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metry below the underlying string scale. The problem of axions is then closely tied to the

question of how moduli are fixed. We consider, from this viewpoint, the possibility that

supersymmetry is broken at an intermediate scale, as in “gravity mediation”, at a low scale,

as in gauge mediation, and at a very high scale, to model the possibility that there is no

low energy supersymmetry. Putative mechanisms for moduli fixing can then be systemat-

ically classified, and at least for intermediate and high scale breaking, light axions appear

plausible. In the course of this work, we are lead to consider aspects of moduli fixing and

supersymmetry breaking, and we revisit the possibility of very large extra dimensions.

Keywords: Strings and branes phenomenology

ArXiv ePrint: 1010.4803

Open Access doi:10.1007/JHEP01(2011)012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81084987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1010.4803
http://dx.doi.org/10.1007/JHEP01(2011)012


J
H
E
P
0
1
(
2
0
1
1
)
0
1
2

Contents

1 Why string theory seems a promising setting to solve the strong CP

problem 1

2 Axions in the small W0 scenario with multiple Kähler moduli 4

3 Other stabilization mechanisms: racetrack models and Kähler stabiliza-

tion 8

4 Supersymmetry breaking with multiple moduli 9

4.1 Simple models which break supersymmetry 10

5 The exponentially large volume scenario 10

6 General issues in ISB 13

7 Axions in low scale (gauge mediation) and high scale supersymmetry

breaking 14

8 Outlook and scorecard 15

1 Why string theory seems a promising setting to solve the strong CP

problem

From the beginning, the Peccei-Quinn (PQ) solution to the strong CP problem had a trou-

bling aspect: why should the underlying theory obey a global symmetry to an extremely

good approximation. Indeed, the approximation must be so good that any operator which

would violate the symmetry must be of very high dimension, even if its coefficient is scaled

by inverse powers of the Planck scale. As a result, to tackle the problem one requires a

theory where such ultraviolet questions can be meaningfully addressed. String theory does

appear to provide an answer: there are often scalar fields, which, in perturbation theory

have no potential, and which couple to FF̃ of candidate standard model gauge fields [1].

But, while suggestive, assessing the viability of the axion in string theory, and more gener-

ally the axion itself (viewing string theory as a model for the axion phenomenon) requires

understanding how supersymmetry is broken and moduli are fixed. If the non-perturbative

effects which break supersymmetry also break the Peccei-Quinn symmetry, then the sym-

metry cannot resolve the strong CP problem. In the KKLT proposal [2], the most complete

proposal for how moduli might be fixed in string theory, there is one seemingly natural

axion candidate, the pseudoscalar field which is the partner of the single Kähler modulus.

But this field gets a large mass, larger than the scale of supersymmetry breaking. Indeed,
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the full supermultiplet gains a mass which is approximately supersymmetric. This has lead

to pessimism about obtaining QCD axions in a landscape [3, 4]. In this paper, we revisit

this issue, and discover that there are circumstances where axions of sufficient quality to

solve the strong CP problem are plausible.

In order to assess the likelihood of light axions in string theory, with the present

(limited) state of our understanding, it is necessary to make some assumptions about the

underlying symmetries and dynamics. Probably the most important of these is the scale

of supersymmetry breaking. We will focus here on three possibilities: intermediate scale

breaking (ISB) of supersymmetry, as in “gravity mediation” (Mint ≈
√

TeVMp), lower

scale of supersymmetry breaking, as in gauge mediation, and a scale much higher than the

intermediate scale, as a model for a situation with no low energy supersymmetry.

In all three cases, if moduli are somehow fixed and are not extremely light, the partners

of any very light axions must be fixed by supersymmetry breaking dynamics. So we wish

to investigate whether moduli can indeed be fixed in such a fashion, while leaving over a

Peccei-Quinn shift symmetry of high quality.

The known axion candidates in string theory respect certain shift symmetries. Given

our assumption that supersymmetry survives below the fundamental scale, these lie in

chiral multiplets, which we will refer to as “axion multiplets”:

τi → τi + 2πini (1.1)

We choose here to take the axion to be the imaginary part of τi,

τi = si + iai. (1.2)

We will sometimes refer to τi and/or si as “axionic supermultiplets”.

If generated by short distance (e.g. string scale instanton) effects and if si is large,

these necessarily appear in any superpotential through terms of the form

Wτ = e−miτi , (1.3)

for some integers mi. We will assume that the axion decay constants are of order the

underlying fundamental scale, M , which we will imagine ranges from 1015 GeV to the

Planck scale (though at one point we will relax this, when we consider the large extra

dimension scenario of [5]). We will assume that the continuous shift symmetry is broken

by high scale “instanton” effects of order e−nτ , with n an integer. The requirement that

the Peccei-Quinn symmetry is of high quality is then a constraint on the si’s. To qualify as

a QCD axion, for example, assuming that the fundamental scale is 1016 GeV, gives s > 180

or so. We will see, following ideas of [6–8] that there are quite plausible mechanisms

which could account for the required si for multiple axions. The low energy dynamics

of these moduli can be analyzed simply within the framework of low energy effective field

theory. Moreover, these additional moduli may themselves be the source of supersymmetry

breaking and small, positive cosmological constant (c.c.). The main difficulties with this

framework are the familiar ones of ISB: flavor, the cosmological moduli problem [9, 10],

and the overshoot (or Brustein-Steinhardt [11]) problem. The framework which we develop
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to study the dynamics of such light axions allows a quite simple analysis of the large extra

dimension scenario of [5]. We will see that the scenario is prone to a variety of instabilities,

but, as has been discussed in the literature on this subject, it remains quite plausible that

such stationary points exist. Whether they are particularly common in a landscape is

another matter, about which we can (and will) only speculate.

An alternative possibility is that the Peccei-Quinn symmetry arises as an accidental,

approximate symmetry, linearly realized at scales well below M . We will argue, follow-

ing [12], that in the case of low energy supersymmetry breaking, cosmology probably

necessitates such a picture. The most likely way such a symmetry might arise would seem

to be the presence of discrete R (and possibly other) symmetries. This scenario does not

suffer from flavor problems, or the usual cosmological moduli problem. The question, in

this context, is why the quality of the Peccei-Quinn symmetry is so high.

In this note, we will explore more generally the question of Peccei-Quinn symmetries in

an underlying landscape. In line with our remarks above, we will consider various possible

situations:

1. Supersymmetry broken at an intermediate scale (ISB).

2. Supersymmetry broken at a low scale, as in gauge mediation.

3. Supersymmetry broken at a high scale, in part in order to model the absence of

supersymmetry.

We will see that the possibilities for moduli fixing, with large si, can be simply classified.

They include two mechanisms which fix a linear combination of the τi’s, while preserving

an approximate supersymmetry:

1. The small W0 mechanism [6, 8]. Here W0 is a constant term in the superpotential. In

this case, a linear combination of the si’s is fixed in an approximately supersymmetric

fashion, with the large value of si being related to the small value of W0. At low

energies. one linear combination of τi’s can be integrated out, leaving a theory

with a set of τi’s, a constant superpotential, and with some Kähler potential. The

(generalized) KKLT scenario fits within this framework.

2. The “Racetrack:” Here, the hierarchy arises from a delicate balance between differ-

ent exponentials in the superpotential. Again, some linear combination of moduli

are fixed, leaving other light fields which can play the role of the QCD axion (and

additional axions) [7, 8]. This theory, again, is described by a constant superpotential

and some Kähler potential.

Alternatively, all of the τi’s can be fixed simultaneously with supersymmetry breaking.

This falls within the class of stabilization mechanisms known as “Kähler stabilization”.

In the next section, we consider the small W0 scenario. We review why there is no

light axion in the case of a single light modulus. We explain that in the case of multiple

light moduli, the effective low energy theory is very simple, and it can readily be seen that:
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1. Under plausible conditions, all of the si moduli are stabilized by supersymmetry

breaking.

2. There can be multiple light axions, including the QCD axion, with the required high

quality.

3. There is a quite real possibility of breaking supersymmetry through the dynamics of

the axionic moduli, without additional fields.

In section 3, we discuss racetrack and Kähler stabilization. Like the small W0 case,

in the case of the racetrack, there is typically one modulus with mass large compared to

m3/2, while others have masses, again, of order m3/2. In the case of Kähler stabilization,

all of the moduli have masses of order m3/2.

In section 4, we discuss the question of whether supersymmetry can be broken by

the dynamics of the Kähler moduli themselves, without invoking antibranes or low energy

dynamics on branes, or other phenomena. We show that this is a logical possibility. In

section 5, we show that the Large Extra Dimension scenario of [5] fits naturally in this

framework. The appearance of exponentially large volumes is readily understood, as well

as potential instabilities, which we discuss. In section 6, we briefly review two well-known

issues associated with models of intermediate scale supersymmetry breaking: flavor and

cosmological moduli, and their relevance to the axion solution of the strong CP problem.

In section 7, we discuss axions in the frameworks of low energy gauge mediation and

high scale supersymmetry breaking. Finally, in our conclusions, we provide a scorecard for

different settings of the Peccei-Quinn solution of the strong CP problem.

2 Axions in the small W0 scenario with multiple Kähler moduli

The KKLT proposal is a well-known realization of the small W0 scenario. Independent of

the microscopic details, it can be summarized in a very simple low energy Lagrangian. At

scales below the fundamental scale, there is a single chiral field, ρ, with superpotential

W = W0 + αe−ρ/b

The Kähler potential is:

K = −3 ln(ρ+ ρ†)

W0 is a constant (as is α). The most important aspect of the KKLT analysis is the claim

that W0 can be extremely small; this becomes the small parameter which permits self-

consistent approximations (it accounts, in particular, for large ρ). With this assumption

one can solve sequentially for a stationary point of the potential. First, study the equation

for a supersymmetric minimum:

∂W

∂ρ
+
∂K

∂ρ
W = 0.

The minimum occurs for

ρ ∼ −b ln |W0| + b log(− log |W0|). (2.1)
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At the minimum, the W0 term in the superpotential dominates by a power of ρ.

The low energy Lagrangian is a supergravity Lagrangian with superpotential

W ≈W0. (2.2)

The mass of the components of ρ is of order

m2
ρ ∼ eK |W0|

2ρ2. (2.3)

In particular, if supersymmetry is broken in some fashion (e.g. anti-D branes, as suggested

in KKLT, or some low energy dynamics, perhaps associated with fields on branes), the mass

of the modulus multiplet is larger than the gravitino mass by a factor of ρ; this justifies

solving the equation for ρ first.

If this is all there is to the low energy theory, supersymmetry is unbroken and the cos-

mological constant is negative. KKLT, and subsequently others, have provided a variety

of scenarios for how supersymmetry might be broken, and for the origin of a substantial

positive contribution to the vacuum energy. The most popular of these involves anti-D3

branes,1 but one can alternatively imagine that there are simply some additional interac-

tions in the low energy theory which break supersymmetry [13, 14]. Adopting such a model,

we can represent this through the presence of a field, Z, with a non-zero F component.

Depending on the underlying details, this F component, and the Kähler potential, may

exhibit non-trivial ρ dependence. For the moment, we will make no assumptions about

the field Z; in section 4, we will explore the possibility that this field is itself one of the

Kähler moduli.

In this theory, the fields in the ρ multiplet all have mass of order ρm3/2, and there is

typically an additional multiplet whose components have masses of order m3/2 (often in-

cluding a pseudomodulus). Whatever the detailed mechanism of supersymmetry breaking,

the ρ multiplet, including the pseudoscalar candidate axion, has an approximately super-

symmetric spectrum, and the axion is not suitable for solving the strong CP problem.

Thinking about the problem more generally, it is clearly necessary that the partner

of any would-be axion gain mass only as a consequence of supersymmetry breaking [12];

otherwise the axion is massive. This requires that the superpotential, to a high degree of

accuracy, be a function of only one linear combination of moduli,

W = W0 + e−τ/b (2.4)

(we will assume b > 1, as in gaugino condensation); here τ =
∑
niτi (for IIB orientifolds

of Calabi-Yau manifolds, the τi’s would represent additional Kähler moduli).

At the same time, it is necessary that all of the moduli, τi, be fixed, in a fashion

such that e−τi ≪ e−τ/b, More precisely, to obtain an axion suitable to solve the strong CP

problem (and more generally, to give rise to the axiverse of [15]), one requires that

W = W0 + e−τ/b +Aie
−τi + . . . . (2.5)

1As often formulated, this is puzzling, as it is not clear how supersymmetry is spontaneously broken;

additional fields are necessarily required, e.g. to provide the longitudinal component of the gravitino. The

resolution may lie in the fact that the effective theory is not actually four dimensional, due to an infinite

tower of additional fields.
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τ is then fixed along the lines of KKLT, and the (real parts) of the other Kähler moduli

are all fixed as a result of the structure of the Kähler potential, in such a way that all

additional terms in the superpotential extremely small.

This may seem non-generic, and this was the point of view of [12]. But it is actually

not difficult to see how this might occur [6, 8]. For the superpotential of eq. (2.5), one can

solve the equation

DτW = 0 (2.6)

with

τ ≈ −b log(|W0|). (2.7)

If the Kähler metric for τ vanishes at large τ , as is typical of familiar supergravity and

string constructions, then τ is heavy, and can be integrated out. The remaining light fields,

τi, are described by a theory with some Kähler potential (a function of (τi + τ †i )) and a

constant superpotential. Suppose that the Kähler potential has a stationary point at τ0
i ,

∂iK = 0. (2.8)

With no other fields or dynamics, this point would correspond to a supersymmetric, AdS

vacuum. If there are additional dynamics which break supersymmetry (as assumed, for

example, in the KKLT model) giving small cosmological constant, then, quite generally,

the masses of the remaining τi fields receive a contribution to their masses-squared equal

to m2
3/2 from their mutual interactions. Consider the potential:

V
(τi+τ†

i )
= eK

(
|W0|

2KiK
ijKj − 3|W0|

2
)
, (2.9)

where we have noted that it is only the combination (τi + τ †i ) that appears in K and thus

the potential. Differentiating twice and using the fact that the Ki’s vanish at the stationary

point, indeed yields −Kij|W0|
2eK(τ0

i +τ0†
i ).

Whether this is the entire contribution to the masses of these moduli depends on the

nature of supersymmetry breaking. Suppose, for example, that supersymmetry is broken by

the F component of a chiral field, X, through an additional term in the superpotential fX.

Then, depending on the structure of the Kähler potential for X, there can be additional

contributions to the masses of the τi fields. Terms such as X†X/(τi + τ †i ) respect the

shift symmetry, and contribute to the masses, potentially with either sign, an amount of

order m3/2. So whether these points are actually local minima of the potential depends on

such details.

The procedure of integrating out the heavy modulus can be illustrated by a simple

example. We will use the language of the IIB theory. First, suppose we consider a version

of KKLT with two Kähler moduli, ρ1 and ρ2, and with superpotential

W = W0 −Ae−
ρ1+ρ2

b + fX (2.10)
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and Kähler potential:

K = −
3

2
log
(
(ρ1 + ρ†1)(ρ2 + ρ†2)

)
+K(X,X†). (2.11)

Here, for simplicity, K(X,X†) is such that it gives rise to a minimum for X near the

origin, e.g.

K = X†X +
1

m2
X†XX†X. (2.12)

Such a superpotential could arise in the presence of gaugino condensation in a sector with

gauge coupling

ρ0 = ρ1 + ρ2 (2.13)

and β-function b/3. As in the original KKLT model, this model has an approximate,

supersymmetric stationary point at

ρ1 = ρ2 = x ≈
b

2
log(|W0|). (2.14)

ρ0 has mass-squared of order ρ2
0|W0|

2, and can be integrated out, leaving an effective

theory for

Ψ = ρ1 − ρ2 (2.15)

with Kähler potential and superpotential

K =
1

ρ2
0

(Ψ + Ψ†)2 + · · · +K(X,X†) W = W0 + fX. (2.16)

For suitable adjustment of W0 and f , as suggested in [2, 16], the cosmological constant

can be arbitrarily small. In this case, the minimum of the potential for Re Ψ lies at the

origin, and the Ψ field has mass of order m3/2. It is easy to consider more realistic Kähler

potentials and follow through the same procedure.

How light is the axion? High energy non-perturbative effects are of order e−ρ0 . So if

b is of order, say 4, and

e−ρ0/bMp = 100 TeV (2.17)

then

e−ρ0 = 10−52. (2.18)

This gives an axion of high enough “quality” [12] to account for the axion of QCD. Of

course, factors of two in the exponent can make an appreciable difference in one direction

or the other.

It is natural, in this low energy picture, to ask whether the field X is necessary; could

the low energy theory for some set of fields, Ψi, with constant superpotential, be responsible

for supersymmetry breaking? We will explore this question in section 4.
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3 Other stabilization mechanisms: racetrack models and Kähler stabi-

lization

The essential ingredients in our analysis above were:

1. The presence, at some low energy scale, of multiple axion superfields, τi = si + iai,

invariant under a discrete shift symmetry.

2. As a consequence of (1), for large si, holomorphic quantities depend on τi as e−niτi .

It is necessary that ρi be large if the corresponding axion is to be light.

The existence of this small parameter for the would-be axion is particularly important.

In the KKLT scenario, the large size of ρ is correlated with the small parameter W0; the

large value of some linear combination of ρi’s is determined by supersymmetric dynamics;

supersymmetry breaking determines the relative values of the different moduli. We will

take this as our definition of the KKLT scenario (in this sense, it applies to the proposals

in [7, 8]).

There are other ways we might imagine a small parameter could come about, which

would allow for the possibility of light axions. First, there is the possibility that one

obtains a large value of all of the ρi’s through dynamics which break supersymmetry. This

would be a realization of “Kähler stabilization” [17]. In this context, there would again

be a superpotential which is a function of a linear combination of the moduli. The Kähler

potential of the theory would give rise to supersymmetry breaking and a large expectation

value for this modulus; each of the other moduli would similarly be large. The spirit of

the Kähler stabilization hypothesis is that, despite the fact that the theory is not weakly

coupled, certain holomorphic quantities, the factors e−ρi in this case, are extremely small.

Whether this actually happens in string theory is an open question.

Another possibility is that the low energy theory for the τi’s (the theory obtained after

integrating out the complex structure moduli in the case of KKLT) contains no constant in

the superpotential, perhaps due to an unbroken, discrete R symmetry. The superpotential

forX is would be generated by non-perturbative effects, e.g. as in retrofitted models [18, 19].

These effects would break the R symmetry, generating the requisite expectation value of

the superpotential. Fixing of the Kähler moduli, with remaining axions, follows as in the

previous section.

So arguably the appearance of axions in such a picture is robust. So far, we have

assumed that m3/2 ∼ TeV. If we are not wedded to supersymmetry as a solution of the

hierarchy problem, we can consider the case of much larger m3/2; then we have a model for

axions without low energy supersymmetry. What is mainly required is that e−ρ0/b still be

hierarchically small, so that plausible powers of this parameter can account for the quality

of the QCD axion. Indeed, well known cosmological considerations [9, 10] require that the

scale be 50 TeV or larger; we will review these in section 6.

Lower m3/2 would arise, for example, in gauge mediation. Here it is problematic

that the partner of the axion must be fixed by supersymmetry breaking dynamics. If

it’s interactions are Planck suppressed, this particle leads to an untenable cosmology. To
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obtain axions, one either requires that the scale of interactions between the axion multiplet

and the hidden sector is significantly lower than Mp, or that there are no light moduli, and

the Peccei-Quinn symmetry is linearly realized for some range of scales in the low energy

theory. We will discuss these issues in section 7.

4 Supersymmetry breaking with multiple moduli

We have seen in the previous section that if there are additional light fields which break

supersymmetry, we can readily understand how all of the Kähler moduli are fixed in a

way that non-perturbative corrections to the axion potentials are small. In this section,

we discuss the possibility that the additional Kähler moduli are themselves responsible

for supersymmetry breaking. In general, we are dealing with a theory with a constant

superpotential and some Kähler potential. It is easy to see that it is possible, in principle,

for supersymmetry to be broken in this situation.

Near any would-be stationary point of the potential, we still expect to find one heavy

field, Φ, and several light fields, ρi. These fields are distinguished by the invariance of the

theory under discrete shift symmetries. Integrating out Φ, the low energy theory will again

be described by a constant superpotential, W0, and a Kähler potential for ρi. We still have

good, approximate shift symmetries,

ρi → ρi + 2πini. (4.1)

We can ask whether this theory can break supersymmetry. In fact, under rather general

conditions, this low energy theory does exhibit supersymmetry preserving and supersym-

metry breaking stationary points. The supersymmetry preserving points are AdS, and

satisfy the Breitenlohner-Freedman bound [20, 21]. The supersymmetry breaking points

have lower (i.e. more negative) cosmological constant. So if these states are obtained in

any sort of systematic approximation, additional dynamics are required to account for a

small, positive cosmological constant.

If the function K(ρi + ρ†i ) has a stationary point:

∂iK = 0 ∀i; ρi = ρ0
i (4.2)

then supersymmetry is unbroken at this point, with negative potential,

V0 = −3eK(ρ0)|W0|
2 (4.3)

while each of the (ρi + ρ†i )’s are tachyonic, with

m2 = −2eK(ρ0)|W0|
2. (4.4)

The Breitenlohner-Freedman bound is satisfied

−
9

4
≤ m2R2 = −2 (4.5)

so these configurations describe stable AdS vacua. However, because the curvature of the

potential is negative at this point, and because for large ρi the potential typically tends to

zero, we expect that the potential exhibits AdS supersymmetry breaking solutions.
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4.1 Simple models which break supersymmetry

This is illustrated by a simple example (we will also discuss the large volume solutions

of [5] in section 5). Rather than consider a Kähler potential with logarithmic behavior at

∞, take

K =
1

2
(ρ+ ρ†)2.

This admits a supersymmetric solution at (ρ+ρ†)=0, and a non-supersymmetric solution at

(ρ+ ρ†) = ±1. (4.6)

The non-supersymmetric solution, indeed, has lower energy.

Typically, when reliable computations are possible, this is problematic; the supersym-

metry-breaking solutions are AdS. So additional dynamics are required to account for the

observed small, positive cosmological constant.

But it is not at all clear that the underlying microscopic theory should be weakly

coupled, and even if it is, its Kähler potential might be more complicated than we have

contemplated above. We can ask whether it is logically possible, in a theory with constant

W , to have broken supersymmetry and vanishing cosmological constant. In fact it is, as

can be seen by considering a theory with a single scalar field, ψ, invariant under shifts.

We will suppose that the would-be minimum lies at ψ = 0, and expand the Kähler

potential about this point:

K(Ψ + Ψ†) ≡ K(ψ) = k0 + k1ψ +
k2

2
ψ2 +

k3

3
ψ3 +

k4

4
ψ4. (4.7)

We then require that the constants ki satisfy the following conditions:

1. The potential has a stationary point at ψ = 0.

2. The potential is a minimum at ψ = 0.

3. The kinetic terms for ψ have a sensible sign at ψ = 0: k2 > 0.

4. Supersymmetry is broken at ψ = 0: k1 6= 0.

5. The cosmological constant is (nearly) zero at ψ = 0: k2
1 = 3k2.

It is easy to see that these conditions can be simultaneously satisfied.

5 The exponentially large volume scenario

The authors of [5] have put forth a scenario for the flux landscape in which the volume is

“exponentially large.” We will see that their scenario can be analyzed within the framework

we have put forward here. There is a parameter, W0 (which should be small, but need

not be extremely small). Integrating out one modulus supersymmetrically leads to a low

energy theory for the remaining moduli with constant superpotential and a particular

Kähler potential. The leading terms in the potential, for this particular Kähler potential,
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cancel, leaving terms which vary logarithmically with the light modulus (this logarithmic

variation is just the logarithmic modulus dependence familiar in KKLT). These terms are of

the same order, for large values of the modulus, as the first subleading α′ corrections. The

competition of these terms then allows for exponentially large solutions. The controlling,

small parameter for their analysis, we will see, is gs, the string coupling. In this setup, it

is easy to understand why a modulus exponential in 1/gs naturally arises in the leading

order analysis. It is also clear that this solution is potentially unstable. It is crucial to

understand the form of stringy perturbative corrections to the Kähler metric for various

fields. Some work has been done on this question [22, 23], and further investigations will

be reported elsewhere [24].

Without reviewing all of the details of the large dimension models, suffice it to say

that, like the models considered here, there are multiple Kähler moduli (in the examples

they analyze in detail, 2). Following their notation, we will refer to these as τ4, τ5. The

Kähler potential has a different form than that we have studied up to now:

K = −2 ln

(
V +

ξ

2gs

)
. (5.1)

where

V = τ
3/2
5 − τ

3/2
4 ≈ τ

3/2
5

(
1 −

(
τ4
τ5

)3/2
)
, (5.2)

and where ξ is a numerical constant. The superpotential can be taken to be (our notation

is not identical to that of [5], and our form differs slightly, by redefinitions of fields).

W = W0 +Ae−ρ4 . (5.3)

Here ρ4 = τ4 + ia, i.e. ρ4 is the superfield whose lowest component is τ4 plus an additional

axion field.

Now, as in our previous analyses, τ4 is the heavy field, and we should integrate it out,

solving its equations of motion. The equation Dτ4W = 0 gives:

τ4[τ5] ≈ − ln
(
W0/τ

3/2
5

)
. (5.4)

τ5 is the light field. To leading order in 1/τ5, the Kähler potential for τ5 is:

K = −3 ln(τ5) + 2
τ4[τ5]

3/2

τ
3/2
5

−
ξ

gsτ
3/2
5

. (5.5)

where we have explicitly indicated that τ4 should be thought of, here, as a function of τ5.

The superpotential for τ5 is approximately W0, as in our earlier examples.

Because of the so-called “no-scale structure” of the Kähler potential, the leading terms

in the potential, of order m2
3/2M

2
p = 1

τ3
5

|W0|2

M2
p

cancel. The next order terms, generated by

the second and third terms in eq. (5.5) each behave as τ
−9/2
5 , up to logarithms. More

precisely the potential behaves as a function of powers of log(τ5) times τ
−9/2
5 . It is this

feature which leads to a stationary point at exponentially large τ5.
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In the approximation that τ4 is large, the calculation of the potential greatly simplifies.

In particular, in taking derivatives ofK, terms obtained by differentiating τ4 are suppressed.

K ′ ≈ −
3

τ5

(
1 +

τ
3/2
4

τ
3/2
5

−
1

2

ξ

gsτ
3/2
5

)
(5.6)

(K ′′)−1 ≈
τ2
5

3

(
1 −

5

2

τ
3/2
4

τ
3/2
5

+
5

4

ξ

gsτ
3/2
5

)
. (5.7)

Correspondingly, the potential is approximately:

V = −3|W |2

(
1

2

τ
3/2
4

τ
3/2
5

−
1

4

ξ

gsτ
3/2
5

)
1

τ3
5

(5.8)

Since both terms exhibit the same τ
−9/2
5 power law dependence, the competition of the

logarithmic dependence of the first term and the (large, for small gs) constant in the second

term gives rise to an exponentially large solution:

τ5 ≈ e(ξ/gs)2/3

(5.9)

This is the result found in [5].

There are now several issues. First, the result is crucially dependent on the structure

of the leading terms in the Kähler potential. Corrections in gs might spoil this. For a

smooth manifold, one might expect these corrections to be suppressed by powers of the

compactification radius. This follows from the fact that at distances small compared to

R, the theory is ten dimensional, so contributions to loops from high Kaluza-Klein modes

would be essentially ten dimensional, in which case supersymmetry forbids corrections to

kinetic terms. Still, the power must be rather large, and one might worry, in addition, that

an orientifold is not a smooth manifold. These questions have been studied in [22] and [23],

who argue that, while such corrections are present, they are such that the first subleading

corrections to the potential cancel as well, and the result is stable. This question will be

studied further in [24].

A second issue is that the cosmological constant is negative in these states.2 By

assumption, the calculations are reliable in this limit, so additional dynamics are required

in order to understand a small, positive vacuum energy. These have the potential to further

destabilize the vacuum. As a model, add a chiral field X to the theory, with superpotential

δW = fX (5.10)

and Kähler potential adjusted so that the X potential has a stationary point at the origin.

We require that f be such that it cancel the vacuum energy −V0. This requires

|f2| ∼
|W0|

2 log(τ5)
1

2

(τ0
5 )3/2

(5.11)

2Note that if the cosmological constant were positive, this would be particularly problematic, since by

assumption corrections are small. Additional supersymmetry breaking dynamics might be expected to add

only additional positive contributions, so some more significant modification of this structure would be

required.
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where τ0
5 is the value of τ5 near the minimum.

For such a value of f , this is a small perturbation on the τ5 potential and the value

of τ5 at the minimum τ0
5 changes by an order one multiplicative constant with respect to

the f = 0 case. The viability of the large dimension solution critically depends on this

tuning of f2. If f2 were too large, say by a factor of 100, the “corrections” to the τ5
potential would overwhelm those considered in [5]. One would be driven back to the small

W0 (KKLT) scenario. In a landscape, then the question might be something like: how

common are exponentially large dimensions (requiring tuning of f2) vs. very small W0?

Even if we suppose that the cosmological constant can be explained while still obtaining

an exponentially large volume solution, there are other issues. Examining the potential

and the kinetic terms, we see that the mass of τ5 is small compared to m3/2;

m2
τ5 ≈ m2

3/2τ
−3/2
5 (5.12)

due, again, to the “no scale” cancellations. As has been widely discussed in the literature,

this is potentially problematic cosmologically. To deal with this issue, it has been sug-

gested [25] that the scale, m3/2 is large, and that matter fields are light (by powers of τ5
compared to m3/2) due to a no scale structure.

It is important that this feature survive at the quantum level. Examination of low

energy diagrams suggests that this hierarchy can be stable [26], but this is worthy of

further investigation.

Overall, then, the low energy effective field theory approach leads to a clear under-

standing of the exponentially large volume scenario. We see that the stability of the large

volume solution is critically dependent on the precise structure of the Kähler potential

and the dynamics responsible for cancellation of the cosmological constant. Arguably, in a

broad range of circumstances, corrections to the Kähler potential may well be small enough

to support a large volume solution. But in the regime where the analysis is potentially

reliable, it predicts a negative cosmological constant, so additional dynamics are required.

The dynamics responsible for tuning the cosmological constant seems to sustain the large

extra dimension solution precisely (and only) as a consequence of this tuning.

6 General issues in ISB

Models with ISB raise at least two well-known issues. The first is the flavor problem. We

have nothing new to add on this subject except to note that the seeming ease with which

one might generate a suitable PQ symmetry is perhaps good reason to reconsider this issue,

and the various solutions (flavor symmetries, features of particular regions of the moduli

space) which have been proposed.

The second issue is the moduli problem. As stressed in [27], in supersymmetry axions

are inevitably associated with a cosmological moduli problem, which is parametrically more

severe than the usual axion energy density problem. There are basically two proposed

solutions. First, moduli might sit at enhanced symmetry points. But this is incompatible

with the moduli partners as axions. Second, the moduli might be sufficiently massive that

– 13 –



J
H
E
P
0
1
(
2
0
1
1
)
0
1
2

the temperature after their decays is high enough to restart nucleosynthesis [9, 10]. This

corresponds to moduli masses (and presumably the gravitino mass) larger than 10 TeV. As

usual, this poses a fine tuning problem (conceivably one whose solution could be understood

anthropically). One also must account for limited production of stable particles (LSP’s) in

moduli decays. But it has the effect that it significantly relaxes the constraint on the axion

decay constant, readily allowing axion decay constants of 1014 GeV or perhaps somewhat

larger, without invoking a small misalignment angle.

Related to these questions is the question of overshoot [11]. Models of the type dis-

cussed here will suffer from this difficulty; perhaps the most plausible solution is a modest

tuning of initial conditions, as discussed in [28]. This tuning might plausibly have an an-

thropic origin. One can ask whether the problem takes a different form in the presence

of multiple moduli. There are now several fields each of whose initial conditions must,

to a similar degree, be tuned. The severity of this tuning might disfavor the “axiverse”

scenario [15]. On the other hand, in a landscape, it is conceivable that there are many

more “states” with larger numbers of Kähler moduli, and this effect might overwhelm

the effects of tuning, favoring an axiverse. These issues will be discussed in a subsequent

publication [29].

7 Axions in low scale (gauge mediation) and high scale supersymmetry

breaking

By low scale supersymmetry breaking, we mean m3/2 ≪ TeV. Generally, for such low

scales, assuming Planck scale couplings for the moduli as would naively arise in the KKLT

scenario, for example, these fields are cosmologically problematic. They quickly come to

dominate the energy of the universe, and at the same time they are quite light, decaying

long after nucleosynthesis.

So if supersymmetry is broken at low scales, then we have to assume that, in fact,

there are no light moduli at scales just below the fundamental scale. In that case, any

would-be axions must arise from a Peccei-Quinn symmetry which is linearly realized below

the fundamental scale. This possibility is explored in [12]. It is not difficult to write

such models, accounting for the quality of the Peccei Quinn symmetry through discrete

symmetries. These symmetries, however, are rather intricate and it is not clear why such

a structure would be generic. In this framework, it is natural for fa to be 1011 − 1012 GeV,

as this scale is readily connected to some messenger scale, and also because it tends to

ameliorate the quality problem.

This framework avoids the ISB moduli problem, and, assuming a gauge mediated

structure, also avoids problems of flavor changing currents. But the existence of a high

quality PQ symmetry is a puzzle.

Given our limited knowledge of string theories without supersymmetry, we can con-

sider, instead, possible vacua in which the supersymmetry breaking is well below the fun-

damental scale, but not so low as to resolve the hierarchy problem. We can again take

KKLT as a model for moduli stabilization. There seems no difficulty in accounting for an

axion in this framework. Needless to say, the flavor problems of ISB are alleviated in such
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a regime, as are the cosmological issues connected with moduli. So axions would seem par-

ticularly plausible in the absence of low energy supersymmetry. But as the supersymmetry

breaking scale approaches the fundamental scale, the problem of the axion quality becomes

progressively more severe, suggesting that some degree of low energy supersymmetry might

have something to do with the solution of the strong CP problem.

8 Outlook and scorecard

String theory provides the most promising setting for the PQ solution of the strong CP

problem. We have seen that:

1. In theories with approximate supersymmetry below the fundamental scale, the su-

perpartners of would-be axions must be fixed by supersymmetry breaking dynamics.

2. In the small W0 (or racetrack or Kähler stabilization) scenario(s), with multiple

Kähler moduli, one can readily understand the presence of axions of high quality,

from quite generic low energy effective actions.

3. In the small W0 scenario, these additional moduli can readily, themselves, be respon-

sible for supersymmetry breaking.

4. ISB suffers from the standard problems of flavor and cosmological moduli. The

Brustein-Steinhardt problem may be more severe in such a picture.

5. In low energy supersymmetry breaking, any PQ symmetry (responsible for the QCD

axion and possibly other light pseudoscalars) should be linearly realized below the

fundamental scale; the breaking should be visible within the low energy theory. Fla-

vor and moduli are not severe problems, but understanding the quality of the PQ

symmetry is more challenging than in IMB.

6. As a model for the absence of low energy supersymmetry, we can simply take the

supersymmetry breaking scale large (tuning the weak scale); suitable axions remain

highly plausible, and many of the problems of ISB are ameliorated.

From these observations, it seems that axions are a quite plausible outcome of a land-

scape picture for understanding the laws of nature. ISB seems the most plausible setting.

If the Peccei-Quinn symmetry is non-linearly realized below the fundamental scale, it is

hard to see how to adequately protect the axion without low energy (but not necessarily

weak scale) supersymmetry. If it is linearly realized, either in models of low energy su-

persymmetry breaking or in models without low energy supersymmetry, intricate discrete

(gauged) symmetries seem required to account for the high degree of axion quality.
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