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Abstract

localized to the chloroplast by a protoplast experiment.

Background: ROOT UV-B SENSITIVE (RUS) genes exist in most eukaryotic organisms, and encode proteins that
contain a DUF647 (domain of unknown function 647). Although the RUS genes are known to play essential roles in
Arabidopsis seedling development, their precise functions are not well understood in other plants, including rice.

Findings: In this study, six OsRUS genes were cloned from rice root and leaf cDNA libraries. Our analysis showed
that the sequence and open reading frame of cloned OsRUS3 cDNA differs from the predictions reported in the
RAP-DB and RGAP databases. Public microarray, MPSS, and EST databases were used to analyze the expression
profiles of the six OsRUS genes. Expression profiles for all OsRUS genes at different rice developmental stages were
also analyzed by qRT-PCR. The signal peptide, GPl-anchor, transmembrane domain and subcellular localization of
OsRUS proteins were predicted by various bioinformatics tools. Furthermore OsRUST was determined to be

Conclusions: All the characterization of the OsRUS family generated from this study will provide a crucial
foundation from which to further dissect how OsRUS genes function in rice development.
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Findings

Identification and Cloning of OsRUS cDNA

RUS genes were first identified by Dr. He’s group in Arabi-
dopsis (Tong et al. 2008; Leasure et al. 2009), and it was
found that AtRUS1 and AtRUS2 play a role in very-low-
fluence UVB response and VB6 homeostasis (Leasure et al.
2011). However, Dr. Estelle’s group discovered that the
weak auxin response mutant wxrl and wxr3 were caused
by mutations in AtRUS2/WXRI and AtRUS1/WXR3, re-
spectively. Their results suggested a role for these two
genes in the regulation of polar auxin transport (Ge et al.
2010; Yu et al. 2013). The inconsistencies between the
results of these two research groups have not currently be
resolved.
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There are six AfRUS genes in the Arabidopsis genome,
and they all contain a specific domain DUF647. There
are six OsRUS genes annotated in the rice genome.
OsRUIS6 appears to have duplicated in the rice lineage to
OsRUS6A and OsRUS6B, and there is no apparent
ortholog for AtRUS4 (Leasure et al. 2009). The six
OsRUSs are distributed on four rice chromosomes:
OsRUS5 and OsRUS6A on chromosome 1; OsRUS1 and
OsRUS 2 on chromosome 4; OsRUS3 on chromosome 3;
and OsRUS6B on chromosome 5 (Fig. 1la). The cDNA
library of rice was reverse-transcripted from total RNAs
extracted from vyoung seedlings of Zhonghua 11
(Additional file 1: Materials and methods). The primers
for cloning the six OsRUS c¢cDNAs were designed to
amplify their cDNAs (Additional file 2: Table S1). All
six OsRUS cDNAs were amplified (Fig. 1b), which
means that they are all functional genes. The PCR
products of the six OsRUS cDNAs were cloned and
sequenced. Surprisingly the sequence we obtained for
the OsRUS3 cDNA (Additional file 3: Figure S1) was
different from the sequences downloaded from the
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Fig. 1 Chromosomal locations of OsRUS genes and cloning of the six OsRUS cDNAs. a. Genomic locations of OsRUS genes on rice chromosomes;
b. Amplification of the six OsRUS cDNAs

RGAP and RAP-DB databases (Fig. 2b, d and f). All of the
other OsRUS cDNA sequences were consistent with both
databases. The DUF647 domain and transmembrane do-
mains of OsRUS3 were found in the RGAP database, the
RAP-DB database and our cloned OsRUS3 (Fig. 2¢, e and
g). A 56aa cTP was found in the OsRUS3 from RGAP
database, but was neither predicted in the OsRUS3 from
RAP-DB database nor found in our cloned OsRUS3
(Fig. 2c, e and g). Whether the three types of OsRUS3
c¢DNA represent alternative splicing of LOC_0Os03g11500,
or only our cloned cDNA is real, needs further study.

Expression Profiles of OsRUS Genes During Vegetative
and Reproductive Development
The expression profiles of genes are highly important for
dissecting the functions of the genes (Fang et al. 2016).
Here the expression profiles of the six OsRUS genes were
data-mined from microarray, EST and MPSS publicly
available databases and generated by qRT-PCR approach,
respectively.

The expression profiles of OsRUSs during rice develop-
ment were extracted from database RiceXPro (http://ricex-
pro.dna.affrc.go.jp/) (Sato et al. 2011) (Fig. 3). According to
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Fig. 2 The gene structure comparison of OsRUS3 generated from cloned sequence, RGAP and RAP-DB databases. a. OsRUS3 genomic DNA; b.
OsRUS3 cDNA predicted in the RGAP database; c¢. OsRUS3 protein predicted in the RGAP database; d. OsRUS3 cDNA predicted in the RAP-DB
database; e. OsRUS3 protein predicted in the RAP-DB database; f. Cloned OsRUS3 cDNA; g. OsRUS3 protein translated from cloned OsRUS3 cDNA.
CTP was predicted by ChloroP v1.1; transmembrane domain was predicted by TMpred; DUF647 was predicted by SMART Domain
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Fig. 3 The expression profiles of the six OsRUS genes during rice development, data extracted from RiceXPro (http:/ricexpro.dna.affrc.gojp/)
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this database, the expression level of OsRUSI is much
higher in roots and late embryos than in other organs. The
expression levels of OsRUS2, OsRUS3, OsRUS6A and
OsRUS6B during rice development are relatively high in all
tissues examined, except for in leaf sheath at the reproduct-
ive stage and endosperm. The expression level of OsRUSS
in leaf is much higher than in other organs and stages.
These results suggest that OsRUS2, OsRUS3, OsRUS6A and
OsRUS6B function at similar development stages, while
OsRUSI and OsRUSS function at different stages.

The expression profiles of the OsRUS genes were
also extracted from the NCBI EST database (http://
www.ncbi.nlm.nih.gov/nucest) (Additional file 4: Table
S2). The expression of all six OsRUS genes can be detected
in callus and rice leaf, but the expression level of OsRUS]I,
OsRUS3 and OsRUSS is much lower than that of OsRUS2,
OsRUS6A and OsRUS6B. OsRUS6B is not only the sole
gene expressed in all of the tissues examined, but also the
only OsRUS gene expressed in root and SAM, and its
expression in SAM is much higher than in other tissues.

According to the information generated from the MPSS
database, all six OsRUS genes express in callus, all OsRUS
genes except for OsRUS2 express in 14d young rice leaves,

and all OsRUS genes except for OsRUSI express in NOS
(Ovary and mature stigma) and NIP (90 days - Immature
panicle). The expression of OsRUSI was only detected in
14d young rice leaves and callus. OsRUS3 expresses in
almost all development stages except for NGS (3 days -
Germinating seed). OsRUS6A and OsRUS6B are highly
expressed in all development stages examined. Salt induces
the expression of OsRUSI in 14d young rice roots and
leaves. Cold greatly up-regulates the expression of OsRUS6A
in 14d young rice leaves. Salt, drought and cold down-
regulate the expression of OsRUS6B in 14d young rice
roots, but highly up-regulate the expression of OsRUS6B in
14d young rice leaves (Additional file 5: Table S3).

In this paper, qRT-PCR approach was used to verify
the expression profiles of the six OsRUSs at different rice
development stages (Additional file 1: Materials and
methods). By using the primers designed for qRT-PCR
of six OsRUSs (Additional file 6: Table S4), the expres-
sion profiles of six OsRUSs at different development
stages were generated by qRT-PCR (Fig. 4). From the
qRT-PCR results, we observed that the six OsRUS genes
were expressed in all tissues and stages examined. The
expression levels of the six OsRUS genes in leaves were
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Fig. 4 Real-time PCR verification of the expression of OsRUS genes in tissues at vegetative and reproductive stages. SR, Root at seeding stage; SL,
Leaf at seeding stage; SS, Stem at seeding stage; TR, Root at tillering stage; TL, Leaf at tillering stage; TS, Stem at tillering stage; FR, Root at
flowering stage; FL, Leaf at flowering stage; FS, Stem at flowering stage; FP, Panicle at flowering stage
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higher than in other tissues at all stages. Generally
speaking, the expression levels of the six OsRUS genes
were lower than the house-keeping gene OsACTIN1I, ex-
cept for OsRUS6A and OsRUS6B at seedling and flower-
ing stages.

When the expression profiles of OsRUS genes from
above three databases and our qRT-PCR experiment were
analyzed together, it was found that some results were
consistent, while some were not. For example, all six
OsRUS genes were found to be expressed in all tissues
examined in the RiceXPro database and our qRT-PCR ex-
periments. However, only OsRUS6A and OsRUS6B were
found to be expressed in all tissues in the MPSS database,
and only OsRUS6B was found to be expressed in all tis-
sues in the EST database. The expression level of OsRUSI
was relatively low in the three databases and the qRT-PCR
results. OsRUSI expression was only detected in the
MPSS database in NYL (14 days Young leaves) and NCA
(35 days Callus), and in the EST database it was detected
only in callus, leaf, panicle and stem. In the EST database
only expression of OsRUS6B was detected in roots, while
in the MPSS database OsRUS2, OsRUS3, OsRUS6A and
OsRUS6B were detected in roots. The reasons for this
inconsistency are typically complicated, and may be due
to cultivar, environment, tissue stage and/or method
sensitivity (Ma et al. 2011).

Subcellular Localization of OsRUS Proteins
The post-translational modifications of a protein are
highly important for its function (Guerra et al. 2015).
Here the signal peptides (SPs) and GPI-anchor modifica-
tion signals of the six OsRUSs were predicted by SignalP
4.0 (http://www.cbs.dtu.dk/services/SignalP/) and BigPI
(http://mendel.imp.ac.at/gpi/plant_server.html), respect-
ively. None of the OsRUSs was found to have an N-
terminal secretion signal (SPs) or a GPI-anchor, indicat-
ing that these proteins neither target to the endoplasmic
reticulum nor localize to the plasma membrane.
Transmembrane proteins often play important roles in
signal transduction or metabolite transport across mem-
branes. Transmembrane domains of OsRUS proteins
were predicted using web-based transmembrane domain
prediction programs (Additional file 7: Table S5). OsRUS1,
OsRUS2, OsRUS3 and OsRUS5 have at least one
transmembrane domain predicted by TopPred, TMpred,
TMHMM, HMMTOP and SACS HMMTOP tools.
OsRUS6A and OsRUS6B have one or three transmembrane
domains predicted by TopPred, TMpred, HMMTOP and
SACS HMMTOP, but no transmembrane domain pre-
dicted by TMHMM. According to the above predictions,
OsRUS proteins are likely to be transmembrane proteins.
Determining the subcellular localization of a protein is
important for understanding its function. There are many
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Table 1 Subcellular localizations of OsRUSs predicted by bioinformatics tools

TargetP Plant-mPLoc Yloc ESLpred2 TargetLoc MultiLoc2
OsRUS1T Chloroplast Chloroplast Chloroplast Chloroplast Chloroplast Chloroplast
OsRUS2.1 Other Chloroplast Cytoplasm Chloroplast Other Cytoplasm
OsRUS2.2 Other Chloroplast Chloroplast Chloroplast Chloroplast Cytoplasm
OsRUS3 Mitochondrion Cell membrane Chloroplast Chloroplast Mitochondrion Secretary pathway
OsRUS5 Chloroplast Chloroplast Chloroplast Chloroplast Chloroplast Chloroplast
OsRUS6A Other Chloroplast Chloroplast Chloroplast Other Chloroplast
OsRUS6B.1 Mitochondrion Chloroplast Chloroplast Chloroplast Mitochondrion Mitochondrion
OsRUS6B.2 Mitochondrion Chloroplast Chloroplast Chloroplast Mitochondrion Mitochondrion

reliable bioinformatics tools available to predict protein
subcellular localization. Here the subcellular localizations of
OsRUSs were predicted by TargetP, Plant-mPloc, Yloc,
ESLpred2, TargetLoc and MultiLoc2 (Table 1), respectively.
OsRUSI and OsRUS5 were predicted to localize to the
chloroplast by all six programs used. Although the
subcellular localizations of the other OsRUS proteins
predicted by the above six programs were not consistent,
the chloroplast was the primary predicted subcellular
localization: OsRUS2.1 (2/6); OsRUS2.2(4/6); OsRUS3(2/6);
OsRUS6A(4/6); OsRUS6B.1(3/6); and OsRUS6B.2 (3/6).
The mitochondrion was the second predicted localization
for some OsRUS proteins: OsRUS3(2/6): OsRUS6B.1(3/6);
and OsRUS6B.2 (3/6).

Based on the subcellular localization, non-GPI-anchor
modification, and transmembrane predictions, we postu-
lated that OsRUS proteins highly possible localize to the
chloroplast membrane.

In order to evaluate the above subcellular predictions for
OsRUS proteins, a protoplast transient-expression approach
was used to detect the subcellular localization of OsRUS1
(Additional file 1: Materials and methods). OsRUS1 was
predicted to contain a 35aa cTP and be localized to the
chloroplast. There is enough information present in the

cTP for chloroplast protein sorting (Lee et al. 2008). A tran-
sient expression vector of OsRUSI(1-160aa)::GFP was con-
structed and transformed into rice leaf sheath protoplasts.
OsRUS1(1-160aa)::GFP was clearly observed to be localized
to the chloroplast membrane (Fig. 5b). To our best know-
ledge this is the first time that the localization of a RUS pro-
tein has been experimentally confirmed to be localized to
the chloroplast membrane (Tong et al. 2008; Leasure et al.
2009; Ge et al. 2010; Yu et al. 2013).

Conclusions

There are six OsRUS genes in the rice genome, distributed
on four chromosomes. The c¢DNA sequences of five
OsRUS genes are the same as the predictions of the RGAP
and RAP-DB databases, while the cDNA sequence of
OsRUS3 is not. Whether or not this new OsRUS3 cDNA
represents a newly-identified alternative splicing variant
has not been resolved. All six OsRUS proteins contain a
specific DUF647 domain. The six OsRUS genes are
expressed in tissues throughout rice development, and
they all express more highly in leaves than in other organs.
Some OsRUS genes have similar expression profiles during
rice development. By using available bioinformatics tools,
OsRUS proteins are predicted to lack both signal peptides

GFP

Bright

Fig. 5 Subcellular localization of OsRUST in rice sheath protoplasts. a, GFP control. b, OsRUS1(1-160aa):GFP. Individual and merged images of GFP
and chlorophyll autofluorescence (Chl), and brightfield (Bright) images of protoplasts are shown. Scale bars=5 um
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and GPI-anchors, contain transmembrane domains, and
be mainly localized to the chloroplast. Combining these
predictions together, we postulate that most OsRUS pro-
teins, if not all, localize to the chloroplast membrane. This
postulation is supported by the OsRUS1 subcellular
localization experiment using a rice protoplast transient-
expression approach. All of the work in this paper will
support the further dissection of the functions of OsRUS
proteins during rice development.
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