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1 Introduction

The leptonic decays of C-even charmonium states into a lepton pair have a very small

branching ratio because they can only occur via a two-photon intermediate state χcJ →
γ∗γ∗ → e+e−. However with the high-luminosity BEPC-II e+e−-accelerator operating

on the charmonium energy region such measurements of direct production cross section

e+e− → χcJ become feasible. The study of the mechanism of the production of C-even

quarkonium states is especially interesting in view of the production of higher resonances

such as the exotic charmonium-like state X(3872).

The decays χcJ → l+l− have already been studied long time ago in ref. [1]. The authors

considered the quarkonium description and a vector dominance model (VDM) in order to

describe the decay amplitudes of charmonium states with J = 1, 2. It was found that a

naive quarkonium description is problematic because of infrared logarithmic divergencies

arising in the integrals describing the quark-photon annihilation loop. Such divergencies

indicate that the corresponding contribution is also sensitive to long distance physics. The

corresponding integrals in ref. [1] have been regularized by introducing the binding energy

Mχ−2mQ ' 500 MeV. The numerical estimates obtained in this way give very small value

of the widths, smaller than bounds derived from analyticity and unitarity in the same

work. Probably, a more realistic estimate was obtained using generalized VDM which

yields a larger numerical value for the widths, consistent with the unitarity constrains:

Γ[χc1 → e+e−] ' 0.46 eV and Γ[χc2 → e+e−] ' 0.014 eV [1].

Recently the decay rate of the χc1 state was again estimated in [2] using the VDM

approach, with result Γ[χc1 → e+e−] ' 0.1 eV. The short distance contributions describing

a configuration with highly virtual photons were considered in this framework as unknown

contact vertices giving rise to a theoretical uncertainty.
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The aim of the present work is to provide a more systematic description of the de-

cay amplitudes for χcJ → γ∗γ∗ → e+e− process using the NRQCD factorization frame-

work [4, 5], see also review [6] and references theirin. This technique allows one to perform a

systematic description of heavy quarkonium states using the small relative velocity of heavy

quarks and the small QCD running coupling at short distances. Within this framework

we associate the IR-divergencies found in [1] with a specific quark-photon operator which

describes a configuration with an ultrasoft photon. The matrix element of this operator de-

scribes the overlapping with the higher Fock state which consists of heavy quark-antiquark

and photon. This allows us to perform a systematic separation and description of the

different contributions relevant in a leading-order expansion in small velocity v.

Our paper is organized as follows. In section 2 we briefly describe our notation and

provide definitions of various quantities used in the following. Section 3 is devoted to the

investigation of the one-loop integral which describes the leading-order contribution. In

this section we establish the dominant regions and provide a description of the amplitude

within the NRQCD factorization framework. Section 4 is devoted to the calculation of

the ultrasoft photon matrix element in the heavy hadron chiral effective theory (HHχPT).

Furthermore, a estimate of the decay rates is given. In section 5 we briefly summarize

our results.

2 Kinematics and notation

Let us start from the description of the decay kinematics χcJ(P ) → e+(l1)e−(l2). The

initial state momentum can be written as

P = Mχ ω, ω2 = 1, (2.1)

where ω denotes the charmonium velocity. In the following, we consider the charmonium

rest frame which implies

ω = (1,~0). (2.2)

The small relative velocity of heavy quarks in the bound state is denoted as v. Neglecting

lepton masses, the lepton momenta can be written as

l1 = Mχ
n

2
, l2 = Mχ

n̄

2
, (2.3)

where n and n̄ denote the light-like vectors which satisfy (n · n̄) = 2. Any 4-vector V µ can

be expanded as

V µ = (V · n)
n̄µ

2
+ (V · n̄)

nµ

2
+ V µ

⊥ , (2.4)

where V⊥ denotes the components transverse to the light-like vectors: (V⊥ · n) = (V⊥ · n̄) =

0. Similarly, one can also write a decomposition

V µ = (V · ω)ωµ + V µ
> , (2.5)

where V> denotes the component which is orthogonal to the velocity ω: (ω · V>) = 0. In

the following we assume that in the rest frame

ω =
n

2
+
n̄

2
. (2.6)
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The momenta of the heavy quark and antiquark with mass m which form a quarkonium

state can be written as

p1 =
1

2
P + ∆, p2 =

1

2
P −∆, (2.7)

where the relative momentum ∆ satisfies

(∆ · ω) = 0, ∆2 = −~∆2. (2.8)

The heavy quarks which create a bound state are non-relativistic, implying that the relative

velocity v ∼ ∆/m is quite small: v � 1.

The power counting rules of NRQCD has been established in [3, 4]. Following these

arguments we assume that the mass m is large enough and that the most important scales

such as mass m, typical three-momentum of the heavy quark ∼ mv and its typical kinetic

energy ∼ mv2 satisfy (
mv2

)2 � (mv)2 � m2. (2.9)

Integrating out the modes with hard momenta ph ∼ mc one passes onto the effective

theory NRQCD which describes the modes with the soft momenta ps ∼ mv. If the scale

mv � ΛQCD then one can integrate over the soft region together with potential gluons

with momenta [5, 7–10]

p0 ∼ mv2, ~p ∼ m~v, (2.10)

After this one obtains a new effective theory which is known as potential NRQCD (pN-

RQCD). For a more detailed information about these effective theories see ref. [6] and

references therein.

The charm quark mass mc ' 1.5 GeV is not large enough compared to ΛQCD therefore

in this case one can only factorize the effects at momentum scales of order mc. However,

in the QED sector one can also consider the possibility to integrate over the soft region

too. As we will show further on, such situation is relevant for the factorization of the

electromagnetic loop describing the transition cc̄→ γ∗γ∗ → e+e−.

After factorization of the hard contribution, the nonpertubative QCD dynamics is

described by the matrix elements of appropriate operators defined in an effective theory.

In the following, we will need the following set of NRQCD operators which describe the

matrix elements between the charmonium and the vacuum states:

Oσ(3S1) = χ†ωγ
σ
>ψω, (2.11)

O(3P0) = − 1√
3
χ†ω

(−i
2

)←→
D α
>γ

α
>ψω, (2.12)

Oβ(3P1) =
1

2
√

2
χ†ω
←→
D α
>

(−i
2

)[
γα>, γ

β
>

]
γ5ψω, (2.13)

Oαβ(3P2) = χ†ω

(−i
2

)←→
D

(α
> γ

β)
> ψω, (2.14)

where the covariant derivative iDµ = i∂µ + gAµ,
←→
D > =

−→
D> −

←−
D>. Furthermore, we

use the covariant four-component fields ψω, χω to describe the soft quark and antiquarks

– 3 –
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within the NRQCD framework. These fields satisfy

χ†ω /ω = −χ†ω, /ωψω = ψω. (2.15)

Using eq. (2.2), one can show that the operators in eqs. (2.11)–(2.14) can be reduced to the

set of well-known non-relativistic operators constructed from two-component Pauli spinors.

The matrix elements of these operators are well known in the literature and can be

written as

〈0|ψ†ωγσ>χω |J/ψ〉 = εσψ
〈
O(3S1)

〉
, (2.16)

〈0|ψ†ωγσ>χω
∣∣ψ′〉 = εσψ′

〈
O′(3S1)

〉
, (2.17)

〈0| O(3P0) |χc0〉 = i
〈
O(3P0)

〉
, (2.18)

〈0| Oσ(3P1) |χc1〉 = iεσχ
〈
O(3P0)

〉
, (2.19)

〈0| Oαβ(3P2) |χc2〉 = iεαβχ
〈
O(3P0)

〉
. (2.20)

The constants
〈
O(3S1)

〉
and

〈
O(3P0)

〉
are related to the value of the charmonium wave

functions at the origin

〈
O(3S1)

〉
=
√

2Nc

√
2Mψ

√
1

4π
R10(0), (2.21)

〈
O′(3S1)

〉
=
√

2Nc

√
2Mψ′

√
1

4π
R20(0), (2.22)

〈
O(3P0)

〉
=
√

2Nc

√
2Mχc0

√
3

4π
R′21(0), (2.23)

where Rnl(r) is the radial part of the Schrödinger wave function and R′nl(r) denotes its

derivative. The r.h.s. of eqs. (2.18)–(2.20) depends on of the same constant
〈
O(3P0)

〉
due

to the spin symmetry of the leading non-relativistic action [4]. The polarization vectors

εσψ(λ), εβχ(λ) and εαβχ (λ) correspond to spin-1 and spin-2 charmonium states, respectively.

They are normalized to satisfy∑
λ

εσX(λ)
{
ερX(λ)

}∗
= −gσρ +

P σP ρ

M2
X

, (2.24)

with X = {J/ψ, χc1} and∑
λ

εαβχ (λ)
{
εα
′β′
χ (λ)

}∗
=

1

2
Mαα′Mββ′ +

1

2
Mαβ′Mβα′ −

1

3
MαβMα′β′ , (2.25)

with Mαβ = −gαβ + PαPβ/M
2
χc2

.

The decay amplitudes χcJ → e+e− are defined as〈
e+e−; out

∣∣ in; χcJ〉 = i(2π)4δ(l1 + l2 − P ) AJ , (2.26)

with

AJ = ūnΓJvn̄ TJ , (2.27)
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l2

p1

−p2

p1 − k l1 − k l1 − kk − p2

Figure 1. One-loop diagrams describing the annihilation of χcJ into an e+e− pair.

and where ūn and v̄n̄ denotes the spinors of the massles lepton and antilepton, respectively

ūn = ū(l1)
/̄n/n

4
, vn̄ =

/̄n/n

4
v(l2), (2.28)

and

Γ1 = εσχγ⊥σγ5, Γ2 = εσρχ nργ⊥σ. (2.29)

The leading-order contribution to these amplitudes arises from the annihilation of

heavy quarks into two photons which create the outgoing lepton pair, see figure 1. If the

one-loop integral is dominated by the hard region where both photons and heavy quark are

highly off-shell then one can expect that such process can be described within the NRQCD

approach and the amplitude can be factorized into hard and soft parts. In the next section

we consider this possibility in more detail.

3 Factorization of decay amplitudes in NRQCD

The leading-order in αs diagrams describing the e+e− decay of C-even charmonia are

shown in figure 1. These one-loop diagrams are constructed from the photon, lepton and

heavy quark (double lines). The diagrams in figure 1 can be computed in the heavy quark

mass limit m → ∞, performing an expansion in the small parameter ∆/m ∼ v. Let us

to start from a naive guess that the dominant contribution is only provided by the hard

region where the loop momentum kµ ∼ m, and therefore all propagators are far of off-shell.

The leading-order contribution in 1/m is provided by projections onto the leading-order

operators O(3PJ) described in eqs. (2.18)–(2.20). The technical details are well known in

the literature, see e.g. [1]. The resulting expressions can be presented as

A1 = ενχ i
〈
O(3P0)

〉
e2
√

2

∫
dk

ūnγα( l/1 − /k)γβvn̄[
(k − l1)2

]
[k2]

[
(k − P )2

] 1

4
Tr
[
P1µνΓαβµ(k)

]
, (3.1)

A2 = εχµν i
〈
O(3P0)

〉
e2

∫
dk

ūnγα( l/1 − /k)γβvn̄[
(k − l1)2

]
[k2]

[
(k − P )2

] 1

4
Tr
[
Pν2 Γαβµ(k)

]
, (3.2)

where the square brackets for the propagators denote the standard Feynman prescription

[A]−1 ≡ [A+ iε]−1. The corresponding contribution to the amplitude χc0 → e+e− vanishes

and therefore is suppressed by a power of v and will not be considered it in this work.
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The total structure of the integrands in expressions (3.1) and (3.2) can be divided into

the lepton and heavy quark parts. The lepton part has ūn . . . vn̄ in the numerator and

includes the photon and lepton propagators in the denominators. The heavy quark part is

given by Tr
[
PiΓαβµ(k)

]
. We introduced the projections PJ onto charmonium states

Pµν1 =
1

4
(1 + /ω)(γµ>γ

ν
> − γν>γµ>)γ5, (3.3)

Pν2 = (1 + /ω)γν>. (3.4)

The expression for Γαβµ(k) reads

Γαβµ(k) =
1

2m

{
γµD̂Q(k) + D̂Q(k)γµ

}
+ D̂′µQ (k), (3.5)

with

D̂Q =
i(ieeQ)2[

k2 − 2m(kω)− ~∆2
] {γβ(m/ω − /k +m)γα + γα(/k −m/ω +m)γβ

}
, (3.6)

D̂′µQ =
i(ieeQ)2[

k2 − 2m(kω)− ~∆2
] {γβγµγα + γαγµγβ

}

+
i(ieeQ)22kµ[

k2 − 2m(kω)− ~∆2
]2

{
γβ(m/ω − /k +m)γα − γα(/k −m/ω +m)γβ

}
, (3.7)

where eQ is the charge of the heavy quark (ec = 2/3). The small squared relative mo-

mentum ~∆2 ∼ (mv)2 which appears in the heavy quark propagator provides an IR-

regularization and can be neglected if it is not required. With this regularization the

traces and loop integrals are computed in four dimensions with dk ≡ d4k/(2π)4.

The expressions (3.1) and (3.2) have been obtained by expanding the heavy quark

fields in position space

c(y) ' e−im(ωy)

[
1 + y · ∂ +

1

2m
i /D>

]
ψω(0) (3.8)

and projecting the soft quark fields χ†ω and ψω onto leading-order operators (2.12)–(2.14).

The terms ∼ y ·∂ψω (arising from the multipole expansion of the soft quark field arguments

) lead to the expansion of the integrand with respect to small relative momentum ∆ giving

the contribution D′µQ . The terms proportional to ∼ 1
2m /D> give the contribution with D̂Q.

The evaluation of the integrals in eqs. (3.1) and (3.2) gives

A1 = ūnΓ1vn i
〈
O(3P0)

〉 α2

m3
e2
Q 2
√

2 ln
m2

2~∆2
, (3.9)

A2 = ūnΓ2vn i
〈
O(3P0)

〉 α2

m3
e2
Q

(
2 ln ~∆2/m2 +

2

3
(ln 2− 1 + iπ)

)
. (3.10)

These expressions are in agreement with the results obtained in ref. [1]. We obtain that

both amplitudes depend on the large logarithm ∼ ln ~∆2/m2 which is sensitive to the soft
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scale ~∆2. This shows that the starting assumption about one dominant region k ∼ m

is incorrect. There must be at least one more domain where some propagators in the

loop integral are soft. One can expect that the additional region is associated with the

configuration when one of the photons is soft. In this case the propagator of the heavy

quark is also soft and the hard configuration is described by the tree level subdiagram

describing the annihilation cc̄→ e+e− through one photon.

In order to get an idea about the explicit definition of this region it is useful to in-

vestigate the integrals of diagrams in figure 1 within the threshold expansion technique

worked out in ref. [5]. According to this analysis the threshold kinematics is described by

the following regions

hard : kµ ∼ m, (3.11)

soft : kµ ∼ mv, (3.12)

potential : k0 ∼ mv2, ~k ∼ mv, (3.13)

usoft : kµ ∼ mv2. (3.14)

The same regions can also be considered for the photon with momentum P − k. These re-

gions can be associated with the fields appearing in the effective Lagrangians, see e.g. ref. [6].

According to the threshold expansion prescription an integrand is expanded in each

domain to a required accuracy and the resulting integral is computed in dimensional regu-

larization. A detailed analysis of the full expressions in eqs. (3.1) and (3.2) is quite similar.

To be definite let us consider the integral which enters in eq. (3.1)

J =

∫
dk

e2 ūnγα(l1 − k)γβvn̄[
(k − l1)2

]
[k2]

[
(k − P )2

] ενχ
4

Tr
[
P1µνΓαβµ(k)

]
. (3.15)

Keeping the denominators of the heavy quark propagators in Γαβµ unexpanded

(p1 − k)2 −m2 =

(
1

2
P + ∆− k

)2

−m2 = k2 − P0k0 + 2(~k · ~∆)− ~∆2 +
1

4
P 2

0 −m2, (3.16)

(p2 − k)2 −m2 =

(
1

2
P −∆− k

)2

−m2 = k2 − P0k0 − 2(~k · ~∆)− ~∆2 +
1

4
P 2

0 −m2, (3.17)

where P0 ∼ m, P 2
0 /4 − m2 ∼ (mv)2 , ~∆ ∼ mv. In the hard region, the small scalar

products with ~∆ and the term P 2
0 /4−m2 � m2 can be neglected resulting in[(

1

2
P ±∆− k

)2

−m2

]
h

' k2 − (kP ) , (3.18)

which appear in the expressions (3.6) and (3.7) (up to small regularization term ~∆2). From

dimensional counting one immediately finds

Jh ∼
ūnΓvn
m3

, (3.19)
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where Γ denotes the Dirac structure. Computing the hard integral Jh in dimensional

regularization one finds the IR poles 1/ε. These singularities must cancel in the sum with

other contribution.

Expanding the integrand (3.15) in the soft region (3.12) yields

Js '
∫
dk

e2 ūnγα l/1γβvn̄
[−2 (kl1)] [k2] [4m2]

ενχ
4

Tr
[
P1µνΓαβµs (k)

]
, (3.20)

where Γαβµs (k) is given by (3.5) with

[DQ]s ∼
1

[−2(kω)]

{
γβ(/ω − 1)γα + γα(1− /ω)γβ

}
, (3.21)[

D′µQ

]
s
∼ 1

2m

1

[−(kω)]

{
γβγµγα + γαγµγβ

}
+

1

2m

kµ

[−(kω)]2

{
γβ(/ω+1)γα − γα(1−/ω)γβ

}
.

Calculating the trace and performing the contractions in the numerator results in

Js ∼
1

m3
ūnΓ1vn̄

∫
dk

1

[k2] [−(kω)]2
∼ ūnΓ1vn̄

m3
. (3.22)

As the integral in (3.22) is scaleless it therefore vanishes in the dimensional regularization,

i.e. Js = 0.

In the potential region (3.13), the expansion of the heavy quark propagator reads[(
1

2
P ±∆− k

)2

−m2

]
p

' P 2
0 /4−m2 − P0k0 −

(
~k ± ~∆

)2
. (3.23)

The computation of the corresponding integral then yields

Jp '
1

m
ūnΓ1vn̄

∫
dk

1[
−~k2

][
P 2

0 /4−m2 − P0k0 −
(
~k + ~∆

)2
]2 +

(
~∆→ −~∆

)
∼ ūnΓ1vn̄

v−1

m3
.

(3.24)

However the poles in k0 in the integrand of eq. (3.24) lie in the same imaginary half-plane

and therefore the integral over k0 vanishes. This observation is also true for the higher

order contributions in v appearing from this domain. We can therefore conclude that the

potential region cannot contribute in this case.

In the ultasoft domain (3.14), the heavy quark propagators are expanded as[(
k − 1

2
P ±∆

)2

−m2

]
us

' P 2
0 /4−m2 − P0k0 − ~∆2. (3.25)

Performing the expansion of the integrand one gets

Jus ∼
1

m
ūnΓ1vn̄

∫
dk

1

[k2]
[
P 2

0 /4−m2 − P0k0 − ~∆2
]2 ∼ ūnΓ1vn̄

1

m3
. (3.26)
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This integral has the same scaling behavior ∼ m−3 as the hard integral Jh in eq. (3.19).

One can also see that the integral in eq. (3.26) is UV divergent. The similar analysis can

also be carried out for the second photon with momentum k − P . Therefore we conclude

that the exact integral must be given by sum

J = Jh + Jus, (3.27)

where Jus denotes the contributions from the both ultrasoft domains. This conclusion can

be checked by explicit calculations. A similar conclusion for the two-photon diagrams in

figure 1 has also been obtained in ref. [11].

Guided by this consideration we suggest that the additional relevant domain is de-

scribed by the ultrasoft region. In order to find the description of the appropriate operator

in the effective theory one has to integrate out hard and soft photons and leptons. After

that the description of QED sector includes only collinear leptons and ultrasoft photons.

The integration of the soft photon with the lepton and quark must be described in the

framework of the effective theory.

Within the above picture the factorization of the decay amplitudes can be described

as a sum of two contributions

AJ = ūnΓJvn̄ C
(J)
γγ i

〈
O(3P0)

〉
+ Cγ

〈
e+e−

∣∣ ξ̄n(0)Y †n (0)γσ⊥Yn̄(0)ξn̄(0) Oσ(3S1) |χcJ〉 . (3.28)

The first term on r.h.s. of this equation corresponds to the hard domain with the hard

photons, C
(J)
γγ denotes the corresponding hard coefficient function.

The second term on r.h.s. of eq. (3.28) corresponds to the domain with the ultrasoft

photon. The operator Oσ(3S1) is defined in eq. (2.11). The outgoing collinear leptons are

described by fields ξ̄n and ξn̄ which defined as

ξ̄n(x) = ψ̄c(x)
/̄n/n

4
, ξn̄ =

/̄n/n

4
ψc(x). (3.29)

The photon Wilson lines Y †n and Yn̄ describe the interaction of the ultrasoft longitudinal

photons with the energetic lepton and antilepton and read

Y †n (0) = Pexp

{
ie

∫ ∞
0
ds n ·Bus(sn)

}
, Yn̄(0) = P̄exp

{
−ie

∫
∞
0 ds n̄ ·Bus(sn̄)

}
, (3.30)

where Bus
µ denotes the ultrasoft photon field. The appearance of these Wilson lines is

related with the fact that in a general gauge the tree level diagram with attachments of

n · Bus photon to the collinear field ξ̄n describing the outgoing lepton1 are resummed to

the P-ordered exponents

ψ̄c

(
1− e /Bus 1

i /D

)
' ξ̄n

(
1 + e n ·Bus 1

i (n ·D)

)
' ξ̄nY †n . (3.31)

1We assume electrical charge is measured in proton units (positron is particle and electron is antiparticle)

that allows to use the same notation for the covariant derivative and Wilson lines as in QCD.
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Figure 2. The hard one-photon exchange diagram.

The leading-order hard coefficient function Cγ is defined by the diagram in figure 2 and reads

Cγ =
απ

m2
eQ. (3.32)

The soft and collinear modes in the effective action describing the QED sector are decou-

pled. This property is well known in the soft-collinear effective theory, see e.g. refs. [12–14].

This allows us to contract the lepton fields in the second matrix element in eq. (3.28) and

rewrite it as〈
e+e−

∣∣ ξ̄n(0)Y †n (0)γσ⊥Yn̄(0)ξn̄(0) Oσ(3S1) |χcJ〉 = ūnγ
σ
⊥vn̄ 〈0| Oσγ (3S1) |χcJ〉 , (3.33)

with

Oσγ (3S1) ≡ Y †n (0)Yn̄(0)Oσ(3S1). (3.34)

The presence of the soft scale ~∆2 in eqs. (3.9) and (3.10) can be explained by the

contribution with ultrasoft photon. Therefore in order to find the hard coefficient functions

C
(J)
γγ we have to perform the matching onto the configuration described by eq. (3.28). For

that purpose we need to compute the ultrasoft matrix element (3.33) in the effective theory.

The interaction of ultrasoft photons with quarks are described within the pNRQED.

The ultrasoft photons have momentum p ∼ mv2 so that photon field scales as

Bus
µ ∼ mv2. (3.35)

The scaling of the quark fields reads

ψω ∼ (mv)3/2, ~∂iψω ∼ (mv)ψω, ∂0ψω ∼ (mv2)ψω. (3.36)

Using this counting one finds

C(J)
γγ Oσ(3PJ) ∼ m−3(mv)4. (3.37)

At the same time

CγOσγ (3S1) ∼ CγOσ(3S1) ∼ m−2(mv)3. (3.38)

However the pure quark operator Oσ(3S1) is C-odd and therefore it cannot contribute to

the matrix element with a C-even charmonium state

〈0| Oσ(3S1) |χcJ〉 = 0. (3.39)
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Figure 3. The diagrams generated by the T -product (3.43) in pNRQED. The crossed circle denotes

the vertex of the operator Oγ(3S1), the dashed lines represent the Wilson lines associated with light-

like directions n and n̄. The small crosses on the dashed lines show all possible attachments of the

photon.

In order to obtain a nontrivial contribution one needs to consider at least one interaction

of an ultrasoft photon with the quark in pNRQED. We only need the two-particle sector

describing the electromagnetic interactions of quarks (in rest frame ω = (1, 0))

Lem0 [Bus] =

∫
d4xψ†ω(x)γ0

(
iω · ∂ +

i∂> · i∂>
2m

)
ψω(x), (3.40)

Lem1 [Bus] =

∫
d4xψ†ω(x)γ0

[
~x · ∂> eeQ ω ·Bus(x0) +

1

m
eeQB

us(x0) · i∂>
]
ψω(x), (3.41)

and analogous contributions with antiquark fields. The arguments of the ultrasoft photon

field are expanded because the space components of the quark fields varies at ~x ∼ 1/mv,

the measure scales as dx0 ∼ 1/mv2, d3~x ∼ (mv)−3. With these rules one finds that

Lem0 ∼ v0 and Lem1 ∼ v1. The leading-order term (3.40) provides the soft quark propagator

∆ω(k) =
i

(ωk)− ~k2/2m+ iε
. (3.42)

A nontrivial contribution to the matrix element 〈0| . . . |χcJ〉 can be obtained from T -product

T{Oσγ (3S1),Lem1 [Bus]} ∼ mv4, (3.43)

which is of the same order as the hard contribution in eq. (3.37). Calculation of this T -

product gives diagrams shown in figure 3. The dashed lines can be associated with the

collinear leptons or equivalently with the ultrasoft Wilson lines (3.30). These diagrams

induce a mixing of the operators Oσγ (3S1) and O(3PJ) due to electromagnetic interaction

in the framework of pNRQED.

In order to perform the matching onto operators according to formula (3.28) one has

also to compute the contribution of the diagrams in figure 3. The simplest way to proceed

is to follow the same technique as we used above for diagrams in figure 1.

Let us consider χc2 as initial state. In this calculation we set P0 = 2m and only keep

the relative momentum ~∆. Then the sum of all four diagrams gives

〈
e+e−

∣∣CγT{Oσγ (3S1),Lem1 [Bus]} |χc2〉 = ūnΓ2vn̄ i
〈
O(3P0)

〉
4Cγ

e2eQ
2m

Jus. (3.44)
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Computing these diagrams we project the soft quarks fields on the operator O(3P2) and

substitute the corresponding matrix element which gives the factor εσρχ i
〈
O(3P0)

〉
, the

coefficient 4 arises from the sum of the four diagrams shown in figure 3, the ultrasoft loop

integral reads

Jus = (−i)
∫
dk

1

[k2]

1[
−(ωk)− ~∆2/2m

]2 . (3.45)

This integral coincides with the ultrasoft integral of eq. (3.26) obtained within the threshold

expansion approach up to term P 2
0 /4 −m2 which vanishes because we set P0 = 2m. The

integral in eq. (3.45) is UV-divergent and we use dimension regularization D = 4 − 2ε in

order to compute it. The result reads

Jus =
πD/2

(2π)D

(
−2

ε

)( ~∆2

mµF

)−2ε

, (3.46)

where µF is the factorization scale. The 1/ε pole is the UV-pole which describes UV-mixing

of the operators Oσγ (3S1) and Oσ(3PJ), schematically[
Oγ(3S1)

]
R

= Oγ(3S1) + ZJ O(3PJ), (3.47)

where [O]R on the l.h.s. of eq. (3.47) denotes the renormalized operator. Furthermore, ZJ ∼
e2/ε is the corresponding renormalization constant. Assuming MS-subtraction scheme

one finds

[Jus]R =
1

4π2
ln

~∆2

mµF
. (3.48)

Hence we obtain〈
e+e−

∣∣CγT{Oσγ (3S1),Lem1 [Bus]} |χc2〉R = ūnΓ2vn̄ i
〈
O(3P0)

〉 α2

m3
e2
Q 2 ln

~∆2

mµF
. (3.49)

The soft matrix element for the χc1 can be computed in the same way, resulting in〈
e+e−

∣∣CγT{Oσγ (3S1),Lem1 [Bus]} |χc1〉R = ūnΓ1vn̄ i
〈
O(3P0)

〉 α2

m3
e2
Q 2
√

2 ln
mµF
~∆2

. (3.50)

The hard coefficients C
(J)
γγ are given by

C(J)
γγ =

AJ − Cγ ūnγσ⊥vn̄ 〈0| Oσγ (3S1) |χcJ〉
ūnΓJvn̄ 〈0| Oσ(3PJ) |χcJ〉

, (3.51)

where the expressions for AJ are given by eqs. (3.9) and (3.10). The important check of the

factorization formula (3.28) is the cancellation of the ultrasoft scale ~∆2 in the expressions

for C
(J)
γγ obtained from eq. (3.51). Substituting the computed expressions in eq. (3.51)

we obtain

C(1)
γγ =

α2

m3
e2
Q

√
2 ln

m2

4µ2
F

, (3.52)

C(2)
γγ =

α2

m3
e2
Q

{
ln
µ2
F

m2
+

2

3
(ln 2− 1 + iπ)

}
. (3.53)
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Figure 4. An example of the diagram in pNRQCD describing the ultrasoft matrix element of

eq. (3.33). The doted lines denote potential gluons with momenta given by eq. (3.13).

These expressions are the main result of this section. We observe that the soft scale cancel

in eqs. (3.52) and (3.53) as it must be. Hence the factorization formula described by

eq. (3.28) describes properly the ultrasoft region of the one-loop diagram.

The coefficient function C
(2)
γγ has an imaginary part which originates from the two-

photon cut. Such mechanism can not work for χc1 state, therefore C
(1)
γγ is real.

The hard coefficient functions depend on the factorization scale µF . Therefore

AJ = ūnΓJvn̄ C
(J)
γγ (µF ) i

〈
O(3P0)

〉
+ Cγ ūnγ

σvn̄ 〈0| Oσγ (3S1) |χcJ〉 (µF ), (3.54)

and the independence of the amplitude AJ on µF yields the evolution equation

ūnΓJvn̄i
〈
O(3P0)

〉
µF

d

dµF
C(J)
γγ (µF ) = −Cγ ūnγσvn̄ µF

d

dµF
〈0| Oσγ (3S1) |χcJ〉 (µF ). (3.55)

The solution of this equation depends on the initial condition defined at some scale µ0.

Performing numerical estimates one has to fix a value of this scale. By derivation this scale

separates the hard region (two hard photons) from the ultrasoft region (hard and ultrasoft

photons). Therefore it is natural to associate this scale with the virtuality of the ultrasoft

photon and to set µ0 to be of order 300−500 MeV. Then the matrix element of the operator

Oσγ (3S1) on the r.h.s. of eq. (3.54) describes only the ultrasoft nonperturbative contribution

which can be only estimated within some low-energy effective theory or model. Similar to

the well known color octet mechanism, the operator Oσγ (3S1) can also be associated with

the electromagnetic mechanism. The corresponding matrix element can be interpreted as

an overlap with the higher Fock state |QQ̄γ〉 which includes a dynamical photon while the

matrix elements of the operators O(3PJ) describe the coupling to the dominant quark-

antiquark state. Therefore the full description of the leptonic decay requires a knowledge

on the subleading structure of the quarkonium state.

In the large mass limit m → ∞ one can consider a specific situation known as the

Coulomb limit when the binding energy is larger then the typical hadronic scale E ∼
mv2 � ΛQCD. In this case the strong coupling is quite small αs(mv) ∼ v and ultrasoft

contribution can be estimated within the pNRQCD. Then one has to compute the diagram

as in figure 4 resumming the interactions with Coulomb gluons. Such calculation has been

carried out for the radiation function in ref. [15]. Perhaps, such calculation might also be

interesting here in order to get an idea about the relative value of this matrix element in

the Coulomb limit. In present paper we will obtain an estimate of the ultrasoft matrix

element using the so-called heavy hadron chiral perturbation theory (HHχPT) framework

in the next section.
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4 Phenomenology

4.1 Calculation of the ultrasoft matrix element in the heavy hadron chiral

perturbation theory

In order to provide a numerical estimate of the decay rate we need to estimate the ultrasoft

matrix elements

〈0| Oσγ (3S1) |χcJ〉 (4.1)

which describes an overlap with the higher Fock component of the charmonium state χcJ
in which a dynamical photon is present. One can expect that the soft photon has already

quite large wavelength and therefore it interacts with heavy charmonium as with a point-

like source. Then it is natural to expect that the relevant dynamical degrees of freedom in

this case are associated with mesonic fields and the corresponding low energy dynamics is

described by the most generic effective action compatible with the symmetries of NRQCD.

Such an approach is known as heavy hadron chiral perturbation theory in refs. [16, 17] for

the heavy-light mesons and then generalized on quarkonia in refs. [18–20]. This framework

can also be used for the calculation of the matrix element in eq. (4.1).

For our purpose we need only the electromagnetic sector of the HHχPT described by

the effective action which includes the kinetic terms for J/ψ and ψ′ states and the vertices

describing the electromagnetic vertices χcJ J/ψ γ and χcJ ψ
′ γ.2 As before we assume the

rest frame for the initial state χcJ . The kinetic Lagrangian reads

Lkin(x) =
1

2
2Mχ ψ

(ω)
µ (x) {i(ω∂)−∆M}ψ(ω)

µ (x) +
1

2
2Mχ ψ

′(ω)
µ (x)

{
i(ω∂)−∆′M

}
ψ′(ω)
µ (x),

(4.2)

with the residual masses ∆M = (M2
χ −M2

ψ)/2Mχ and ∆′M = (M2
χ −M2

ψ′)/2Mχ. The

fields ψ
(ω)
µ and ψ

′(ω)
µ describes the residual motion of the heavy J/ψ and ψ′ particles and

satisfy ωµψ
(ω)
µ (x) = ωµψ

′(ω)
µ (x) = 0.

The leading-order in 1/m effective Lagrangian describing the radiative decays χcJ →
J/ψ + γ and ψ′ → χcJ + γ reads [20]

LemSP =
1

2
eeQfγ Tr

[
γ0 J

†
Sγ0J

µ
P

]
Fµνω

ν +LemSP +
1

2
eeQf

′
γ Tr

[
γ0 J

′†
S γ0J

µ
P

]
Fµνω

ν +h.c. (4.3)

with

JS =
1

2
(1 + /ω)

{
ψ(ω)
α γα − ηcγ5

} 1

2
(1− /ω), (4.4)

J ′S =
1

2
(1 + /ω)

{
ψ′(ω)
α γα − η′cγ5

} 1

2
(1− /ω), (4.5)

and

JµP =
1

2
(1 + /ω)

{
χµα2 γα +

1√
2
iεµαβργαχ1βωρ +

1√
3

(γµ − ωµ)χ0 + hµc γ5

}
1

2
(1− /ω). (4.6)

2We are grateful to Maxim Polyakov for discussion of the contribution with the virtual state ψ′.
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Figure 5. The diagrams which describe the matrix element (4.12) in HHχPT. The crossed box de-

notes the operator (4.11), dashes lines describe the Wilson lines Y †n and Yn̄, black circle corresponds

to the interaction vertices generated by LemSP (4.3).

The currents JS , J
′
S and JµP describe particles from S- and P -wave multiplets, respectively.

In eq. (4.3) we introduced the dimensionless couplings fγ and f ′γ . The fields χJ describe

charmonium states χcJ . Computing the trace in eq. (4.3) one finds

LemSP = eeQ fγ χ
µα
2 ψ(ω)

α Fµνω
ν +

eeQfγ√
2

iεµαβρψ(ω)
α χ1βωρFµνω

ν (4.7)

+eeQ f ′γ χ
µα
2 ψ′(ω)

α Fµνω
ν +

eeQf
′
γ√

2
iεµαβρψ′(ω)

α χ1βωρFµνω
ν + . . . (4.8)

where we show only the relevant terms.

Our calculations involve operators O(3PJ) and O(3S1) which have also to be matched

onto physical quarkonium fields. The spin symmetry in the heavy quark limit yields[
Oσ(2s+1S1)

]
αβ

=
〈
O(3S1)

〉
[J ]αβ +

〈
O′(3S1)

〉 [
J ′
]
αβ
, (4.9)[

Oµ(2s+1PJ)
]
αβ

=
〈
O(3P0)

〉
[Jµ]αβ , (4.10)

where αβ are spinor indices. Taking the matrix element and computing the traces one can

see that eqs. (4.9) and (4.10) reproduce correctly the matrix elements (2.16)–(2.20). Using

these results one finds

Oσγ (3S1) '
{〈
O(3S1)

〉
ψ(ω)σ(0) +

〈
O′(3S1)

〉
ψ′(ω)σ(0)

}
Y †nYn̄. (4.11)

Hence

〈0| Oσγ (3S1) |χcJ〉 = 〈0| T
{(〈
O(3S1)

〉
ψ(ω)σ(0) +

〈
O′(3S1)

〉
ψ′(ω)σ(0)

)
Y †nYn̄,LemSP

}
|χcJ〉 .
(4.12)

Computing the T -product in eq. (4.12) gives the diagrams in figure 5. These diagrams

are UV-divergent and we use in our calculation the dimensional regularization and MS

subtraction scheme. The results read

〈0| Oσγ (3S1) |χc1〉 = −iε⊥[σα]εαχ i
α

π
eQ

1√
2
h(µχ), (4.13)

〈0| Oσγ (3S1) |χc2〉 = εασχ nα i
α

π
eQ h(µχ), (4.14)

where iε⊥[σα] ≡ iεσαβρnβn̄ρ/2 and

h(µχ)=fγ
〈
O(3S1)

〉∆M

Mχ

(
ln 2−1−ln

µχ
∆M

−iπ
)

+ f ′γ
〈
O′(3S1)

〉∆′M

Mχ

(
ln 2−1−ln

µχ
−∆′M

)
.

(4.15)
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From these results one sees that the spin symmetry of NRQCD relates the soft photon

matrix elements for J = 1 and J = 2 which are defined by the same nonperturbative

couplings fγ
〈
O(3S1)

〉
and f ′γ

〈
O′(3S1)

〉
. The imaginary part in eq. (4.15) corresponds to

the photon-quarkonium (J/ψ) cut in the diagrams in figure 5. Hence we conclude that the

two-photon cut appears only in the hard photon contribution. The contribution with ψ′

has no physical cut and in the diagram this is provided by the negative value of ∆′M .

The UV-poles in the HHχPT diagrams appear due to the mixing of the operators

Oσγ (3S1) and χcJ . Therefore this UV-pole can be absorbed into renormalization of the

chiral constant in front of the operators χcJ .3 The expression for the total amplitude

now reads

A1 = iūnΓ1vn̄

{
C̃1(µχ) + Cγ

α

π
eQ

1√
2
h(µχ)

}
, (4.16)

A2 = iūnΓ2vn̄

{
C̃2(µχ) + Cγ

α

π
eQ h(µχ)

}
. (4.17)

We set the value of the chiral scale µχ = µ0, defining the chiral couplings C̃J(µ0) as product

of the two-photon hard coefficient functions C
(J)
γγ and constant

〈
O(3P0)

〉
C̃J(µ0) = C(J)

γγ (µ0)
〈
O(3P0)

〉
. (4.18)

This defines the expressions for the amplitudes which will be used for our numerical esti-

mates.

4.2 Numerical estimates

In order to perform numerical estimates we need the values of the nonperturbative param-

eters
〈
O(3S1)

〉
,
〈
O(3P0)

〉
and fγ . Two of them are related to the values of quarkonium

wave function at the origin, see eqs. (2.21) and (2.23). Their absolute values have been

estimated in ref. [21] using different models for the potential. In our numerical calculations

we use the values obtained for Buchmüller-Tye potential [23]

|R′21(0)|2 ' 0.075GeV5, (4.19)

|R10(0)|2 ' 0.81GeV3, |R20(0)|2 ' 0.530GeV3 (4.20)

We also assume that they correspond to positive values:

R10(0) > 0, R20(0) > 0, R′21(0) > 0. (4.21)

The absolute values of the electromagnetic couplings fγ and f ′γ can be estimated from

the decays χcJ → J/ψγ and ψ′ → χcJγ. Using for widths Γ[χc1] = 0.84 × 10−3GeV,

Γ[χc2] = 1.93 × 10−3GeV and branching fractions Br[χc1 → J/ψγ] = 0.340 , Br[χc2 →
J/ψγ] = 0.192 from [22] we obtain

|fγ | =
√

Γ[χcJ ]Br[χcJ → J/ψγ]
1
2αe

2
Q k3

0/M
2
χcJ

'


5.87 (χc0)

6.05 (χc1)

6.03 (χc2)

 ' 6.0, (4.22)

3Or equivalently one can say that this pole renormalizes the contact vertex describing the χcJ → e+e−

decay.
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µ0,MeV Γ[χc1 → e−e+], eV Γ[χc2 → e−e+], eV

300 0.060s + 0.009hs + 0.023h = 0.091 0.036s + 0.020hs + 0.016h = 0.072

400 0.063s + 0.013hs + 0.011h = 0.087 0.038s + 0.017hs + 0.013h = 0.068

500 0.066s + 0.011hs + 0.004h = 0.082 0.040s + 0.015hs + 0.010h = 0.065

Table 1. Numerical results for the decay widths for different values of the factorization scale µ0.

where k0 = (M2
χcJ
−M2

ψ)/2MχcJ is the photon energy. Similarly, using widths Γ[ψ′] =

0.299× 10−3GeV and branching fractions Br[ψ′ → χc1γ] = 0.096 , Br[ψ′ → χc2γ] = 0.091

from [22] we obtain ∣∣f ′γ∣∣ =


6.5 (χc0γ)

7.0 (χc1γ)

8.1 (χc2γ)

 ' 7.2, (4.23)

We also need to know the sign of this coupling which can only be defined by a specific

nonperturbative calculation. It turns out that this coupling can be represented as an over-

lap integral of the radial wave functions. Comparing our results for the decay amplitudes

χcJ → J/ψγ with the ones computed in ref. [24] we find

fγ =
√

2Mχ

√
2Mψ

1√
3

∫ ∞
0

drr3R21(r)R10(r), (4.24)

where factors
√

2M appear due to relativistic normalizations of the hadronic states. The

analogous expression also holds for the coupling f ′γ . The overlap integral has been computed

in the framework of potential models, see e.g. refs. [25, 26]. Its value is found to be positive

for fγ and negative for f ′γ . Therefore we assume in the following that fγ > 0 and f ′γ < 0.

The expressions for the decay width read

Γ[χcJ → e+e−] =

{
1

12πMχ |C(1)
γγ (µ0)

〈
O(3P0)

〉
+ Cγ

α
π eQh(µ0)/

√
2 |2

1
40πMχ |C(2)

γγ (µ0)
〈
O(3P0)

〉
+ Cγ

α
π eQh(µ0) |2

, (4.25)

where Cγ is given by eq. (3.32). We use mc = 1.5 GeV for the mass of the charm quark

and compute h(µ0) by substituting Mχ = (Mχc1 +Mχc2)/2 in the expression (4.15).

Our numerical results are presented in table 1 for different values of µ0. The subscripts

s and h denote contributions from the soft and hard photon terms and hs corresponds to

the interference of these contributions. In all cases the largest numerical contribution is

provided by the ultrasoft matrix element. This contribution is relatively large and it weakly

depends on the factorization scale µ0. Our estimates for Γ[χc1 → e−e+] is approximately

factor 5 smaller then the estimate in ref. [1] and in a good agreement with the estimate in

ref. [2]. For Γ[χc2 → e−e+] our result is five times larger than one obtained in ref. [1].

From table 1 one can observe that the interference of the hard and ultrasoft contribu-

tions is numerically large for χc2 width and relatively small for χc1. This can be explained

as following. The imaginary part of h(µ0) is numerically much larger than the real one, see

eq. (4.15). Further, the hard coefficient function C
(1)
γγ is real and therefore corresponding

interference in the width depends only from the real part of h(µ0). The imaginary part of
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C
(2)
γγ is not zero and therefore in this case the interference depends on the large imaginary

part h(µ0) and turns out numerically large. This observation allows one to conclude that

the decay width χc2 is quite sensitive to the relative sign of parameters R10 and R′21. In

our estimate we used that these parameters has the same sign, see eq. (4.21). However if

they have opposite sign then the interference contribution is negative and this reduces the

numerical value of the Γ[χc2 → e−e+] by factor 2.

In ref. [1] it was shown that unitarity and analyticity allows one to constrain the

minimal values of decay widths

Γ[χc1 → e−e+] ≥ 3

2

α

k0
Γ[J/ψ → e−e+]Γ[χc1 → γJ/ψ] ≈ 0.046 eV, (4.26)

Γ[χc2 → e−e+] ≥

√α2

9
Γ[χc2 → γγ] +

√
9α2

20k0
Γ[χc2 → γJ/ψ]Γ[J/ψ → e−e+]

2

≈ 0.037 eV. (4.27)

In the presented formalism these constrains are always satisfied because the soft contribu-

tion has a cut which yields the imaginary part required for the saturation of the bounds

in eqs. (4.26) and (4.27). Therefore all our estimates shown in table I are in agreement

with these inequalities. As one can see from table I the hard two-photon contribution is

always smaller than the limiting value in both cases. The same observation was also made

in ref. [1]. This clearly indicates that the soft photon configuration provides a critically

important contribution to these decay amplitudes.

The derived approach can also be used for a description of leptonic decays of bottonium

states χbJ . These particles have almost the same branching fractions for χbJ → Υ(1S)γ de-

cay, see e.g. [22], but at present the widths of these states are not yet measured. Therefore,

we cannot extract the decay coupling f
(b)
γ using experimental data. Instead, we use the

estimates for the corresponding widths obtained in the model with a Cornell potential [25].

The corresponding values can be found in ref. [26] and read

Γ[χb1] = 27.8keV, Γ[χb2] = 31.6keV. (4.28)

This gives for the dimensionless coupling in the HHχPT Lagrangian

f (b)
γ ' 9.4. (4.29)

On the other hand, the width of Υ(2S) and branching fractions Υ(2S) → χbJγ are

known [22]:

ΓΓ[Υ(2S)] = 32 keV, Br[Υ(2S)]→ χb1γ] = 0.06, Br[Υ(2S)]→ χb2γ] = 0.07. (4.30)

Using this values we obtain

f ′(b)γ ' −16. (4.31)
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The sign of the couplings f
(b)
γ and f

′(b)
γ in eqs. (4.29) and (4.31) is again defined with the

help of of the overlap representation as in eq. (4.24) and corresponding estimates given in

ref. [26]. The corresponding radial wave functions at the origin read [21]

|R′21(0)|2 ' 2.067 GeV5, (4.32)

|R10(0)|2 ' 14.05 GeV3, |R20(0)|2 ' 5.7 GeV3. (4.33)

With these values and taking µ0 = 400MeV we obtain

Γ[χb1 → e−e+] = (2.0s + 0.9hs + 1.1h)× 10−3 ' 4.0× 10−3 eV, (4.34)

Γ[χb2 → e−e+] = (1.2s + 0.15hs + 0.4h)× 10−3 ' 1.7× 10−3 eV. (4.35)

We observe that in this case the contribution of the ultrasoft configuration also remains

larger than the hard one.

5 Conclusions

The decay width Γ[χcJ → e−e+] was computed using a factorization NRQCD approach.

The dominant partonic subprocess was described by the annihilation of the heavy quark-

antiquark pair into two photons: cc̄ → γ∗γ∗ → e+e− . The corresponding contribution is

given by the one-loop diagram with two photons in the intermediate state. The dominant

regions in the loop integral are associated with two configurations: hard photons and

one ultrasoft and hard photons. The soft part of the contribution with ultrasoft photon

overlaps with the higher Fock state |QQ̄γ〉 of the heavy meson, while the hard contribution

overlaps with the leading two quark state. We have demonstrated that these contributions

can be factorized and described by two different operators in NRQCD effective theory.

The ultrasoft photon contribution is estimated using framework of the heavy hadron chiral

perturbation theory. This allows us to obtain numerical estimates using a minimal set of

the known nonperturbative parameters. Our estimates for charmonia χc1 and χc2 show

that the ultrasoft photon configurations provide the numerically dominant contribution.

This explains why the obtained numerical results for Γ[χc1 → e−e+] are in good agreement

with the estimates obtained in ref. [2] where only the usoft contribution was considered.

We also expect that the developed formalism can be helpful to perform a more systemic

analysis of decays if charmonium-like state such as X(3872)→ e−e+.
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