies due
to the usage of special and reserved names. Thus, the
name of VMs is used to discriminate between cus-
tomer s VMs and management VMs. With this infor-
mation it is possible to insert the identified machine in
the associated logical group of the hierarchy. For the
sake of simplicity, Fig. 2 only shows a couple of moni-
tored metrics per each group, however, the monitoring
architecture manages hundreds of them enabling a
complete customization and management of the log-
ical groups. It is worthy to mention that the way in
which IMM dynamically assign monitored resourced
with in the proposed tree available in Fig. 2 is also
another innovation of the proposed architecture.

Fig. 2 Logical Grouping for Monitoring Cloud Computing Machines

292 J. Gutierrez-Aguado et al.

Fig. 3 Sequence Diagram for the use case in which a customer is creating the first VM in the Cloud Provider

6 Implementation

The architecture presented in the previous sections
has been implemented and released to the commu-
nity as an open source project under GPL license.
IaaSMon can be downloaded together with the docu-
mentation and the source code21 to validate, reproduce
and use this research work. IaaSMon has been devel-
oped completely in Java. This module is independent
of the rest of the services in the cloud stack and
only requires to be attached to the RabbitMQ22 mes-
sage bus used to interconnect the different OpenStack
modules. The prototype subscribes to the relevant
exchanges in RabbitMQ in order to receive messages
about creation and elimination of VMs and also reg-
istration of physical machines. The module is defined
in approximately 3000 lines of Java code which are
complemented with another 3000 lines of scripting

21http://sourceforge.net/projects/iaasmon/
22http://www.rabbitmq.com

for doing the automatic installation and configura-
tion of the complete monitoring architecture. IaaSMon
has the innovative capability to update Nagios in two
different ways, either as soon as the infrastructure
knows the future IP address of the VM or when the
VM has already been successfully created. The former
approach is optimized for responsiveness whereas the
latter is optimized for consistency, using respectively
the message #3 and message #4 in Table 2 to update
Nagios. To use IaaSMon, it is assumed that there is
an OpenStack infrastructure and a Nagios monitoring
tool already installed in the cloud infrastructure. On
top of that, IaaSMon provides an installation script
that performs the initial configuration and set up of the
new architectural components proposed, i.e. IMM and
CMC.

In order to better explain the behavior of IaaSMon,
Fig. 3 shows a sequence diagram for three different
case studies where: A) a customer is registered in the
cloud provider; B) a customer creates and launch a
new VM, we assume that this VM is the first one

http://sourceforge.net/projects/iaasmon/
http://www.rabbitmq.com

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 293

Fig. 4 Nagios Snapshots
showing the mapping
between physical and virtual
machines dinamically
discovered by IaaSMon

created by the user in the public cloud provider so
that IaaSMon does not have any previous information
available for this customer; C) the physical machines
update periodically their status. The name of the meth-
ods available in Fig. 3 does not match exactly with
the implemented ones but we have decided to pro-
vide more descriptive names for readability purposes.
Figure 3 assumes that IaaSMon is setup in the mode
optimized for responsiveness.

For case study A), it is worthy to see in Fig. 3
how the creation of a new tenant is intercepted by our
IMM producing the creation of a new logical group
associated to such tenant in the tree structure pre-
viously explained. For the case study B) where the
user is creating a new VM, notice that IMM intercepts
the createVM message and then performs HTTP
calls to NConf with the new information to be con-
figured in Nagios. Then, NConf generates the new
config files and updates Nagios accordingly. IaaSMon
support the usage of a predefined VM name prefix
and/or a predefined tenant name to discriminate dif-
ferent types of VMs (customer VMs and management
VMs). Finally, see how IMM is intercepting periodi-
cally the status of physical machines available within

the cloud infrastructure in case study C) by means of
the periodic heart beat sent to update their status into
the cloud infrastructure.

By default, each logical group of machines (shown
in Fig. 2) comes with a wider set of predefined mon-
itoring metrics. Moreover, simple OpenStack deploy-
ments do not use any VM for management purpose so
that this group could be always empty in some deploy-
ments. We decided to include it to provide further
support to other open cloud stacks like CloudStack23

which make use of management VMs. IaaSMon has
been designed to allow cloud providers to combine
automatic configuration with fine-grain manual con-
figuration of the different monitored resources. So, the
information enforced automatically by IaaSMon can
be extended and fully customized manually using the
NConf web page. This is very powerful and another
differentiating point because it enables the manual
customization of the monitoring system while the
whole automated discovery technique is in place.

For the agent-based monitoring approach, the mon-
itoring architecture relies in NRPE, Nagios Remote

23http://incubator.apache.org/cloudstack

http://incubator.apache.org/cloudstack

294 J. Gutierrez-Aguado et al.

Fig. 5 Nagios Snapshots: A) Mapping physical /virtual
machines dinamically discovered. B) Monitoring logic groups
and Monitoring metrics associated to each group

Plugin Executor and NSCA, Nagios Service Check
Acceptor, to act respectively as active and passive
agents to gather metrics remotely. We also rely in
the wide set of Nagios plugins available to gather a
vast number of metrics using both agent-based and
agent-less approaches.

Figure 4 shows a screenshot of Nagios monitoring
128 VMs allocated in 8 physical nodes using Open-
Stack and IaaSMon. This figure shows the correlation
between physical and virtual machines graphically by
means of a two-layer graph visualizing graphically
workload distributions, system failures, etc. This is
achieved by means of the correlation of the informa-
tion intercepted in messages of the OpenStack control
plane providing useful and valuable information to the
administrator of the cloud provider. This correlation is
detected and enforced by the IMM.

Figure 5 shows a screenshot where the cloud
administrator can see: i) the logical groups previously
described in Fig. 2; ii) all the VMs grouped by tenant
(ACME and UV are two example tenants which con-
tain some VMs each) which has been automatically
discovered by IaaSMon; and, users and VMs among
other monitoring information. For each, VM there is a

number of services and metrics being monitored and
for each metric, Nagios provides different graphical
and numerical information shown to the user.

In term of scalability, both OpenStack and Nagios
have intensively proved their scalability due to the
number of large-scale deployments being done so far
for each of these tools. OpenStack addressed scalabil-
ity in its own design where it is deployed in a complex
distributed environment. Nagios manages scalability
by means of the usage of DNX24 (Distributed Nagios
Executor). DNX provides Nagios with a distributed
master-slave infrastructure where Nagios can scale
the monitoring of thousands of services and resources
efficiently.

7 Evaluation

IaaSMon prototype has been validated empirically in
a mid-size production-ready cloud infrastructure com-
posed by 8 high-dense Bull R424-E3 blades with
2 Xeon ES-2650 2Ghz, 1TB SATA III, 32 GB @

24http://dnx.sourceforge.net

http://dnx.sourceforge.net

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 295

1600Mhz wired with two gigabit networks over which
we installed an OpenStack Folsom single-host, Nagios
3.4.4, NConf 1.3.0 and our prototype.

We have created 128 VMs, one by one, at a con-
stant rate. This rate has been fixed between 16 and 18
seconds. Smaller numbers make the infrastructure to
fail creating at least one VM due to the high stressing
of the system even without the monitoring architecture
running. Bigger numbers makes monitoring overhead
negligible and the main purpose of this experiment
is to analyze the behavior of the monitoring archi-
tecture is the worse conditions in order to enable the
reader to see the worse-case scenario. Times have been
measured with and without our prototype running in
order to analyze the overhead imposed by IaaSMon
into the system. It is worthy to mention that 128 VMs
is exactly the number of cores available in the blades
used. It has been decided to do not increase this num-
ber in order to do not bias the results provided. A
higher number of VMs will cause much slower VMs
leading to low overhead for the monitoring architec-
ture and we are focused on providing information for
the worst case scenario. Figure 6 shows the average
of 5 executions measuring the time where the scripts
initiates the creation of the first VM to the arrival of
at first ICMP echo reply received for all the launched
VMs. 20 different metrics are monitored from each
VM and 40 different metrics are monitoring for each
physical machine. As seen in Fig. 6, in the worst
scenario (T=16), where the infrastructure is really
stressed, our monitoring module only imposes around
2 % of overhead time from the customer s perspec-
tive whereas this percentage become negligible (near
to 0 %) for less stressed situations. These numbers

Fig. 6 OpenStack performance comparison with and without
our architecture when creating 128 VMs at different arrival rates
of creation requests

clearly validate the scalability, feasibility and good
performance exposed of our architecture. Notice that
more stress levels will automatically lead to failures in
the creation of VMs even without any monitoring tool
running. It means that the worst case scenario imposes
a 2 % of overhead.

Figure 7 shows the most and less stressed scenarios
with respectively requests intervals at 16 and 18 sec-
onds at top and bottom subfigures, respectively. These
figures show how our system behaves along the time
when the number of VMs are being increased at a con-
stant rate. The following times have been gathered:
API Time represents the time between client creates
a request and thus requests is inserted in the commu-
nication bus; OpenStack Time is the time required to
process the message in OpenStack; Monitoring Time
is the time required by IaaSMon for starting the mon-
itoring of all the services of the new VM in Nagios;
And finally, VM Ping Time is the time when the
machine answers to the first ICMP echo request. Both
subfigures available in Fig. 7 show a linear increase
in the total time associated to process VMS when
increasing in the number of VMs mainly due to the
increase in the workload of the whole system. For this

Fig. 7 Scalability of the Monitoring architecture when ranging
the number of VMs between 1 and 128 for a constant arrival
interval time of create VM requests: 16 seconds (top) and 18
seconds (bottom)

296 J. Gutierrez-Aguado et al.

experiment, IasSMon has been optimized for respon-
siveness and thus it reacts as soon as the infrastructure
knows the future IP address. The mean time required
by IMM to update Nagios is 8,7 and 6,9 seconds for 16
and 18 interval requests, respectively. It represents in
average around 10 %more of the overall time required
by OpenStack in both cases. Note that even having
10 % of overhead time from the OpenStack perspec-
tive, there is not any overhead at all from the customer
perspective since the VMs are being booted simulta-
neously to the configuration of the monitoring system
and, in consequence, VM are being reached (pinged)
always after the finalization of the configuration of the
monitoring system. This parallelization is the reason
of the low overhead (2 % in the worst case scenario
tested) shown in Fig. 6 and are a clear sign of the
scalability of the proposed architecture.

In the two scenarios shown in Fig. 7, the monitoring
system is configured in average 15 seconds before the
VMs are reachable. This fact demonstrates the good
responsiveness of our proposal even in the worst case
scenario.

8 Conclusion

In this contribution, it has been proven the advan-
tages in terms of overhead and scalability associated
to the early reaction in the configuration of Nagios
due to the integration of the monitoring solution
with the control and data planes of the public cloud
stack which leads to a rapid and adaptive monitor-
ing solution suitable for monitoring public clouds. It
has been also described a complete distributed and
high scalable monitoring solution suitable for moni-
toring public cloud infrastructures. The solutions ful-
fill all the requirements identified for public cloud
infrastructures. A novel auto-discovery process for
both virtual and physical infrastructure has also been
provided that allows the correlation between phys-
ical and virtual machine lately used for correlating
monitored metrics. It has been demonstrated how a
Nagios can be adapted to fit in cloud computing sce-
narios achieving all the benefits of years of already
available development in the monitoring field. It has
been provided a new component for OpenStack which
enable other researchers and practitioners to mon-
itor their cloud infrastructure even in public cloud
scenarios.

As future work, it is planned to extend the integra-
tion of the control plane of the cloud stack and the
monitoring solution in order to cover advanced scenar-
ios as migration of VMs, correlation of VM sharing
the same golden image and etc.

Acknowledgments This work is supported by the European
Commission Horizon 2020 Programme under grant agreement
number H2020-ICT-2014-2/671672 - SELFNET (Framework
for Self-Organized Network Management in Virtualized and
Software Defined Networks) and by the Universitat de Valencia
Research Infrastructure Grant 2014.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

References

1. Aceto, G., Botta, A., de Donato, W., Pescap, A.: Cloud
monitoring A survey. Comput. Netw.: Int. J. Comput.
Telecommun. Netw. 57(9), 2093–2115 (2011)

2. Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thomp-
son, D., Wong, M.: Resource Monitoring and Management
with OVIS to Enable HPC. In: Cloud Computing Envi-
ronments IEEE International Symposium on Parallel &
Distributed Processing, Rome (2009)

3. Cuomo, A., Modica, G.D., Distefano, S., Puliafito, A., Rak,
M., Tomarchio, O., Venticinque, S., Villano, U.: An SLA-
based broker for cloud infrastructures. J. Grid Comput. 11,
1–25 (2013)

4. Barbosa de Carvalho, M., Zambenedetti Granville, L.:
Incorporating Virtualization Awareness in Service Moni-
toring Systems. In: IFIP/IEEE International Symposium on
Integrated Network Management (2011)

5. Aparecida de Chaves, S., Brundo Uriarte, R., Becker West-
phall, C.: Toward an architecture for monitoring private
clouds. IEEE Commun. Mag. 49, 130–137 (2009)

6. Dhingra, M., Lakshmi, J., Nandy, S.K.: Resource Usage
Monitoring in Clouds. In: De ACM/IEEE 13th International
Conference on Grid Computing (2012)

7. Katsaros, G., Kubert, R., Gallizo, G.: Building a Service-
Oriented Monitoring framework with REST and Nagios.
In: IEEE International Conference on Services Computing
(2011)

8. Kertesz, A., Kecskemeti, G., Marosi, A., Oriol, M.,
Franch, X., Marco, J.: Integrated Monitoring Approach for
Seamless Service Provisioning in Federated Clouds. In:
20th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing, Munich, Germany
(2012)

9. Ketesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs,
S., Rodrguez, M., Merc, O., Marosi, A.C., Marco, J.,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers 297

Franch, X.: Enhancing federated cloud management with
an integrated service monitoring approach. J. Grid Comput.
11, 699–720 (2013)

10. Koenig, B., Alcaraz Calero, J.M., Kirchnick, J.: Elastic
monitoring framework for cloud infrastructures. IET Com-
mun. 6, 1306–1315 (2011)

11. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A
review of auto-scaling techniques for elastic applications in
cloud environments. J. Grid Comput. 12, 559–592 (2015)

12. Massonet, P., Naqvi, S., Ponsard, C., Latanicki, J., Rochw-
erger, B., Villari, M.: A Monitoring and Audit Logging
Architecture for Data Location Compliance in Federated
Cloud Infrastructures. In: IEEE International Parallel &
Distributed Processing Symposium, Anchorage, Alaska
(2011)

13. Milojicic, D., Llorente, I.M., Opennebula, R.S.M.: A cloud
management tool. IEEE Internet Comput. 15(2), 11–14
(2011)

14. Moses, J., Iyer, R., Illikkal, R., Srinivasan, S., Aisopos, K.:
Shared Resource Monitoring and Throughput Optimization

in Cloud-Computing Datacenters. In: IEEE International
Parallel & Distributed Processing Symposium, Anchorage,
Alaska (2011)

15. Petcu, D.: Consuming resources and services from multi-
ple clouds: From terminology to cloudware support. J. Grid
Comput. 12, 321–345 (2014)

16. Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler,
J.M., Corradi, A., Dargos, L.F.: A highly adaptable
and scalable monitoring architecture for multi-tenant
clouds. Futur. Gener. Comput. Syst. 29(8), 2041–2056
(2013)

17. Romano, L., De Mari, D., Jerzak, Z., Fetzer, C.: A
Novel Approach To QoS Monitoring In The Cloud.
In: First International Conference on Data Compres-
sion, Communications and Processing, Palinuro, Italy
(2011)

18. Wuhib, F., Stadler, R.: Distributed Monitoring and
Resource Management for Large Cloud Environments. In:
IFIP/IEEE International Symposium on Integrated Network
Management, Dublin, Ireland (2011)

	IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers
	Abstract
	Introduction
	Related Works
	Cloud Computing Architecture
	Traditional Monitoring Architecture
	Proposed Monitoring Architecture for Cloud Computing
	Implementation
	Evaluation
	Conclusion
	Acknowledgments
	Open Access
	References

