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Abstract: We present results on the bottomonium spectrum at temperatures above and

below the deconfinement crossover temperature, Tc, from dynamical lattice QCD simu-

lations. The heavy quark is treated with a non-relativistic effective field theory on the

lattice and serves as a probe of the hot medium. Ensembles with a finer spatial lattice
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this collaboration are used. In addition, there are Nf = 2 + 1 flavours of Wilson clover

quark in the sea with Mπ ≈ 400 MeV and we perform a more careful tuning of the bottom

quark mass in this work. We calculate the spectral functions of S and P wave bottomonium

states using the maximum entropy method and confirm earlier findings on the survival of

the ground state S wave states up to at least 2Tc and the immediate dissociation of the

P wave states above Tc.
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1 Introduction

The dissociation of heavy quarkonia in a deconfined medium may provide a valuable ther-

mometer for relativistic heavy-ion collisions [1]. Dissociation, or melting, contributes to

the suppression of the yield of these states in nuclear collisions compared with hadronic

ones [2]. Suppression patterns [3, 4] are complicated by the statistical recombination of

heavy quarks in the quark-gluon plasma (QGP). However, competing effects are expected to

be less pronounced for bottomonium than for charmonium [5]. Indeed sequential suppres-

sion has been observed recently in the Υ system by CMS at the LHC [6]. It is therefore

desirable to understand the dissociation of mesons in the bottomonium system from ab

initio QCD.

Analytic results from effective field theories [7–12] can aid the identification and inter-

pretation of the relevant physical phenomena, such as the role of the finite width of such

states in the plasma as well as the familiar colour-Debye screening mechanism [9]. However,

in order to achieve a separation of scales, they generally rely on a choice of the parametric

size of the temperature, for instance T ∼ gmb or T ∼ g2mb, where mb is the heavy quark

mass and g is the coupling which is assumed to be sufficiently weak for a hierarchy of scales

to emerge. In contrast, by directly simulating the non-relativistic field theory for the heavy

quark (NRQCD) non-perturbatively, all that is required is that mb � T , which is certainly

satisfied for the bottom quark in the relevant regime up to 4 or 5Tc.

Numerical lattice simulations are well suited to investigate the properties of the strongly-

coupled QGP and to capture the non-perturbative dynamics of the hot medium formed

– 1 –



J
H
E
P
0
7
(
2
0
1
4
)
0
9
7

around the crossover temperature, Tc. However, it remains a challenge to control system-

atic errors in dynamical lattice simulations. This paper continues the work of the fastsum

collaboration’s programme to investigate phenomenologically relevant observables in the

QGP with improved control over uncertainties [13–17]. Here, we calculate bottomonium

spectral functions from Nf = 2+1 ensembles using the maximum entropy method. The de-

termination of the spectral functions from the lattice aims to complement other approaches

such as weak-coupling effective field theory and potential models [5, 18–24] to give a com-

plete understanding of the behaviour of heavy quarkonium through the deconfinement

crossover.1

An earlier analysis of the spectral functions by this collaboration from Nf = 2 flavour

ensembles suggested the ground state S waves (ηb and Υ channels) survive up to at least 2Tc
while the first excited state may be suppressed in the deconfined phase, both at zero [14] and

non-zero momentum [15]. Those conclusions are consistent with predictions from effective

field theory [9] and experimental data [6], although a detailed comparison with the latter

is beyond the scope of these lattice studies. An examination of the correlation functions

indicated [13] that the P waves (hb, χb1,2,3 channels) are greatly modified directly above Tc.

By comparison with the expectations from the free continuum effective theory the observed

thermal modification of the correlators provided evidence in favour of the hypothesis that

the P waves dissociate soon above the crossover temperature. This interpretation was

supported by the examination of the spectral functions in those channels [16].

In this paper we extend the Nf = 2 analysis by using new Nf = 2 + 1 ensembles with

improved lattice parameters. The results for the spectral functions are compatible with

earlier findings but in the analysis of the correlators we note that the finite threshold plays

a more prominent role, discussed in section 3.1. The following section outlines the simu-

lation details and zero temperature calibration. We present the bottomonium correlators

and spectral functions at finite temperature in section 3, discuss systematic effects in the

spectral function reconstruction in section 4 and conclude in section 5.

2 Lattice set-up

In this work we employ ensembles with anisotropic lattice spacings, using a tadpole-

improved Wilson clover quark action for the light and strange quarks and a tadpole- and

Symanzik-improved gauge action. Tree-level improvement coefficients are used for both

the fermion and gauge actions. The tuning of the lattice parameters was performed by the

Hadron Spectrum Collaboration and further discussion can be found in ref. [31]. A range

of temperatures above and below the deconfinement crossover is accessible from 0.76Tc to

1.90Tc. The fixed-scale approach is used whereby the temperature is varied by changing the

number of temporal lattice sites while the lattice spacings are kept constant. This reduces

the overhead of zero temperature simulations required to tune the lattice parameters. The

renormalized anisotropy, ξ ≡ as/aτ , is tuned to ξ = 3.5, which allows us to maintain an

1Previous studies of quarkonium spectral functions from lattice QCD, mostly for charmonium, can be

found in refs. [25–30].
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Ns 16 24 24 24 24 24 24 24

Nτ 128 40 36 32 28 24 20 16

T/Tc ∼ 0 0.76 0.84 0.95 1.09 1.27 1.52 1.90

T (MeV) ∼ 0 141 156 176 201 235 281 352

Ncfg 499 502 503 998 1001 1002 1000 1042

Table 1. Summary of the ensembles used in this work. The crossover temperature is determined

from the renormalized Polyakov loop [32]. The zero temperature tuning of the lattice parameters

was completed by the Hadron Spectrum Collaboration [31].

Nf as (fm) a−1
τ (GeV) ξ Mπ/Mρ asmb E (MeV)

First generation 2 0.162 7.35 6 0.54 4.5 8570

Second generation 2 + 1 0.1227(8) 5.63(4) 3.5 0.45 2.92 8252(9)

Table 2. Comparison between lattice parameters used in earlier work [13–16, 34, 35] (first gener-

ation) and this work (second generation). E is the additive shift in the bottomonium energy, see

eq. (2.6).

adequate resolution of the correlation functions to obtain the spectral functions at high

temperatures.

These “second generation” ensembles [17] represent multiple improvements over the

“first generation” ones used in the previous work by this collaboration [13–16]. In particu-

lar, the spatial lattice spacing, as = 0.1227(8) fm is finer, while Mπ/Mρ ∼ 0.45 is reduced.

Moreover, the strange quark is now included in the sea. Details are given in tables 1 and 2.

On these ensembles the pion is relatively heavy, Mπ ≈ 400 MeV, while the kaon is roughly

physical, MK ≈ 500 MeV [33]. The highest accessible temperature is slightly reduced in

this study with respect to the earlier work.

2.1 Lattice NRQCD

NRQCD is an effective field theory with power counting in the heavy quark velocity in the

bottomonium rest frame, v ∼ |p|/mb [36]. The finite lattice spacing cuts off the relativistic

modes of the heavy quark in the discretized theory. The heavy quark and anti-quark fields

decouple and their numbers are separately conserved. Their propagators, S(x), solve an

initial-value problem whose discretization leads to the following choice for the evolution

equation

S(x+ aτeτ ) =

(
1− aτH0|τ+aτ

2k

)k
U †τ (x)

(
1− aτH0|τ

2k

)k
(1− aτδH)S(x), (2.1)

with Uτ (x) being the temporal gauge link at site x and eτ the temporal unit vector. The

leading-order Hamiltonian is defined by

H0 = −∆(2)

2mb
, with ∆(2n) =

3∑
i=1

(
∇+
i ∇−i

)n
. (2.2)
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Figure 1. Zero temperature dispersion relations in the ηb and Υ channels used to determine the

1S spin-averaged kinetic mass, M2(1S), with fits given in eq. (2.5).

The higher order covariant finite differences are written in terms of the components of the

usual forward (∇+
i ) and backward (∇−i ) first order ones. The correction terms are given by

δH =−
(
∆(2)

)2
8m3

b

+
ig0

8m2
b

(
∇± ·E −E ·∇±

)
− g0

8m2
b

σ ·
(
∇± ×E −E ×∇±

)
− g0

2mb
σ ·B

+
a2
s∆

(4)

24mb
− aτ

(
∆(2)

)2
16km2

b

,

(2.3)

which incorporate O(v4) corrections as well as the leading spin-dependent corrections. The

matching coefficients are determined at tree-level. The terms on the final line of eq. (2.3)

remove the O(a2
s) errors in H0 and the O(aτ ) errors of the evolution equation respectively.

The choice of k = 1 for Lepage’s parameter is sufficient for these anisotropic lattices in

order to satisfy the stability criterion max |1 − aτH0/2k| < 1. Other choices of k = 2, 3

were investigated but their effects are negligible. The clover definition of the field-strength

tensor is used to define the unimproved chromoelectric and magnetic fields and ∇± is

the symmetric covariant finite difference operator. Tadpole improvement is implicit and

implemented by dividing all links by the mean link determined from the fourth root of the

average plaquette.

In NRQCD the heavy quark rest-mass energy can be removed from the dispersion

relation by performing a field transformation. This leads to an unknown additive shift

in the zero energy when interactions are included [37] so the spectrum must be offset

to compare with experimental meson masses, see section 2.2. The determination of the

lattice heavy quark mass, asmb, is achieved by tuning a hadronic kinetic mass, M2, at zero
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temperature which appears in the hadronic lattice dispersion relation

aτE(P̂ 2) = aτE(0) +
a2
sP̂

2

2ξ2aτM2
+ . . . ,

a2
sP̂

2 = 4
3∑
i=1

sin2

(
πni
Ns

)
.

(2.4)

where ni = −Ns/2 + 1, . . . , Ns/2. In this work we tune the heavy quark mass by requiring

the spin-averaged 1S kinetic mass, M2(1S) = (M2(ηb) + 3M2(Υ))/4, to be equal to its

experimental value. Using the spin-averaged kinetic mass mitigates the systematic error

due to the determination of the hyperfine splitting in the kinetic mass [38]. The fits to

the dispersion relations, shown in figure 1, at the tuned value of the heavy quark mass

asmb = 2.92, are given by

aτE(ηb; P̂
2) = 0.2058(2) + 0.0239(3)a2

sP̂
2,

aτE(Υ; P̂ 2) = 0.2150(3) + 0.0241(3)a2
sP̂

2,
(2.5)

with a statistical error determined from a bootstrap analysis. Higher order terms in the

dispersion relation could not be resolved within the statistical precision. The tuned value

of the heavy quark mass corresponds to M2(1S) = 9560(110) MeV which is consistent with

the experimental value, Mexpt(1S) = 9444.7(8) MeV. The error includes a contribution from

the statistical uncertainty in the scale set from the Ω baryon mass [39]. This tuning is an

improvement over the ad hoc choice of the heavy quark mass in the previous study.

2.2 Zero temperature results

Figure 2 shows correlation functions in the Υ (red crosses) and χb1 (blue circles) channels

and the energies, aτE, determined from single exponential fits at large Euclidean times.

The experimental Υ(1S) mass, Mexpt(Υ), is used to determine the overall energy shift, E ,

of spectral quantities

E = Mexpt(Υ)− E(Υ; P̂ 2 = 0) = 8252(9) MeV, (2.6)

so that E + E(Υ) is fixed to the experimental Υ(1S) mass. This allows us to compare

the NRQCD energies directly with the experimental spectrum, shown in table 3. We note

that in ref. [40] a heavy quark action with O(v6) corrections was used in conjunction with

the same zero temperature ensemble used in this work. Slight discrepancies between the

spectra could arise from a different heavy quark action including a different choice for the

matching coefficients. Precision studies of the zero temperature bottomonium spectrum

using NRQCD have been performed by the HPQCD collaboration [38, 41].

The maximum entropy method (MEM) with Bryan’s algorithm [43] was used to obtain

the spectral functions, ρ(ω), from the hadronic correlation functions, which are related

through

G(τ) =

∫ ωmax

ωmin

dω

2π
K(τ, ω) ρ(ω), K(τ, ω) = e−ωτ . (2.7)
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Figure 2. Correlation functions in the Υ and χb1 channels with the corresponding ground state

energies extracted from exponential fits. Filled symbols denote negative data excluded from the fit.

n2S+1LJ State aτE E + E (MeV) Mexpt (MeV)

11S0 ηb 0.20549(4) 9409(12) 9398.0(3.2)

21S0 η′b 0.311(3) 10004(21) 9999(4)

13S1 Υ 0.21460(5) 9460* 9460.30(26)

23S1 Υ′ 0.318(3) 10043(22) 10023.26(31)

11P1 hb 0.2963(4) 9920(15) 9899.3(1.0)

13P0 χb0 0.2921(4) 9896(15) 9859.44(52)

13P1 χb1 0.2964(4) 9921(15) 9892.78(40)

13P2 χb2 0.2978(4) 9928(15) 9912.21(40)

Table 3. Bottomonium spectrum from standard exponential fits where the Υ mass has been used to

set the absolute energy shift, E . The error quoted in the third column is statistical, while the error

in the fourth column includes a contribution from the statistical uncertainty in the scale [33, 39].

The experimental masses are taken from the Particle Data Group booklet [42].

The lower limit aτωmin ∼ 0 can be negative or positive since aτω = 0 corresponds to

E determined in eq. (2.6), while the upper limit aτωmax ∼ 2 should be large enough to

accommodate all spectral features of interest. These boundaries have been varied to ensure

the stability of the results, see section 4.

Although this is a typical ill-posed problem given the discrete and noisy estimator

for the correlation function, G(τ), MEM gives a unique solution after specification of the

default model. Further details on the implementation used can be found in ref. [14], where

also the default model dependence is studied in detail. Figure 3 shows the spectral functions

in the S wave Υ (left) and P wave χb1 (right) channels along with energies extracted

from multi-exponential fits directly to the correlators using the CorrFitter package [44]

shown with vertical black dotted lines. Good agreement is observed between the energies

extracted directly from the correlators and the peak positions in the reconstructed spectral

– 6 –
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Figure 3. Spectral functions in the Υ (left) and χb1 (right) channels at zero temperature with

energies determined from exponential fits shown as black dotted lines with statistical errors.

functions. We note that while as many as six well-defined peaks can be discerned in

the S wave channel presented here, the third and higher peaks are not compatible with

the experimental spectrum [42]. A more thorough investigation of the zero temperature

spectrum could be undertaken following the HPQCD approach [38, 41].

3 Bottomonium at finite temperature

The heavy quarks are valence quarks which propagate through the thermal medium ac-

cording to the solution of the initial value problem in NRQCD. Their propagators do not

satisfy anti-periodic thermal boundary conditions so the heavy quarks are not in thermal

equilibrium with the medium. This is illustrated in the representation of the correlation

function in eq. (2.7) which is manifestly not symmetric about τ = 1/2T , while the kernel,

K(τ, ω), is independent of the temperature. The thermal modification of the correlators

can therefore be directly attributed to the modification of the associated spectral function.

The asymmetry of the hadronic correlation functions can be seen explicitly in figure 2.

These simplifications result from replacing ω → 2mb + ω and taking the mb/T →∞ limit

in the standard kernel at finite temperature

K(τ, ω) =
cosh(ωτ − ω/2T )

sinh(ω/2T )
= e−ωτ (1 + nB(ω)) + eωτnB(ω)→ e−ωτ , (3.1)

where nB(ω) = 1/(exp(ω/T )− 1) is the Bose-Einstein distribution.

The inversion of eq. (2.7) to obtain the spectral function is simpler with this asymmetric

kernel, since the correlation functions are accessible to much greater temporal separations

than for relativistic quarks. Moreover, unlike a formulation in which the quarks are in

equilibrium with the medium there is no constant contribution to the hadronic correlation

functions. This reflects the fact that NRQCD is an effective field theory around the two-

quark threshold.
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Figure 4. Thermal modification, G(τ ;T )/G(τ ;T ≈ 0), of the correlation functions in the Υ (left)

and χb1 (right) channels.

3.1 Thermal modification of correlation functions

The ratios of the correlation functions at finite temperature to those at zero temperature

are shown in figure 4. With increasing temperature the enhancement of the correlators

sets in at earlier temporal separations. We observe temperature dependence already below

Tc and stronger dependence above Tc. An enhancement of approximately 4% is seen in

the S wave Υ channel (left) above Tc but there is a greater effect of almost 20% in the

P wave χb1 channel (right). The enhancement relative to the low temperature correlators

in the Nf = 2 studies [14, 16] was approximately 2% and 25% in the S wave and P wave

channels, respectively. The correlators in the other S wave (ηb) and P wave (hb, χb0, χb2)

channels show analogous modifications to the Υ and χb1 channels. Typically, as the temper-

ature is increased an enhancement is seen in the ratio of quarkonium correlators, both for

NRQCD [14, 16] and in relativistic charmonium studies [27, 28]. It is easy to see that both

thermal broadening of the ground state peak and non-exponential decay of the correlator

result in an enhancement of these ratios.

The S wave effective mass displays little temperature dependence (figure 5, left) but

a clear effect is seen in the P wave channel effective mass (right). In ref. [13] it was also

observed that the S wave effective mass showed little variation with temperature while the

temperature dependence in the P wave channel effective mass was even more pronounced

than visible here.

It is useful to compare the effective mass at high temperatures with that in the non-

interacting infinite temperature limit. In continuum NRQCD the spectral functions are

known for free heavy quarks [9], and are given by

ρfree(ω) ∝ (ω − ω0)α Θ(ω − ω0), where α =

{
1/2, S wave.

3/2, P wave.
(3.2)

To facilitate the comparison with the interacting effective theory we have included a thresh-

old, ω0, to model the shift in the energies away from the two-quark threshold which occurs
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Figure 5. Temperature dependence of the effective mass in the Υ (left) and the χb1 (right) channels.

at ω = 0 in the free effective theory. While the energy shift, E , is defined at zero temper-

ature the threshold, ω0, may be temperature dependent, e.g. due to the thermal dressing

of the quarks. In the infinite temperature limit the correlation functions then have the

following behaviour

Gfree(τ) ∝ e−ω0τ

τα+1
, (3.3)

and the effective mass becomes

Meff(τ) ≡ − 1

G(τ)

dG(τ)

dτ

G=Gfree−→ ω0 +
α+ 1

τ
. (3.4)

Pure power law decay in the correlator or the absence of plateaus in the effective mass

may be less evident the more ω0 deviates from zero (or the threshold from the additive

constant E). In the earlier Nf = 2 studies comparisons between the correlators and effec-

tive mass and their non-interacting counterparts were possible without including a finite

threshold. However, the threshold appears to play a more significant role here which is

reflected in the fact that there is a change in the energy shift, E , of about 300 MeV between

the two studies, see table 2. The convergence of the effective mass in the Υ channel at

high temperatures to a plateau (figure 5, left) demonstrates the unchanged nature of the

ground state in the plasma. The discrepancies in the χb1 channel (right) above Tc are

indicitative of a significant thermal broadening of the ground state or power-law decay of

the correlator, characteristic of unbound quarks. The spectral functions in the following

section offer further insight into the interpretation of the temperature effects.

The thermal modification of the spectrum is expected to depend on the heavy quark

mass. In simple potential models the binding radius is related to the typical inverse mo-

mentum transfer, rH ∼ (mbv)−1, and effective colour Debye screening occurs when the

screening length, rD, is comparable with or smaller than the binding radius, rD . rH . At

a given temperature, we would therefore expect such a mechanism to become less effective

for heavier, more tightly bound states. Figure 6 shows the modification of correlators for

various lattice heavy quark masses and illustrates the mass dependence in the Υ (left) and

– 9 –
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Figure 6. Dependence on the heavy quark mass of the modification in the correlators at the highest

accessible temperature, T/Tc = 1.90, in the Υ (left) and χb1 (right) channels.

χb1 (right) channels. Correlators in the χb1 channel exhibit greater thermal modification

than in the Υ channel at each of the lattice heavy quark masses investigated. At smaller

values of the heavy quark mass, approaching the charm quark mass, a large enhancement

is seen even in the Υ channel correlation function, while for large values of the heavy quark

mass some enhancements are still seen in the χb1 channel. The mass dependence has also

been investigated in the Nf = 2 case [45].

3.2 Spectral functions

Figures 7 and 8 depict the spectral functions in the Υ and χb1 channels respectively at

temperatures from 0.76Tc up to 1.90Tc. For clarity each panel displays just two neighbour-

ing temperatures. In the Υ channel the ground state peak is clearly visible and coincides

with the energy extracted from the exponential fit to the correlation function at zero tem-

perature, see figure 3 (left). The ground state peak persists at all accessible temperatures

demonstrating the survival of the ground state to at least T = 1.90Tc. We observe a broad-

ening in the peak and a decrease in its height above Tc. Below Tc the second peak may be

identified with the first excited state. Its interpretation above Tc is less clear which may

be due to melting as well as the possible presence of lattice artefacts in the high frequency

part of the spectral function, which are discussed further in appendix A.

In the χb1 channel the ground state peak can be discerned at temperatures below the

Tc and agrees with the energy from the exponential fit at zero temperature. This peak is

observed to disappear immediately in the deconfined phase which we suggest indicates the

dissociation of this state almost as soon as the deconfined phase is reached. We note that

the ground state peak in the P wave channels is harder to distinguish than in the S wave

channels, even below Tc.

4 Systematic tests of MEM

A close examination of the reconstruction of the spectral functions is essential to have

confidence in the interpretation of temperature effects. Here we address some pertinent
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Figure 7. Temperature dependence of the reconstructed spectral function in the Υ channel. The

dashed black lines in the first panel indicate the ground state and first excited state energies deter-

mined from multi-exponential fits at zero temperature. Note the different ordinate scale between

the upper and lower panels.
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Figure 8. Temperature dependence of the reconstructed spectral function in the χb1 channel with

the zero temperature ground state energy shown in the first panel with a dashed black line.

issues due to the selection of the temporal range of the correlator and the frequency domain

of the spectral function used in the MEM. Other effects such as the dependence on the

default model and the statistical uncertainty have been investigated for similar data from

the Nf = 2 ensembles [14, 16] where they were noted to be mild. Typical systematic

effects in lattice studies such as the unphysical pion mass and finite-volume effects are not

discussed although the latter are expected to be small for such heavy quarkonium states.
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Figure 9. Stability of the reconstructed spectral function with respect to selection of temporal

correlator data [τ1/aτ , τ2/aτ ] shown in the key for the Υ (top) and χb1 (bottom) channels, for two

temperatures corresponding to Nτ = 28 (left) and Nτ = 20 (right). The results when the largest

temporal separation (τ/aτ = Nτ − 1) is included are shown with dashed lines.

The stability of the spectral function with the variation of the temporal range of the

correlation functions used in the reconstruction is shown in figure 9. The spectral functions

are stable as long as data at temporal separations close to τ/aτ = 0 or Nτ are excluded on

account of lattice artefacts. Effects due to the inclusion of temporal separations near Nτ

have also been discussed in ref. [16]. Although there are no temporal boundary conditions

for the heavy quark fields, we recall that the gauge fields are periodic. Since the spatial

lattice spacing is coarser than the temporal one, as = 3.5aτ , effects at separations close to

Nτ may be expected at this scale. The effect is stronger in the P wave channels [16].

In the Υ channel (figure 9, top panels) the spectral function is stable when varying the

temporal window as long as the correlator datum closest to τ/aτ = 0 is omitted. In the

χb1 channel (figure 9, bottom panels) the spectral function is stable as long as the largest

temporal separation τ/aτ = Nτ − 1 is also excluded. Therefore the reconstructed spectral

function converges in all cases when the range of correlator data, [τ1/aτ , τ2/aτ ], is chosen

such that τ1/aτ & 1 and τ2/aτ . Nτ − 1.

We have also investigated using a subset of the available correlator data to ensure any

inferences about the temperature dependence are due to physical effects and not artefacts

of the analysis using fewer data. In figure 10, the reconstructed spectral function in the Υ

channel at T = 0.76Tc using only half the available correlator data is compared with that

from using the entire correlation function. Only a small variation in the ground state peak

height is observed.
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Υ χb1
Nτ aτωmin, aτωmax aτωmin, aτωmax

128 0.12, 2.12 0.18, 2.18

40 0.08, 2.08 0.16, 2.16

36 0.08, 2.08 0.16, 2.16

32 0.08, 2.08 0.16, 2.16

28 0.08, 2.08 0.10, 2.10

24 0.08, 2.08 0.08, 2.08

20 0.00, 2.00 0.00, 2.00

16 -0.04, 1.96 -0.04, 1.96

Table 4. Frequency ranges used in reconstruction of the spectral functions. The frequency interval

is discretized into Nω = 1000 points for each Nτ .

The frequency domain chosen for each reconstruction of spectral function is given in

table 4. This interval must be chosen judiciously and may extend to negative frequencies

as the energies can be shifted by an a priori unknown constant in the effective theory.

Furthermore, this range must be sufficiently large to exclude unphysical spectral weight

which has been observed to appear at the edges of the interval.

5 Conclusions

Calculating heavy quarkonium correlation functions using lattice QCD provides valuable

input towards understanding the modification of the spectrum in the hadronic and plasma

phases of QCD. We observe that with increasing temperature the correlation functions

are enhanced relative to low temperature. In NRQCD this temperature dependence arises

solely from the temperature dependence of the associated spectral function since the in-

tegral kernel relating the spectral function and the correlator is temperature independent.

– 13 –



J
H
E
P
0
7
(
2
0
1
4
)
0
9
7

These enhancements are greater in the P wave than the S wave channels for each tempera-

ture below and above Tc. There is significant quark mass dependence in these modifications,

with lighter states showing increased temperature dependence.

Further interpretation is aided by calculating the spectral functions using MEM. At

zero temperature the reconstructed spectral functions have localised peaks coincident with

bound state energies extracted directly from the correlation functions. The analysis of the

spectral functions at finite temperature suggests the survival of the ground state S waves

(Υ, ηb) up to at least 1.90Tc with some modification above Tc. Their first excited states

(Υ(2S), ηb(2S)) appear to dissolve close to Tc, although the proximity of lattice artefacts

complicates the interpretation of these structures. The ground state P wave (χb1,2,3, hb)

peaks are suppressed immediately above the crossover temperature indicating significant

alterations, compatible with the dissociation of this state in the QGP. These results are

qualitatively consistent with the conclusions of the earlier Nf = 2 studies and a system-

atic comparison between the temperature dependence of the peak positions and widths is

underway. In the future we also plan to investigate the momentum dependence of the bot-

tomonium spectral functions and examine new Bayesian approaches to the reconstruction

of the spectral functions [46, 47].
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A Free lattice spectral functions

The free lattice spectral functions are calculated by summing over the first Brillouin

zone [14] according to

a2
sρS(ω) =

4πNc

ξN3
s

∑
n∈1BZ

δ(aτω − 2aτE(n)), (A.1)

a4
sρP(ω) =

4πNc

ξN3
s

∑
n∈1BZ

p̂2δ(aτω − 2aτE(n)). (A.2)
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Figure 11. Free lattice spectral functions in a large volume for the second generation parameters

(in blue) and the first generation parameters (in red) for both the S wave (left panel) and P wave

(right panel).

The lattice dispersion relation corresponding to the improved NRQCD action is given by

aτE(n) = −2 log

(
1− 1

2

p̂2

2ξasmb

)
− log

(
1− p̂4

24asmbξ
+

(
1 +

asmb

2ξ

)
(p̂2)2

8ξ(asmb)3

)
(A.3)

with the lattice momenta defined by

p̂2 = 4

3∑
i=3

sin2

(
πni
Ns

)
, p̂4 = 16

3∑
i=3

sin4

(
πni
Ns

)
, ni = −Ns

2
+ 1, . . . ,

Ns

2
. (A.4)

A comparison between the free lattice spectral functions for the first and second genera-

tion parameters (see table 2) is shown in figure 11 for the S wave (left) and P wave (right)

channels. The effect of the finer spatial lattice spacing is apparent as the cusp artefacts —

which correspond to momenta reaching the corners of the Brillouin zone — are pushed to

higher frequencies, and the support of the free lattice spectral function is correspondingly

enlarged. Note that at high temperatures the support of the reconstructed spectral func-

tions (figures 7 and 8) is comparable with that of the free lattice spectral function. The

difference between the dotted lines representing the free spectral functions in the continuum

is due to the slightly different choice of heavy quark mass between the two ensembles.
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[30] S. Borsányi et al., Charmonium spectral functions from 2+1 flavour lattice QCD, JHEP 04

(2014) 132 [arXiv:1401.5940] [INSPIRE].
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