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Abstract

Background: Communalities between large sets of genes obtained from high-throughput experiments are often
identified by searching for enrichments of genes with the same Gene Ontology (GO) annotations. The GO analysis
tools used for these enrichment analyses assume that GO terms are independent and the semantic distances
between all parent–child terms are identical, which is not true in a biological sense. In addition these tools output
lists of often redundant or too specific GO terms, which are difficult to interpret in the context of the biological
question investigated by the user. Therefore, there is a demand for a robust and reliable method for gene
categorization and enrichment analysis.

Results: We have developed Categorizer, a tool that classifies genes into user-defined groups (categories) and
calculates p-values for the enrichment of the categories. Categorizer identifies the biologically best-fit category for
each gene by taking advantage of a specialized semantic similarity measure for GO terms. We demonstrate that
Categorizer provides improved categorization and enrichment results of genetic modifiers of Huntington’s disease
compared to a classical GO Slim-based approach or categorizations using other semantic similarity measures.

Conclusion: Categorizer enables more accurate categorizations of genes than currently available methods. This
new tool will help experimental and computational biologists analyzing genomic and proteomic data according
to their specific needs in a more reliable manner.
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Background
During the last decade, high-throughput technologies
have allowed scientists to collect large sets of genomic
and proteomic data. These data sets are then often
screened for groups of genes that are over-represented
or depleted when compared to a reference set or the
entire genome/proteome of a specific organism. Therefore,
great efforts have been made to develop computational
methods to translate the flourishing raw data into mean-
ingful biological knowledge.
Gene Ontology (GO) is a dictionary of controlled bio-

logical vocabularies to annotate genes at different levels
of granularity [1]. The GO dictionary can be envisioned as
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a graph that has, in a first approximation, the architecture
of an upside down tree in which connected nodes, i.e.,
related GO terms, have a parent–child relationship and
all nodes can be connected back to the three root nodes
(biological process, molecular function and cellular compo-
nent). This well-structured knowledge has been utilized to
identify specific biological processes or functions enriched
within sets of genes. There are many tools that can carry
out this task: David, FuncAssociate, BiNGO, etc. [2-5].
These tools output lists of all individual GO terms that are
significantly enriched in the analyzed data set. However,
listed GO terms often refer to the same biological process.
In addition, many GO terms are highly specific and
difficult to interpret in the larger biological context that
is investigated. As the research of most scientists is
focused on a specific area, scientists are often less inter-
ested in the enrichment of specific GO terms in a set of
genes but more in the enrichment of all GO terms that
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are associated with their area of interest. In order to
reach this goal, researchers define categories of interest
and manually assign genes into one of these categories
according to their GO annotations [6,7]. This is a labori-
ous process and categorization results may differ from
person to person.
There are tailored cut-down versions of GO, GO Slims,

to give a broad overview of the ontology content without
the details [8], and there is also a script that automatically
maps GO terms to GO Slim terms [9]. However, this
script simply searches for ancestor GO terms that are also
included in the GO Slim list and assumes that the GO
graph has the architecture of a perfect tree in which all
parent–child GO pairs are separated by the same distance.
This is not true. Not all parent–child relationships in
the hierarchical structure of GO have the same close-
ness in a biological sense. For instance, the relationship
of ‘protein serine/threonine kinase activity’ (GO:0004674)
and ‘IkappaB kinase activity’ (GO:0008384) is definitely
much closer than that of ‘biological process’ (GO:0008150)
and ‘cellular process’ (GO:0009987). Moreover, the GO
architecture is more accurately represented by a directed
acyclic graph, not a tree. Therefore, there can be more
than one path from a GO term up to the root node and
one GO term can be mapped to multiple GO Slim terms.
As a result of the differences in parent–child closeness, a
Figure 1 Categorization based on the graphical structure of GO (GO S
are colored in green and categories to which GO terms are assigned are co
particular category. B. Mapping results by the GO Slim approach, which tak
child term having two parent terms may be much closer
to one of them in a biological sense. An example for such
a case is shown in Figure 1A. According to the GO Slim
mapping script, the term ‘gamma-amminobutyric acid
import’ (G8) can belong to ‘amino acid imports’ (G4) and
‘gamma-amminobutyric acid transport’ (G5), since the
graphical distances to both parent terms are identical
(Figure 1B). However, the term ‘gamma-amminobutyric
acid import’ is closer to ‘gamma-amminobutyric acid
transport’ than ‘amino acid imports’ in the biological
sense. Accordingly it is more reasonable to say that
‘gamma-amminobutyric acid import’ belongs to ‘gamma-
amminobutyric acid transport’, which can’t be deduced
from the graphical distance alone. Hence, the biological
closeness of GO terms, not the graphical distance, should
be utilized for reliable GO analyses. Another problem with
the tools mentioned before is that they assume independ-
ence of GO terms. Functions and processes encompassed
by a specific GO term are a subset of the functions and
processes encompassed by its parent term. Thus, GO
terms cannot be independent but are associated. The use
of redundant terms can lead to overestimation or under-
estimation of relevant biological processes or functions.
Therefore, GO annotations should be analyzed in the
context of the hierarchical structure of GO and by taking
semantic distances between terms into account.
lim approach). A. Section of the GO structure. GO terms of interest
lored in blue. In this example, each of the blue GO terms refers to a
es only the graphical structure of GO into account.
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Several semantic similarity measures have been devel-
oped recently in order to approach some of these problems
[10,11]. As the name indicates, they provide a measure for
how close two annotation terms are, and their calculation
is based on the information content (IC), respectively the
specificity of each annotation term. In the determination
of the specificity of annotations, it is assumed that more
frequently used terms are less specific [12-14]. Different
types of semantic similarity measures have been intro-
duced [10,11,15-17] and used in very diverse applications
including the clustering of microarray data [18], the com-
parison of sets of genes and proteins from different spe-
cies (GOTax) [19], the assessment of functional similarity
of genes or proteins (G-SESAME) [20,21] and the identifi-
cation of new disease genes based on known disease anno-
tations (MedSim, ACGR) [22,23]. However, if one uses
semantic similarity measures for the categorization of
genes into groups of interest, one has to consider that
categorization is not about predicting how close two terms
are but assessing how well two terms go together.
To meet these demands, we developed Categorizer

that assigns genes to pre-defined biological functions or
processes based on their GO annotations. As biological
functions or processes of interest are different from field
to field, this new tool allows users to define their own
categories.

Implementation
Categorizer was implemented using a platform-independent
language, Python, and thus it can run on any operating
systems. For the user’s convenience, we also provide a
pre-compiled version of Categorizer that runs on the
Windows operating system.
The overall scheme of the approach implemented in

Categorizer is shown in Figure 2A. Categorizer employs
three steps to categorize genes. (i) The IC scores of GO
terms are calculated from the occurrence of GO annota-
tions in UniProtKB-GOA [24]. This score denotes the
biological relevance of a GO term, i.e., the more frequently
a term is used the less relevant the term is. (ii) A semantic
similarity score is calculated for all GO parent–child pairs
based on their IC and the hierarchical structure in GO.
(iii) According to the semantic similarity scores, genes
with annotations are assigned to biologically appropriate
categories. In the following sections, the details of these
three steps are described.

Information content (IC)
An IC score has to be assigned first to all GO terms in
order to calculate semantic similarities. The IC represents
the significance of GO terms in a biological sense. We
assume that more frequently used GO terms are less
significant [25]. We therefore counted all the occurrences
of GO terms in a reference database. Here, we used all the
proteins and their annotations in UniProtKB-GOA [24].
The hierarchical structure of GO was taken into account
when counting occurrences. For example, when a protein
has the annotation of ‘G21’ in Figure 2B, we also counted
its parent terms, ‘G11’ and ‘G0’. When another protein has
the annotation of ‘G22’, we also increased the occurrences
of ‘G11’ and ‘G0’. The overall occurrences in the given
example are then ‘G0’ (+2), ‘G11’ (+2), ‘G21’ (+1) and ‘G22’
(+1). The occurrences are then divided by the number of
annotations (which is two in the given example) in order
to get occurrence probabilities of GO terms, p(x):

p xð Þ ¼ number of all occurences of x
the number of occurences of the root node of x

In this equation, orphan GO terms that have not been
used in UniProtKB-GOA were assigned the lowest p(x)
value of the terms, meaning the maximal IC. The prob-
ability is finally converted into an IC score that denotes
the significances of each GO term:

I xð Þ ¼ − log p xð Þð Þ
In the given example, I(G0) is zero, which means that

annotations with G0 are biologically meaningless. As
the calculation of the IC score I(x) for all GO terms is
computationally expensive, Categorizer comes with a
file that contains pre-computed values. In addition, we
also provide a script with which users can pre-compute
other I(x) values taking their annotations of interest, e.g.
UniProtKB-GOA (no IEA), Human GOA, or customized
annotation files. Synthetic IC scores for each term in our
example are shown in Figure 2B.

Semantic similarity
When a specific GO term needs to be categorized, Cate-
gorizer searches for its parent terms that are assigned to
a category and calculates semantic similarity scores with
them. The semantic similarity scores are calculated as
follows. IC scores are used to calculate (α) the semantic
distance of a category-assigned parent GO term from
the root node, (β) the semantic distance of the GO term
to be categorized and its category-assigned parent term
from their most informative child terms and (γ) the
semantic distance between the category-assigned parent
term and the GO term to be categorized (Figure 2A). All
three scores are then combined in a final semantic simi-
larity score [26]. Given two GO terms, for instance G32
(term to be categorized) and G22 (one of G32’s parent
terms) (Figure 2B), we calculate the semantic similarity
of these two terms as follows [26]:

Distance of a category-assigned parent GO term from the
root node (α)
First, the semantic distance of the category-assigned par-
ent term (G22) to the root term is calculated, which is



Figure 2 Approach used in categorizer to assign genes to categories. A. Three steps used in the categorization process: (i) Information content
calculation, (ii) semantic similarity score calculations for parent–child pairs and (iii) categorization according to the semantic similarity scores. See the
main text for details. B. Illustrative (synthetic) example for the calculation of semantic similarity scores. Information content scores (I) are shown for
each GO term. G0 is a root term. In this example, a user defined two categories (A and B) and assigned G22 to category A (orange), and G23 to
category B (blue). Semantic similarity scores (S) of several terms are also shown.
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defined as the difference in IC scores between the two
GO terms (x1 and x2):

d x1; x2ð Þ ¼ I x2ð Þ−I x1ð Þj j
a ¼ d r; pð Þ

where r is the root term and p is the parent.
Thus, the distance of G22 from the root term is

α =12.20.
Distance from the most informative child terms (β)
Next, the average distance of the GO term to be catego-
rized (G32) and its category-assigned parent term (G22)
from their most informative child terms is calculated.
The distance is defined as below:

β ¼ d x1; c1ð Þ þ d x2; c2ð Þ
2
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where c1 and c2 denotes the most informative child
node of x1 and x2, respectively. If c1 and/or c2 do not
exist, they are set to x1 and x2, respectively.
In our example, G32 has the child term G41 and

G22 has child the terms G31, G32, G41, and G43. The
most informative child term of G32 is G41 and that of
G22 is G43. Therefore, β = (d(G22, G43) + (G32, G41))/
2 = ((13.90 − 12.20) + (13.17 − 12.31))/2 = 1.28.

Distance of a category-assigned parent GO term and a GO
term to be determined (γ)
The third step is to calculate the distances between a
category-assigned GO term (G22) and a GO term to be
categorized (G32), which is defined as:

γ ¼ d p; x1ð Þ
where p is a parent term assigned to a category and x1
is a term to determine its category.
In this example, γ = d(G22,G32) = (12.31 − 12.20) = 0.11

Semantic similarity score
The final step is to calculate the semantic similarity
score (S) from the three values, α, β, and γ:

S x1; x2ð Þ ¼ 1
1þ γ

⋅
α

αþ β

where by 0 ≤ S(x1, x2) ≤ 1.
Consequently, the semantic similarity score between

G22 and G32 is

S G22; G32ð Þ ¼ 1
1þ 0:11

⋅
12:20

12:20þ 1:28
¼ 0:815

Categorization
Conventional semantic similarity measures were devel-
oped to assess how similar two GO terms are, but
categorization is about assessing how well a specific
term belongs to another term or a group of other terms.
Thus, we use semantic similarity in the categorization
process but require that a categorized term is a child of
any term in the assigned category. For instance, two
sibling terms, ‘DNA-templated transcription initiation
(GO:0006352)’ and ‘DNA-templated transcription elong-
ation (GO:0006354)’, are semantically very similar. They
could be categorized to their parent term ‘RNA biosyn-
thetic process (GO:0032774)’ because transcription initi-
ation and elongation are both important steps in RNA
biosynthesis. However, they cannot be categorized to
each other because transcription initiation and elongation
are two different molecular processes. Therefore, Categor-
izer first determines whether a term to be categorized is a
child of only one or more category-assigned terms. If it is
the child of only one term that has a category assignment,
the similarity score of this parent–child pair is set to 1 and
the term is assigned to the corresponding category. For a
term that is a child of two or more category-assigned
terms, Categorizer assesses semantic similarity between
this term and all category-assigned terms and then assigns
it to the category with the highest semantic similarity
score. We demonstrate the procedure in the following
examples:
In the example shown in Figure 2B, the user assigned

the term G22 to category A and the term G23 to cat-
egory B. First, Categorizer automatically identifies child
terms that belong to a single category only (e.g. G31→
A, G33→ B and G42→ B). For GO terms that have
multiple parents, i.e. could belong to two or more cat-
egories (G32, G41, and G43), semantic similarity scores
are calculated with the GO terms that are assigned to a
category and their parents. Then the GO terms of inter-
est are assigned to a category with the highest semantic
similarity score.

Assignment example G32
Categorizer calculates pairwise semantic similarities of
G32 with all the GO terms that belong to category A
and are a parent of G32: S(G22,G32). In the same way,
Categorizer also calculates semantic similarities of G32
with the terms in category B: S(G23, G32). Since S(G22,
G32) = 0.815 and S(G23,G32) = 0.078, a gene with the
annotation of G32 is more likely to belong to the cat-
egory A.

Assignment example G41
Categorizer calculates the pairwise semantic similarities
S(G22, G41) and S(G23, G41). Since S(G22, G41) = 0.475
and S(G23, G41) = 0.071, a gene with the annotation of
G41 should belong to the category A.

Assignment example G43
Categorizer calculates the pairwise semantic similarities
S(G31, G43), S(G22, G43), S(G23, G43), and S(G33,
G43). Since S(G31, G43) = 0.350, S(G22, G43) = 0.346, S
(G33, G43) = 0.291 and S(G23, G43) = 0.064, we can infer
that the term G43 is closer to G31 than G33 in a bio-
logical sense and accordingly a gene with the annotation
of G43 should belong to the category A.
One can allow a GO term to go into multiple categor-

ies if its semantic similarity score is above a user-defined
threshold. For instance, a gene with the annotation of
G32 can belong to category A and/or B depending on
the semantic similarities and the user-defined threshold.
The default threshold is set at 0.3 in Categorizer. This
threshold value was determined by calculating an average
semantic similarity score for two randomly selected GO
terms that are linked directly or indirectly in a parent and
child relationship. The average score was 0.10 ± 0.12 and
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accordingly Categorizer uses 0.3 as a default cutoff value
for reliable categorization. After assignment of genes to
one or several categories, enrichments of the categories
are calculated.

Enrichment analysis
Most GO enrichment analysis tools use simple statis-
tical methods, including hypergeometric distribution,
chi-square, Fisher’s exact test, and binomial probability
[2]. When these methods are used to assess enrichment of
categories, it is assumed that categories are independent.
However, one gene may belong to two or more categories,
and thus some categories may co-occur more frequently
than others. Recently, a random model-based statistical
enrichment analysis has been proposed [27]. Following
this suggestion, Categorizer first calculates the probabil-
ities of each category in a reference gene set:

p cð Þ ¼
XN

i¼1
f i cð Þ

XM

c¼1

XN

i¼1
f i cð Þ

where p(c) denotes a probability of category c in a reference
gene set, N denotes the number of genes in a reference set,
M denotes the number of categories, and fi(c) is 1 if the
gene i is assigned into the category c, otherwise, 0. Then,
the genes in the reference set are randomly assigned to
categories according to the category probability, p(c), while
retaining the number of assigned categories to each gene
in order to keep the degree of categories. L different genes
are randomly chosen from the reference, where L denotes
the number of screened genes or genes of interest. The
frequency of each category is then counted. These ran-
domizations are repeated 1,000 times to obtain an average
frequency and standard deviation of each category. With
these averages and standard deviations, z-scores for each
category are calculated as below:

z cð Þ ¼
XL

i¼1
f i cð Þ−μ cð Þ
σ cð Þ

The μ(c) and σ(c) denote an average number and
standard deviation of category c obtained from the
randomization. The p-values for each category are calcu-
lated from the z-scores.
Table 1 Categories provided with categorizer

Groups Categories

Biological processes Cell cycle, Cytoskeleton, Meta
RNA processing, Splicing, Tran
transport, Vesicles, Golgi/ER, M
Phagocytosis/phagosome, Au

Cellular localization Cytoplasm, Mitochondria, Gol

Enzyme functions Hydrolase, Isomerase, Ligase,
Utilization
For practical categorization, the following key steps are
carried out. First, a user has to define categories that are
of interest and assign key GO terms to each category; a
category is defined as a set of one or more GO terms.
The user does not need to assign all GO terms to newly
defined categories because Categorizer is capable of
identifying semantically close GO terms and, by doing
so, decides whether a GO term belongs to a category or
not. Alternatively, the user can select among three com-
monly used category sets that are shipped with Categori-
zer: biological processes, cellular localizations, and enzyme
functions (Table 1). For instance, the “biological processes”
set contains 27 sub-categories. To run the software, at
least three files (marked in yellow in Figure 3A) should be
provided: (i) a category file defining categories and their
GO terms, (ii) an annotation file containing gene-to-GO
annotations, and (iii) a gene file containing the list of
genes to be analyzed. A background gene file has to be
provided for the category enrichment analysis.

Results and discussion
Genetic modifiers of Huntington’s disease
In order to demonstrate the functionality of Categorizer,
we first analyzed the enrichment of specific categories in
a set of genes that have been identified as genetic modi-
fiers in Drosophila models of Huntington’s disease (HD).
The data was compiled from NeuroGeM, a database of
genetic modifiers of neurodegenerative diseases including
HD, Alzheimer’s, Parkinson’s, Amyotrophic lateral scler-
osis, and several Spinocerebellar ataxia types [28,29].
Modifiers are genes that are capable of modulating disease
phenotypes; in this case the neuronal cell death caused by
protein aggregation.
We categorized genetic modifiers into 9 groups that

are of interest to researchers studying HD: cell cycle (cell
cycle, GO:0007049), cytoskeleton (cytoskeleton organization,
GO:0007010), metabolism (metabolic process, GO:000
8152), protein synthesis (gene expression, GO:0010467),
protein folding (protein folding, GO:0006457), proteolysis
(proteolysis, GO:0006508), signaling (signal transduction,
GO:0007165), splicing (RNA splicing, GO:0008380), and
transport (transport, GO:0006810). We loaded the Dros-
ophila gene-to-GO annotation file (downloaded from
FlyBase in March 2014), and entered the list of high-
bolism, Transcription, Translation, Protein folding, Proteolysis, Signaling,
smembrane transport, Intracellular localization, Protein transport, Nuclear
itochondria, Endo- and exo-cytosis, Lysosome, Peroxisome, Ribosomes,
tophagy, Apoptosis, DNA repair, DNA replication, Receptors

gi, Nucleus, Cytoskeleton, Vesicle/Lysosome, ER, Extracellular

Lyase, Oxidoreductase, Transferase



Figure 3 Snapshots of the GUI of Categorizer. A. Initial window for setting up the categorization parameters: category definitions, gene
annotations, gene test set, background genes, and categorization options. B. Categorization results: category statistics (left), detailed categorization
results (middle), and enrichment analysis result (right).
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confidence genetic modifiers of HD (210 genes) ob-
tained from NeuroGeM. As a reference, we entered all
Drosophila genes that had been tested experimentally
as modifiers (7896 genes). We allowed a gene to be in-
cluded into multiple categories with the default cutoff
value of 0.3.
With this information, Categorizer assigned the genetic

modifiers to the defined categories. As shown in Figure 3B,
categorization results for each gene are reported in the
middle of the graphical user interface (GUI), i.e., the cat-
egories that each gene is assigned to are listed together
with the semantic similarity score in parenthesis. On the
left side of the GUI, there is a pie chart that displays the
category statistics. In this example, the metabolism cat-
egory is the largest while the protein folding category is
the smallest. On the right side of the GUI, category
enrichment analysis results are shown (see Enrichment
analysis in Implementation for details). Consistent with
the knowledge on the importance of the protein folding
machinery in the pathogenesis of neurodegenerative dis-
eases [30,31], the category of protein folding is highly
enriched among genetic modifiers of HD, though they
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account for only a small portion of the genetic modifiers.
Additionally, the categories of cell cycle, cytoskeleton, pro-
tein synthesis and splicing are also enriched among the
genetic modifiers of HD. This finding is consistent with
recent research data on neurodegeneration and HD in
particular [32-39].
In the given example, we categorized genetic modifiers

of HD into broad biological processes and calculated their
enrichment. However, if a user is interested in signal
transduction, one could define categories such as NK-
kappaB cascade or TOR signaling. It is up to the user to
decide how specific or broad the defined categories are.
Figure 4 Comparison of results generated by using Categorizer and a
Slim and a random predictor. The categories of genetic modifiers obtained
gold standard. B. Enrichment of the 9 categories. All the genes tested for H
the test and randomized reference sets. Since we allowed multiple categoriza
categories (p < 10−2) were marked as *.
Comparison of analysis results generated with
Categorizer and classical approaches using GO Slim terms
Categorizer is different from GO Slim-based methods in
that it identifies biologically relevant categories by using
both the graphical structure of GO and the semantic
similarities between GO terms. Therefore, we decided to
compare the performance of Categorizer with that of the
classical methods using GO Slim. First, we assessed the
accuracies of category assignment by comparing assign-
ment results of Categorizer and the GO Slim approach
for a gold standard set of genes. Second, we evaluated
the quality of enrichment analyses by comparing the
GO-Slim-based approach. A. Overall accuracies of Categorizer, GO
from a high-throughput screening study (Zhang et al.) were used as a
D were used as a reference. C. Numbers of genes for each category in
tion, one gene may appear in several categories. Significantly enriched



Figure 5 Performance comparison of different semantic
similarity measures and the one implemented in Categorizer.
MCC values were calculated with HD modifiers as done for the
comparison of Categorizer and GO Slim in Figure 4A.
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results of the two approaches for the 210 high-confidence
genetic modifiers of HD (used in Figure 3).
Zhang et al. have previously categorized genetic modi-

fiers, which they had identified in a high-throughput
screen, manually into few broad biological processes
(categories) based on the GO annotations of the modi-
fiers [6]. We used these categorized genes as a gold
standard to evaluate the accuracies of Categorizer and
GO Slim-based methods. For this comparison, we cus-
tomized a GO Slim ontology that is composed of the
same nine GO terms that we used for Categorizer (see
above). Then, Drosophila GO annotations were mapped
to these nine terms with the help of the GO Slim assign-
ment script map2slim.pl [9]. Categorization accuracy
was calculated as below:

Accuracy ¼
XN

g¼1

XNC

c¼1
F g; cð Þ

N � NC

where N denotes the number of genes in the gold stand-
ard set; NC denotes the number of total categories. As
categorization is a multi-class problem, it is necessary to
include both correct assignment to true categories and
correct non-assignment to false categories when calculat-
ing accuracy. Briefly, we built two matrices named G and
P denoting true answers and predictions, respectively. G
(g, c) = 1 if a gene g in the gold standard set belongs to a
category c and G(g, c) = 0 if the gene g does not belong to
category c. P(g, c) = 1 if a gene g is categorized into a
category c by Categorizer or the GO Slim-based method,
respectively, and P(g, c) = 0 if the gene g is not categorized
into category c. Thus, F(g, c) = 1 if G(g, c) = P(g, c) and 0
otherwise. The categorization accuracies of Categorizer
and GO Slim are 81% and 70%, respectively (Figure 4A).
As a control, a random predictor was built that randomly
assigns genes to three categories. Three categories were
chosen because the average number of assigned categories
per gene in the gold standard by Categorizer and the GO
Slim approach was 2.5. The accuracy of this random pre-
dictor is 65%. Since many genes are categorized into only
a few categories, the number of correctly non-assigned
genes has a big impact on this accuracy measure (hence
the high accuracy of the random predictor). In order to
deal with this issue, we also calculated the classical
Mathew’s correlation coefficient (MCC) that is a suit-
able measure for evaluating unbalanced datasets. The
MCC values of Categorizer, GO Slim-based method, and
random predictor are 0.32, 0.17 and 0.0, respectively.
Overall, these tests demonstrate that the category assign-
ment of Categorizer is more accurate than a classical
categorization with GO Slim terms and, thereby, under-
lines the importance of semantic similarity for this task.
Next, we compared the quality of enrichment analyses of

the two approaches. We did so by analyzing the enrichment
results of the two methods for the 210 genetic modifiers
of HD used in Figure 3. The statistics of categories and
enrichment results generated by using Categorizer and by
the GO Slim-based approach are shown in Figure 4B and
C. The GO Slim approach identified the categories ‘cell
cycle’ and ‘cytoskeleton’ as significantly enriched among the
genetic modifiers of HD, which is consistent with the
results found by Categorizer (Figure 4B). However, the
three categories of ‘protein folding’, ‘protein synthesis’ and
‘splicing’ were not identified as enriched categories by the
GO Slim approach (p-value > 10−2). This result of the GO
Slim approach is in stark contrast to the literature on
modifiers of neurodegenerative diseases, including HD.
Genes whose products are involved in protein folding, pro-
tein synthesis and splicing are found in most screens for
modifiers of neurodegenerative diseases that have been
carried out to date [31,40-42]. As shown in Figure 4C, both
Categorizer and GO Slim assigned the same number of
genes to the categories of protein folding and splicing. How-
ever, the GO Slim approach assigned more genes to these
categories in the randomized model of the reference gene
set than did Categorizer. Therefore, the p-values obtained
by the GO Slim method were larger than those obtained by
Categorizer. Interestingly, Categorizer identifies protein
synthesis as enriched in contrast to the GO Slim approach,
although Categorizer assigned fewer genes to the protein
synthesis category than GO Slim. The solution to this con-
undrum is that Categorizer assigned much fewer genes in a
reference set to protein synthesis than GO Slim. Overall,
these comparisons reveal that Categorizer provides more
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reliable categorization and enrichment results compared to
the conventional GO analysis method.

Comparison with other semantic similarity measures
As different flavors of semantic similarity measures have
been introduced [11], we assessed the accuracy of cat-
egory assignment as a function of the semantic similarity
measure. We used again as a gold standard the genetic
modifiers of HD that were already categorized manually
by experts in that field. Hence, we categorized HD modi-
fiers based on different semantic similarity measures and
assessed the accuracy of the categorization as we did for
the GO Slim-based categorization in Figure 4A. We
tested the semantic similarity measures developed by
Lin, Resnik, Wang et al., and Zhang et al., as well as the
one of XGraSM, and GO-Universal [11,15,43-45]. Cutoff
values for each measure were determined, as for Cate-
gorizer, from the average similarity scores of randomly
selected GO terms and measures were calculated using
the annotations in UniProtKB including IEA. A key
difference between these different metrics is the method
used to calculate the IC. The approaches of Lin and
Resnik use only the IC of the most informative common
ancestor for similarity calculations, while XGraSM uses
the averaged IC of all informative common ancestors
(for details see [11,15,43-45]). The combined methods,
XGraSM-Lin and XGraSM-Resnik, calculate semantic
similarities based on Lin’s and Resnik’s semantic similar-
ity metrics, but use the averaged IC of XGraSM. As
shown in Figure 5, Categorizer outperforms all other
measures commonly employed for assessing semantic
similarity. Consistent with previous findings [11,46],
XGraSM provides the best categorization results of all
the older methods (Figure 5). It is interesting to note that
the MCC values calculated for XGraSM-Lin and XGraSM-
Resnik are slightly higher than the MCC calculated for
GO Slim. This finding provides further support for the
importance of the semantic similarity in categorization.

Conclusion
Here we developed a flexible and extendable tool that
can be used to find over-represented categories within sets
of genes. Categorizer classifies genes to categories accord-
ing to biological meanings and assesses their enrichment.
Thus, Categorizer offers a new way of enrichment analysis
that allows focusing on processes that are of specific inter-
est to the user.
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