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A procedure for the construction of balanced orthogonal nonseparable quincunx multiwavelets, having filters with good lowpass
properties, is introduced. The matrix filter bank is viewed as the polyphase matrix of other filters, upon which the lowpass condition
is imposed. The multiscaling functions obtained are plotted by means of the cascade algorithm. The process of transforming an
image with these wavelets is outlined: formulae for analysis and synthesis are given, the first steps are illustrated with images,
and the decomposition of the original image into two input images is addressed. Compression is achieved in a nonlinear process.
Experimental results show that (i) the constructed multiwavelets having lowpass properties perform better than other nonseparable
multiwavelets, (ii) the energy compaction in the fine detail subbands is greater for the multiwavelets than for the one-dimensional
wavelets tried.
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1. INTRODUCTION

In the last 15 years wavelets have been an expanding research
field, with many applications such as image compression, im-
age denoising, and pattern recognition, among others. They
have proved very efficient in image compression: they have
good time-frequency localization, they decorrelate the data
and give a sparse representation of the image.

Multiwavelets are a generalization of the wavelet theory.
They exploit the spatial correlations between various input
images, such as multitemporal images. They can be designed
to have several suitable properties simultaneously, such as or-
thogonality, polynomial approximation, short support and
symmetry, see [1, 2, 3, 4, 5]. They have given good results
for signal compression, see [6, 7, 8, 9]. In order to apply
multiwavelets, either the input data must be prefiltered (see
[10, 11, 12, 13, 14]) or the multiwavelets themselves must be
balanced (see [15, 16]).

Nonseparable wavelets have been introduced and inves-
tigated, and examples have been given in [17, 18, 19]. This
is a more general setting than the classical one, nonsepara-
ble filters are used, and decimation is achieved with a dilation
matrix. In this way the errors of thresholding the transformed
coefficients do not lie mainly in the horizontal and vertical
directions—which does not agree with our visual system.

In an attempt to unify advances made in both directions:
multiwavelets, and nonseparable bidimensional wavelets, ex-
amples were built of continuous, nonseparable, orthogo-
nal multiscaling functions in [20]. They are compactly sup-
ported, have quincunx decimation, and have polynomial

approximation orders (i.e., accuracy) 2 and 3. Their corre-
sponding multiwavelets were also found. In [21] other ex-
amples were given, with the additional property of being
balanced.

In this work we construct multiwavelets that are balanced,
continuous, nonseparable, orthogonal, have quincunx deci-
mation, have accuracy 2 or 3, and whose filters have good
lowpass properties, in order to give more energy compaction.
Their coefficients are given in the appendix. In Section 2 some
general concepts and notation are given. In Section 3 the pro-
cess of the multiwavelet transform of an image is outlined for
these wavelets. Formulae for analysis and synthesis are given.
The first steps are illustrated with images. The decomposi-
tion of the original image into 2 input images is addressed
in Section 4. In Section 5 we show how the multiwavelets
are obtained, by imposing lowpass conditions. In Section 6
we explain how compression is achieved in a nonlinear pro-
cess: this nonlinearity is not the result of the application of a
nonlinear operator, but the result of thresholding the coeffi-
cients obtained by a linear operator—the multiwavelet trans-
form. We also give several experimental results, comparing
the performance of the constructed multiwavelets to that of
other nonseparable multiwavelets, and to well-known one-
dimensional wavelets. Concluding remarks are in Section 7.

2. NONSEPARABLE ORTHOGONAL QUINCUNX
MULTIWAVELETS

Let Φ1 and Φ2 be two continuous scaling functions de-
fined over R

2 such that the family {Φ1(x − k),Φ2(x − l)} is
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orthonormal. In vector form the dilation equation becomes

Φ(x) =
∑

k∈Λ⊂Z2

H(k)Φ(Dx − k),
[
Φ1(x)
Φ2(x)

]
=
∑
k

[
H(k)

][Φ1(Dx − k)
Φ2(Dx − k)

]
,

(1)

where H(k) are 2 × 2 matrices of a matrix filter bank with
indices such as

M0 =




0 H(1,1) H(2,1) 0

H(0,0) H(1,0) H(2,0) H(3,0)

0 H(1,−1) H(2,−1) 0


 (2)

and D is the dilation matrix. Notation is simplified and
Φ1(Dx − k) means that we apply Φ1 to the two components
of Dx−k =

[
d11 d12
d21 d22

][
x1
x2

]
−
[
k1
k2

]
. We consider two possible

dilation matrices: D1, a reflection followed by an expansion
of
√

2, and D2, a rotation followed by an expansion of
√

2.
For both matrices |D| = |det(D)| = 2,

D1 =
[

1 1
1 −1

]
, D2 =

[
1 −1
1 1

]
. (3)

BothD1 andD2 induce a decomposition of the sets of all pairs
of integers Z

2 into two cosets: Γ1 and Γ2, forming the quincunx
sublattices—black and white squares of a chess-table:

Z
2 = Γ1 ∪ Γ2; Γ1 =

{
DZ

2}; Γ2 =
{
DZ

2 +
[

1
0

]}
. (4)

The number of wavelets is |D| − 1 = 1 in both cases. The
equation for the multiwavelet, in vector form, is

Ψ(x) =
∑
k
G(k)Φ(Dx − k). (5)

Finally we recall some general notation. Given a 2d filter
F , the Z transform of F is

F
(
z1, z2

) = ∑
(j,k)∈Z2

Fjkz
−j
1 z−k2 , (6)

and the frequency response of F is

F̂
(
w1,w2

) = ∑
(j,k)∈Z2

Fjke−i (w1j+w2k). (7)

Given a 2d signal x, we define x ↓ D (x downsampled
with D) as

y = x ↓ D ⇐⇒ yn = xDn. (8)

3. ANALYSIS SYNTHESIS FORMULAE

Assume that we decompose the original image X(0) into two
input images c(0)1,k and c(0)2,k (k ∈ Z

2), and let f(x) be the
function that verifies

Analysis
highpass

Analysis
lowpass

Synthesis

c(0)1,k

c(0)2,k

c(0)1,k

c(0)2,k

c(−1)
1,k

c(−1)
2,k

d(−1)
1,k

d(−1)
2,k

Figure 1: Analysis-synthesis scheme.

f ∈ V0 = span
{
Φ1(· − k),Φ2(· − l)

}
k,l∈Z2 ,

f (x) =
∑
k∈Z2

(
c(0)·,k

)T
Φ(x − k), where c(0)·,k =


c

(0)
1,k

c(0)2,k


 . (9)

The analysis scheme (see Figure 1) outputs two approxi-
mation images c(−1)

1,k and c(−1)
2,k , and two detail images d(−1)

1,k

and d(−1)
2,k . We set

c(−1)
·,k =


c

(−1)
1,k

c(−1)
2,k


 , d(−1)

·,k =


d

(−1)
1,k

d(−1)
2,k


 . (10)

We have

V0 = V−1 ⊕W−1, V−1 ⊥ W−1, (11)

where

V−1 = span
{
Φ1
(
D−1 · −k),Φ2

(
D−1 · −l)}k,l∈Z2 ,

W−1 = span
{
Ψ1
(
D−1 · −k),Ψ2

(
D−1 · −l)}k,l∈Z2 .

(12)

Writing f(x) as the sum of its projections onto V−1 andW−1

f(x) = 1√
|D|

∑
k∈Z2

c(−1)T
·,k Φ

(
D−1x − k)

+ 1√
|D|

∑
k∈Z2

d(−1)T
·,k Ψ

(
D−1x − k),

(13)

it can be shown that the analysis formulae are

c(−1)
k = 1√

|D|
∑
j∈Z2

H(j−Dk) c(0)·,j , (14)

d(−1)
k = 1√

|D|
∑
j∈Z2

G(j−Dk)c(0)·,j . (15)

Similarly, it can be shown that the synthesis formula is

c(0)k = 1√
|D|

[
Uk + Vk

]
, (16)
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Figure 2: Original image.

Figure 3: One step of the multiwavelet transform.

where

Uk =
∑
j∈Z2

(
H(k−Dj)

)T
c(−1)
·,j ,

Vk =
∑
j∈Z2

(
G(k−Dj)

)T
d(−1)
·,j .

(17)

In Figure 2 we have a phone, the original image. We copy the
image to begin with and take c(0)1,· = c(0)2,· = X(0).

In Figure 3 we have 4 images, they are the coefficients of
one step of the multiwavelet transform d(−1)

1,· (top left), c(−1)
1,·

(top right) and d(−1)
2,· (bottom left), c(−1)

2,· (bottom right). The
dilation matrix wasD1. The effect of downsampling withD1

in the analysis formula is to reflect and contract the image.
In Figure 4 we have the coefficients of two steps of the

same transform: d(−1)
1,· , d(−2)

1,· , c(−2)
1,· (top) and d(−1)

2,· , d(−2)
2,· ,

Figure 4: Two steps of the multiwavelet transform.

c(−2)
2,· (bottom). After two steps the image has recovered its

original orientation. It takes four steps to do so if the dilation
matrix is D2.

At each step, before the images are processed they have
to be periodized, otherwise there are artifacts at the borders.
Periodization is different if the frames of the images are nor-
mally oriented squares (after the even steps) or diamond-
oriented squares (after the odd steps).

4. ONE INPUT IMAGE DECOMPOSED INTO TWO
INPUT IMAGES

At the beginning of the process the original image may be
copied so as to get two input images, but duplicating the
input signal will not help for compression.

One squared image is not divided straightforwardly into
two squared images. Notice, however, that after one step of
the analysis procedure we get two diamond-like matrices of
approximation coefficients, and each one has half the size
of the original image. Therefore, we decompose the original
image into two diamonds. We might build one diamond by
cutting out the corners of the original image, and build the
other with the rest, but the algorithm (14) mixes information
from the two images and this gives poor results for compres-
sion. The two input images should be alike, this we manage
by separating into two diamonds the pixels belonging to each
coset (see Figure 5).

Notice that in this way all the coefficients of the multi-
wavelet transform need as much storage as the original image,
and can be made to fit into it.
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Figure 5: Pixels in first (left) and second (right) cosets of original
phone.

5. CONSTRUCTION OF MULTIWAVELETS

In [21] the properties of orthogonality, accuracy and balanc-
ing were analyzed, and for each property were derived condi-
tions for the matrix filter coefficientsH(k). The conditions for
accuracy or polynomial approximation order were obtained
from [22]. All the conditions helped to build examples of dif-
ferent nonseparable multiwavelets, by means of a numerical
least-squares optimization routine.

In order to force the filters to have good lowpass prop-
erties, we now follow a procedure carried out by Xia [10] in
the design of prefilters for 1d multiwavelets. As in the 1d case,
a 2 × 2 matrix filter bank is also a polyphase matrix of two
filters (see [23]); the only difference is that here the two filters
are two-dimensional.

The approximation coefficients in (14) can be expressed
as

c(−1)
1,· = 1√

|D|
[(
H̃(·)11 ∗ c(0)1,·

)
+
(
H̃(·)12 ∗ c(0)2,·

)]
↓ D,

c(−1)
2,· = 1√

|D|
[(
H̃(·)21 ∗ c(0)1,·

)
+
(
H̃(·)22 ∗ c(0)2,·

)]
↓ D,

(18)

where the symbol ∗ denotes discrete 2d convolution, and
H̃(k,l) = H(−k,−l).

Let c(0)1,· be the pixels of the image X(0) on coset Γ1, and

c(0)2,· be the pixels of the image on coset Γ2. Then

X(0)
(
z1, z2

) = c(0)1,·
(
zD
)+ z1c

(0)
2,·
(
zD
)
,

c(0)1,·
(
z1, z2

) = ∑
n=(j,k)∈Z2

X(0)Dnz
−j
1 z−k2 ,

c(0)2,·
(
z1, z2

) = ∑
n=(j,k)∈Z2

X(0)Dn+(10)z
−j
1 z−k2 .

(19)

We can write (18) as

c(−1)
1,· = [y1,·

] ↓ D, c(−1)
2,· = [y2,·

] ↓ D. (20)

Now the Z transform of y1,· and y2,· is

[
y1,·

(
z1, z2

)
y2,·

(
z1, z2

)
]
= PF1,F2


c(0)1,·

(
z1, z2

)
c(0)2,·

(
z1, z2

)

 , (21)

where

PF1,F2 =
1√
|D|



H(·)11

(
1
z1
,

1
z2

)
H(·)12

(
1
z1
,

1
z2

)

H(·)21

(
1
z1
,

1
z2

)
H(·)22

(
1
z1
,

1
z2

)

 (22)

is the polyphase matrix for two filters F1 and F2. Filter F1

has coefficients H(·)11 on coset Γ1 and H(·)12 on coset Γ2, while
filter F2 has coefficientsH(·)21 on coset Γ2 andH(·)22 on coset Γ2.
Writing down the latter, we have

F1
(
z1, z2

) = H(·)11

(
zD
)+ z1H

(·)
12

(
zD
)
,

F2
(
z1, z2

) = H(·)21

(
zD
)+ z1H

(·)
22

(
zD
)
,

(23)

where

zD = (zd11
1 zd21

2 , zd12
1 zd22

2

)
. (24)

Furthermore, equation (21) is equivalent to

y1,· =
(
X(0) ∗ F̃1

) ↓ D,
y2,· =

(
X(0) ∗ F̃2

) ↓ D. (25)

Since there is one downsampling step in (20), the approx-
imation coefficients c(−1)

1,· and c(−1)
2,· are obtained from a 2d

convolution of the original image with F̃1 and F̃2 plus two
downsampling steps. If we impose the lowpass property

ˆ̃F1(π,π) = F̃1(−1,−1) = 0,
ˆ̃F2(π,π) = F̃2(−1,−1) = 0,

(26)

we obtain the lowpass polyphase filter condition (for either
dilation matrix D1 or D2)

∑
k∈Z2

H(k)11 =
∑
k∈Z2

H(k)12 ,
∑
k∈Z2

H(k)21 =
∑
k∈Z2

H(k)22 . (27)

With a numerical optimization routine, we obtained ma-
trix filter coefficients verifying the above requirement plus all
the conditions for orthogonality, accuracy two and balanc-
ing. Coefficients are given in the appendix. The two scaling
functions were plotted with eight iterations of the cascade
algorithm, see Figures 6 and 7.

The corresponding wavelet coefficients G(k) were found
in a similar way.

6. COMPRESSION

After the image has been transformed J steps, we have

f(x) =
∑
k∈Z2

(
c(−J)·,k

)T
|D|−J/2Φ(D−Jx − k)

+
J∑
j=1

∑
k∈Z2

(
d(−j)·,k

)T
|D|−j/2Ψ(D−jx − k).

(28)
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Figure 6: Scaling function 1.

Figure 7: Scaling function 2.

Since the system

{
|D|−J/2Φ1

(
D−Jx − k), |D|−J/2Φ2

(
D−Jx − k),

|D|−J/2Ψ1
(
D−Jx − k), |D|−J/2Ψ2

(
D−Jx − k),

. . . , |D|−1/2Ψ1
(
D−1x − k), |D|−1/2Ψ2

(
D−1x − k)}

(29)

is orthonormal, the sums of squares of all the coefficients
c(−J)1,k c(−J)2,k d(−J)1,k d

(−J)
2,k · · ·d(−1)

1,k d
(−1)
2,k is equal to the sums of

squares of the original coefficients {c(0)1,kc
(0)
2,k}. This means

that an error in the transformed coefficients is equal to the
error in the reconstructed image (in 2-norm). Suppose we fix
the number of coefficients to be kept, and discard the rest.
Then keeping the largest transformed coefficients in absolute
value, and sending the smaller ones to zero, that is, applying a
threshold, is a nonlinear process that minimizes the 2-norm
error.

With the filter coefficients H(k) and G(k) of the exam-
ples found previously, the multiwavelet transforms were ap-
plied to three test images: Lena (256 × 256), Cameraman
(256 × 256), and Phone (128 × 128). The number of steps
taken was such that the final coarse approximation matri-
ces were of size 8 × 8. The original images were compressed
retaining in all cases 15% of the largest transformed coeffi-
cients in absolute value, that is, they will all have the same
compression rate as a rough estimate. We list the PSNR in
Table 1. The wavelets are named according to their properties:
(D2− acc3−bal)means a balanced multiwavelet of accuracy

Table 1: PSNR of reconstruction with 15% coefficients.

PSNR (dB)

Quincunx Multiwavelet Lena Camer Phone

D1 − acc1− bal 30.52 30.94 27.18

D1 − acc2− bal 30.80 31.08 28.28

D2 − acc2− bal 32.01 31.85 28.28

D1 − acc3− bal 31.89 32.20 29.19

D2 − acc3− bal 32.54 32.48 28.95

D1 − acc1− bal− LP 30.87 32.06 28.57

D2 − acc2− bal− LP 32.62 32.50 29.41

Figure 8: Original Cameraman (detail).

Figure 9: Reconstruction with 15% coefficients.

3 with dilation matrix D2. Results improved with the order
of accuracy of the wavelets; that is, for higher polynomial ap-
proximation order, the PSNR was higher, and therefore the
MSE was smaller. We can also observe that for wavelets having
the same accuracy, those having the polyphase lowpass filter
property (LP) have a superior performance. At this stage it is
difficult to predict what the final compression rates will be,
but since multiwavelets are generalizations of wavelets, we
think that these results may be improved by imposing more
conditions in the construction of the multiwavelets.

In Figure 8 we have the original Cameraman (detail) and
in Figure 9 the reconstructed Cameraman (detail) with a bal-
anced multiwavelet of accuracy 2 with dilation matrixD2 and
lowpass polyphase filter property (D2−acc2−bal−LP) after
retaining 15% of the largest coefficients of the multiwavelet
transform.

We now present a comparison between the energy com-
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Table 2: Energy compaction ratio.

Image Lena

Wavelet r
Haar 0.0230

Daubechies 4 0.0178

Biorthogonal 9/7 0.0137

D2 − acc3− bal 0.0095

D2 − acc2− bal− LP 0.0084

paction (in the fine detail subbands) of three well-known 1d
wavelets and that of two multiwavelets. Image Lena was trans-
formed with (i) Haar separable wavelet, (ii) Daubechies four
separable wavelet, (iii) Biorthogonal symmetric 9/7 separable
wavelet, (iv) multiwaveletD2− acc2−bal−LP, and (v) mul-
tiwavelet D2 − acc3− bal. The number of steps taken, J, was
such that there were 64× 64 approximation coefficients: this
means J = 2 for the separable wavelets, and J = 4 for the
multiwavelets. We define the energy compaction ratio r as the
energy of the detail coefficients divided by the total energy of
the transform. We call this ratio rMW for the multiwavelet and
rW for the wavelet.

rMW =
∑4
j=1

∑2
i=1
∑
k∈Z2

(
d(−j)i,k

)2

∑4
j=1
∑2
i=1
∑
k∈Z2

(
d(−j)i,k

)2
+∑2

i=1
∑
k∈Z2

(
c(−4)
i,k

)2 ,

(30)

rW =
∑2
j=1 E

(−j)
D∑2

j=1 E
(−j)
D + E(−2)

A

, (31)

where

E(−j)D =
∑
k∈Z2

(
LH(−j)k

)2
+
(
HL(−j)k

)2
+
(
HH(−j)k

)2
,

E(−2)
A =

∑
k∈Z2

(
LL(−2)

k

)2
,

(32)

LH,HL,HH (low-high, high-low, and high-high) is the usual
notation for the detail coefficients of a separable wavelet, and
LL (low-low) stands for the approximation coefficients.

Although formulae (30) and (31) look different, they are
conceptually the same, they correspond to the energy of the
fine detail subbands divided by the energy of all the wavelet
coefficients. For example, in the case of Lena (256 × 256),
in (30) the numerator has the sums of squares of 2(1282 +
1282/2+ 642 + 642/2) = 61440 fine detail coefficients. The
numerator in (31) has the same amount: it corresponds to
the sums of squares of 3(1282 + 642) = 61440 fine detail
coefficients.

Observe in Table 2 that the energy compaction ratio is
lower for the multiwavelets. This indicates that the fine de-
tail subbands keep little information, and that most of the
information is concentrated in the approximation coeffi-
cients: if the coefficients are thresholded, we obtain many
zeros in the fine detail subbands, which is good for com-
pression. An appropriate coder should contemplate handling
zerotrees codification for these multiwavelets.

7. CONCLUSIONS

A procedure for the construction of orthogonal nonsepa-
rable multiwavelets with quincunx decimation and lowpass
polyphase filter properties has been given. The multiwavelets
obtained are balanced and have different polynomial approx-
imation orders. A graph of the two scaling functions asso-
ciated to one multiwavelet has been obtained by means of a
cascade algorithm, and the coefficients are given.

We have shown how image processing is achieved with
these wavelets,how the original image is decomposed into two
input images, we have given the analysis-synthesis formulae
and illustrated the first steps of these transforms.

Once the image has been transformed, the coefficients are
thresholded for compression. Experimental results show that
for a same compression rate, image quality is higher for the
multiwavelets wavelets having higher polynomial approxima-
tion order. And that for the same polynomial approximation
order, the performance of the wavelets having low-pass prop-
erties is superior to the other multiwavelets.

Numerical results also indicate that the energy com-
paction in the fine detail subbands may be greater for the con-
structed multiwavelet transforms than for the conventional
discrete wavelet transforms. This makes the multiwavelets a
potential tool for image or video compression.

APPENDIX

H(1,1) =
[
−2.592566632745038e−2 3.744699178489502e−2

1.323963014313383e−1 −5.402518841109086e−2

]

H(2,1) =
[
−6.871261590512233e−2 −3.082641914034970e−1

3.331300348199493e−2 8.257433230141883e−2

]

H(0,0) =
[

9.101779474899736e−2 1.147594849860903e−3

1.579615799990289e−1 1.650959000796863e−1

]

H(1,0) =
[

3.340926666738988e−1 4.491466458692672e−1

1.031992112251045e+0 6.843827156738546e−1

]

H(2,0) =
[

1.001671974143504e+0 6.889337709218273e−1

−5.060233419523893e−1 −2.082196881883916e−1

]

H(3,0) =
[
−2.521252867158303e−1 −1.720458505197366e−2

8.369373186488886e−2 4.082100790627226e−2

]

H(1,−1) =
[

5.457525792861077e−2 1.100177891678567e−1

9.432610211977062e−2 2.596028291177161e−1

]

H(2,−1) =
[
−1.345941232130003e−1 3.877598567725661e−2

−2.765948963639682e−2 2.976809087462491e−2

]

w = [ 1.0 1.0
]

u = [−2.590118834952359e−2 −2.721035516546056e−1
]

v = [−1.170391652697625e+0 −7.879636384567043e−1
]

G(1,1) =
[

1.265442752812728e−1 −5.270803250075925e−2

−4.014336198897893e−2 −6.465762486853062e−3

]

G(2,1) =
[

3.431910340295161e−2 9.056581868305330e−2

4.278074152313938e−2 2.233397005025604e−1

]
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G(0,0) =
[
−1.030244589035089e−1 3.684651927019812e−1

1.076617041914698e−1 −2.991279828567442e−1

]

G(1,0) =
[

6.469317730309792e−1 −7.240195732995425e−1

−4.378488471119604e−1 7.065039887323013e−1

]

G(2,0) =
[

6.223429968194491e−1 −5.990080922886163e−1

4.911572165652078e−1 −8.501352143410924e−1

]

G(3,0) =
[

1.641760277533065e−1 −2.467053380405102e−1

2.474569759125719e−1 −2.814270072493299e−1

]

G(1,−1) =
[
−6.616332019405033e−2 −2.049768622936048e−1

6.728234504911705e−2 1.389896567428485e−1

]

G(2,−1) =
[
−4.813292879725325e−2 −8.606585078521337e−3

−1.560286466880401e−1 4.600449840297642e−2

]
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