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Abstract The BNietoperek^ bat reserve located in Western
Poland is one of the largest bat hibernation sites in the
European Union with nearly 38,000 bats from 12 species.
Nietoperek is part of a built underground fortification system
from WWII. The aims of the study were (1) to determine the
fungal species composition and changes during hibernation
season in relation to bat number and microclimatic conditions
and (2) evaluate the potential threat of fungi for bat assem-
blages and humans visiting the complex. Airborne fungi were
collected in the beginning, middle and end of hibernation
period (9 November 2013 and 17 January and 15
March 2014) in 12 study sites, one outside and 11 inside the
complex. Ambient temperature (Ta) and relative humidity
(RH) were measured by the use of data loggers, and species
composition of bats was recorded from the study sites. The
collision method (Air Ideal 3P) sampler was used to detect 34
species of airborne fungi including Pseudogymnoascus
destructans (Pd). The density of airborne fungi isolated from
the outdoor air samples varied from 102 to 242 CFU/1 m3 of
air and from 12 to 1198 CFU in the underground air samples.
There was a positive relationship between number of bats and
the concentration of fungi. The concentration of airborne

fungi increased with the increase of bats number. Analysis
of other possible ways of spore transport to the underground
indicated that the number of bats was the primary factor de-
termining the number of fungal spores in that hibernation site.
Microclimatic conditions where Pd was found (median
8.7 °C, min-max 6.1–9.9 °C and 100 %, min-max 77.5–
100.0 %) were preferred by hibernating Myotis myotis and
Myotis daubentonii; therefore, these species are most probably
especially prone to infection by this fungi species. The spores
of fungi found in the underground can be pathogenic for
humans and animals, especially for immunocompromised
persons, even though their concentrations did not exceed
limits and norms established as dangerous for human health.
In addition, we showed for the first time that the air in bats
hibernation sites can be a reservoir of Pd. Therefore, further
study in other underground environments and wintering bats
is necessary to find out more about the potential threat of
airborne fungi to bats and public health.
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Introduction

Specific microclimatic conditions in underground sites used
by bats for hibernation are one of the most inhospitable hab-
itats for microbial life due to low temperatures and scarcity of
organic matter [1–4]. Stable and low temperature ca. 10 °C is
generally the only factor beneficial to development of psy-
chrophilic microorganisms, e.g. for Pseudogymnoascus
destructans (Pd) having optimal growth temperatures between
12.5 and 15.8 °C and the upper critical temperature between
19.0 and 19.8 °C [5]. Therefore, fungi are commonly ob-
served growing on organic matter in any underground
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environments but are present regularly as spores, carried in by
water, air currents, animals (bats, arthropods) and humans [1,
6, 7]. According to Ogórek et al. [8, 9], the external environ-
ment and air currents have the main influence on number and
species composition of airborne fungi in underground spaces.
Most of the fungi are found in the twilight zone and in places
situated near the entrances or ventilation shafts [2–4, 10].

Johnson et al. [11] isolated 42 fungi species from the wing
membranes of hibernating bats, 73 % of species belonging to
class Ascomycota, 14 % to Basidiomycota and 13 % to
Zygomycota. However, number, species composition and sea-
sonal dynamics of airborne fungal associated with bats are still
poorly known, especially in Europe. Many previous studies
evidenced that other fungi, especially from Aspergillus and
Penicillium group producing large numbers of spores, could
be harmful for both animal and human health by causing my-
cosis and mycotoxicosis, allergies, dysfunction of the immune
system and infections of internal organs (e.g. bone marrow,
intestines, kidneys) as well as inflammations of the retina,
lungs, peritoneum, and urethral system [12–14].

Currently, most studies are focused on Pd, the pathogenic
fungus causing white-nose syndrome (WNS), described as a
widespread, epizootic disease affecting hibernating bats.
WNS started in the north-eastern USA and Canada, is contin-
uously spreading south and west and is associated with an
unprecedented bat mortality exceeding 30–99 % [15–19].
However, recent investigations confirmed the presence of this
fungus, but without associated mass mortality, in fifteen coun-
tries: Austria, Belgium, Switzerland, Czech Republic,
Germany, Denmark, Estonia, France, Hungary, Netherlands,
Poland, Romania, Slovakia, Turkey and Ukraine [18, 20–22].

Underground corridors of the central sector of the
Międzyrzecz Fortified Front (MFF) in Western Poland form
the eighth largest bat hibernation site in the European Union,
protected as Natura 2000 site BNietoperek^ and are closed to
visitors during hibernation period, i.e. from 15th October to
15th April. The maximal bat number, 38,594 individuals of
10 species, with the predomination of species from genus
Myotis was recorded there in January 2015 [23]. In Europe,
eight species of Myotis have been observed being colonised
by Pd: Myotis myotis, Myotis blythii, Myotis mystacinus,
Myotis daubentonii, Myotis dasycneme, Myotis nattereri,
Myotis bechsteinii and Myotis brandtii [18], and all of them,
exceptM. blythii andM. brandtii, occur in large numbers in the
Nietoperek. Such high density of hibernating bats could put
them in danger of fungal infections, especially by Pd. Until
now, the only case of presence of that fungal pathogen from
Poland was recorded in 2010 onM. myotis in the southern part
of the country [18]. Additionally, a studymade in Nietoperek in
January 2010–2012 by sampling of fungi from bats’ muzzles
using Scotch tape and microscopic examining of the spores
(Kokurewicz T., Wibbelt G., Rachwald A., Schofield H.,
Glover A., Duverge L., Haddow J., Whitby D., Hargreaves

D., pers. observations) did not prove the presence of Pd.
Since 1999 in Nietoperek, the total number of bats has been
constantly increasing. An exception to this trend is the number
of Daubenton’s bat (M. daubentonii) [24–26]. In the years
1999–2013, a statistically significant population decline of that
species was recorded [27]. It is still unclear if these trends could
be caused by lack of Pd in that hibernation site, or that the
pathogenic fungus is present there but has no impact on bat
population numbers, possibly apart from Daubenton’s bat.

The aims of the study were (1) to determine the fungal
species composition and changes during hibernation season
in relation to bat number and microclimatic conditions and (2)
evaluate the potential threat of fungi for bat assemblages and
humans visiting the complex.

Material and Methods

Study Area

The study was done in the underground corridors of the cen-
tral sector of the Międzyrzecz Fortified Front (MFF) (52°25’
N, 15°32’ E) in Western Poland (Fig. 1). The MFF was built
by the Germans in the 1930s duringWorldWar II and consists
of above ground bunkers connected by underground railway
tunnels of total length of ca. 32 km located ca. 20–30 m un-
derground [28]. In November 2007, the underground system
with the surrounding surface area of 7377.37 ha became
protected as Natura 2000 site Nietoperek (area code
PLH080003). The targets of protection in MFF are four bats
species, i .e. M. myotis , Barbastella barbastellus ,
M. dasycneme and M. bechsteinii mentioned in Annex II of
the EC Directive 92/43/EEC of 21 May 1992 on the
Conservation of Natural Habitats and of Wild Fauna and
Flora (http://ec.europa.eu/environment/nature/legislation/
habitatsdirective/index_en.htm) and hibernating there in
large numbers.

Bat Monitoring

For long-term monitoring of bat numbers, the underground
system was divided into nine main sections [26]. The present
study was undertaken in the sections 7 and 8 in the central part
on the MFF (Fig. 1). Sections 7.9.1, 7.8 and 7.11.1 were avail-
able for tourists in winter, contrary to sections 7.1, 7.2 and
7.4.1 where human access was forbidden during hibernation
season (Fig. 1). Bats were visually counted and identified to
the species in nine sections of corridors where mycological
observations were carried out. Due to legal reasons, bats were
not counted in study sites 11 and 12, and consequently, those
sites were excluded from analysis of relationship between bats
and fungi. Because of difficulties in species identification
without handling whiskered bat (M. mystacinus) and
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Brandt’s bat (M. brandtii), they were recorded as
M. mystacinus and M. brandtii group (Fig. 2, Table 1). The
observations were made under the licence issued by Nature
Conservancy Management in Gorzów Wielkopolski.

Microclimatic Parameter Measurement

Ambient temperature (Ta) and relative humidity (RH) were
collected during the observation period (November–March)
by use of automatic data loggers (Dallas IButton, Model
DS1923, Dallas Semiconductors, TX, USA), accuracy:
±0.5 °C, ±5 % RH. Six data loggers were placed in study sites
where fungi were sampled, with the programmed sampling
interval of 8 h (Fig. 1, Table 2). In the places where the loggers
were not installed, the air temperature and relative humidity
were measured during the study period by use of
thermohygrometer LB-522 (LAB-EL), accuracy: ±0.1 °C,
±2 % RH.

Fig. 1 BNietoperek^ bat reserve
in Western Poland. a Geographic
location. b The outline of the
underground fortification system.
c Study sites and sections (7.1–
8.3) where bats assemblages were
recorded in November 2013 and
January and March 2014. E
entrance, from 1 to 12 fungal
sampling points (1 outside the
underground system, from 2 to 12
inside the underground), Lg
places were temperature/relative
humidity data loggers were
installed, PzW panzerwerk,
bunker, Bhf BBahnhof,^ railway
station

Fig. 2 The average number of bats (individuals) and airborne fungal
spores (CFU/1 m3 of air) recorded inside and outside the BNietoperek^
underground
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Mycological Evaluation of the Air and Fungal
Identification

The samples were collected in the beginning, middle and end
of hibernation period, i.e. on the 9th November 2013, 17th
January 2014 and 15th March 2014, in 12 study sites, one
outside near the entrance and 11 inside the underground for-
tification system (Fig. 1, Table 3). The collision method with
Air Ideal 3P sampler (bioMérieux) and Potato Dextrose Agar
(PDA, Biocorp) medium were used for the isolation of fungi

from the air. The air sampler was programmed for air sample
volumes of 50, 100 and 150 L. Measurement in every study
site was performed in six replicates for each volume. The
sampler was positioned 1.5 m above the level of the floor.
The incubation of the cultures was carried out at 15 °C and
room temperature (25 °C) for 4–42 days in darkness.

Generally, specific identification of the sampled fungi was
performed using macro- and microscopic observations, namely
the morphology of hyphae, conidia and sporangia, of the colo-
nies that grew on PDA. Additionally, for macro-morphological

Table 1 The numbers of fungi
(CFU/1 m3—colony-forming unit
per 1 m3 of air) of
Pseudogymnoascus destructans
(Pd) and numbers of individuals
of bat species occurring in
BNietoperek^ underground in
November 2013 (XI), January
2014 (I) and March 2014 (III)

Pd or bad species/observation
periods

Study site number/Pd or bat number Total number
of individuals

2 3 4 5 6 7 8 9 10

Pseudogymnoascus destructans

XI 1 9 17 2 29

I 1 9 3 17 3 33 (+1 in study site
12)

III 0

Myotis myotis

XI 14 9 45 16 29 275 387 102 877

I 25 2 19 8 5 160 383 16 618

III 20 3 1 69 196 2 291

Myotis daubentonii

XI 20 9 5 45 8 15 58 40 27 227

I 27 2 63 1 6 50 23 17 189

III 7 17 1 18 12 10 65

Myotis nattereri

XI 1 1 3 4 15 6 10 40

I 17 11 28 7 41 12 9 125

III 1 3 4

Myotis mystacinus/Myotis brandtii

XI 1 1

Myotis bechsteinii

XI 1 1

I 1 1

Myotis dasycneme

XI 2 2

I 1 1

III 1 1

Barbastella barbastellus

I 1 1

Plecotus auritus

XI 2 1 1 7 3 1 15

I 1 1 1 1 10 5 1 20

Eptesicus serotinus

III 1 1

Not determined to species (Indet.)

XI 3 1 4

I 1 1

III 3 1 4
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observations of fungal, species of the genus Penicillium and
Aspergillus were used the following mediums: PDA, Czapek-
Dox agar (1.2 % agar, Biocorp), Czapek Yeast Autolysate agar
(CYA), Malt Extract agar (MEA), Yeast Extract Sucrose agar
(YES), Dichloran 18 % Glycerol agar (DG18), Oatmeal agar
(OA) and Creatine agar (CREA) [29]. The isolates of
Penicillium and Aspergillus were inoculated on each plate of
each medium and incubated at 25 °C (additional CYA plates

were incubated at 30, 33 and 37 °C) in the dark, for 7 days. For
micromorphological observations, all fungi, microscopic
mounts, were made in lactic acid from PDA, or MEA and
DG18 colonies. Alcohol was used to remove excess conidia
and prevent air bubbles. The fungi were identified using by
diagnostic keys and monographs [30–38] for the filamentous
fungi and diagnostic key and monographs [39, 40] for the
yeast-like fungi.

Statistical Analysis

Normality of distribution of ambient temperature (Ta) and rel-
ative humidity (RH) was tested by the use of Shapiro-Wilk’sW-
test. For parameters with distribution significantly different
from normal (P>0.05), the medians (χ) lower quartile (LQ)
and upper quartile (UQ) were calculated, and the minimum and
maximum values (range) and sample size (n) were presented.
The Pearson (r) correlation coefficient and regression equation
(least squares, model I) was calculated to investigate the rela-
tionships between number of bats and number of fungi spores
in the nine study sites (2–10) situated in the undergrounds,
where bats were present. Calculations were performed by the
use of Statistica ver. 9.0 (StatSoft, Inc. (2009). STATISTICA
data analysis software system, 9.0. www.statsoft.com).

Results

The presence of 9 bat taxa and 34 of airborne fungi (32 fila-
mentous fungi and 2 yeasts) was recorded in the total study
period (Tables 3, 4 and 5). The number of bats was highest in
November (1167 individuals of 7 taxa), slightly reduced in
January (956 individuals of 7 taxa) and dropped to the lowest
number in March (366 individuals of 5 taxa)—Table 1. The
largest numbers of fungi species (34) as well as the highest
number of spores were observed in the underground in
November (628.5 CFU/1 m3 of air); in January, species num-
ber remained the same; but number of spores slightly declined
(579.4 CFU/1 m3 of air), while in March 2014, a strong de-
cline down to 12 taxa and 199.4 CFU/1 m3 air was observed
(Tables 3, 4 and 5, Fig. 2).

The highest numbers of bats during all inspections were
recorded in study site 9, where the mouse-eared bat
(M. myotis) was the most numerous species in all three obser-
vation periods exceeding 387 individuals in November and
196 in March (Fig. 1, Table 1). In that location, during all
inspections, we also observed the largest number of fungal
spores reaching the highest number in November
(1198 CFU/1 m3 of air), remaining high in January
(1136 CFU/1 m3 of air) and significantly declining in March
down to 321 CFU/1 m3 of air (Tables 3, 4 and 5, Fig. 3). In the
above ground reference study site (Fig. 1), much lower num-
ber of fungi species (20 during all three inspections) and

Table 2 Study sites and an average of all three sampling times
microclimatic conditions in studied parts of BNietoperek^ underground

Study site
number

Name Section temperature
(°C) χ, LQ-UQ,
min-max, n

Relative
humidity
(%) χ, LQ-UQ,
min-max, n

2. PzW 716 7.10.2 9.1
9.1–9.1
8.9–9.3
9

71.1
70.0–71.1
68.0–72.0
9

3. Corridor from
PzW 716 to
PzW 717

7.10 9.5
9.4–9.6
9.0–9.8
9

75.5
74.0–76.0
72.0–78.0
9

4. PzW 717 7.9.1 9.8
9.7–9.9
9.6–9.9
381

75.2
67.8–79.5
47.1–95.0
381

5. Blind corridor
BGallery^

7.9.3 9.1
9.1–9.2
8.9–9.3
9

75.3
74.0–76.0
72.0–78.0
9

6. From BGallery^
to Bhf
Heinrich

7.8 9.4
9.3–9.5
9.2–10.4
381

92.0
89.2–100.0
84.4–100.0
381

7. Bhf Heinrich 7.11.1 9.6
9.4–9.9
9.2–10.4
381

76.2
67.0–78.4
48.1–92.6
381

8. Bhf Friedrich 7.1 8.1
7.7–8.4
7.4–8.7
381

100.0
99.2–100.0
68.7–100.0
381

9. From Bhf
Friedrich
to PzW 720

7.2 8.7
8.2–9.4
6.1–9.9
381

100.0
97.0–100.0
77.5–100.0
381

10. PzW 720 7.4.1 8.6
7.7–9.1
5.4–9.6
381

100.0
98.8–100.0
67.6–100.0
381

11. GDR from
Bhf Heinrich
to Bhf Inga

7.11 9.1
9.0–9.2
8.8–9.4
9

98.1
97.0–98,1
95.0–100.0
9

12. Bhf Inga 8.3 9.2
9.1–9.3
8.9–9.5
9

85.1
85.0–86.0
83.0–88.0
9

PzW (panzerwerk) bunker,Bhf (Bahnhof) railway station,GDRmain road
in the underground from north to south, χ median, LQ-UQ lower and
upper quartile, min-max minimal and maximal values, n sample size
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number of spores from 242 to 155 in November and January,
and to 102 CFU/1m3 of air inMarch, were recorded (Tables 3,
4 and 5).

We found an association between number of bats and the
count of fungal spores—Fig. 2. The concentration of airborne
fungi increased with the increase of bats number in the under-
ground study sites. Highly statistically significant positive cor-
relation was found between those two variables (r= 0.71,
d.f. = 1,25, P < 0.0001; y = 328.29 + 1.916x)—Fig. 3.

Cladosporium cladosporioides complex was the most fre-
quently isolated fungi from samples taken both outside and
inside the underground in November; in January, it was found
only in samples taken inside corridors. Penicillium sp. 1 from
section Chrysogena was most frequently isolated from both
places in March and from the outside samples in January
(Tables 3, 4 and 5).

The spores of Pd were recorded only in November
(29 CFU/1 m3 of air) and January (34 CFU/1 m3 of air) in

Table 3 The total and average number of airborne fungi isolated in BNietoperek^ underground (CFU/1 m3 of air) in November 2013

Fungal species Study site number Meansa

1 2 3 4 5 6 7 8 9 10 11 12

Absidia glauca 0 1 0 0 0 1 0 17 64 0 0 7 8.2

Alternaria alternata complex 17 87 0 16 8 2 43 98 50 66 14 43 38.8

Alternaria botrytis 0 0 0 0 3 0 6 0 0 13 0 1 2.1

Aspergillus sp. section Nigri 6 8 0 5 0 3 17 43 0 1 0 2 7.2

Aspergillus sp. section Flavi 0 0 2 0 7 0 11 0 13 0 0 0 3.0

Aspergillus sp. section Fumigati 0 9 0 0 3 0 0 34 46 6 0 0 8.9

Aspergillus sp. 1 section Circumdati 0 47 12 0 0 8 17 0 0 0 0 12 8.7

Aspergillus sp. 2 section Circumdati 3 12 43 0 0 0 23 115 0 0 0 0 17.5

Candida albicans 0 0 0 0 0 0 3 0 32 82 0 1 10.7

Chaetomium globosum complex 0 13 0 0 0 0 0 11 52 2 0 0 7.1

Cladosporium cladosporioides complex 78 354 211 149 34 27 189 265 188 103 124 169 164.8

Cladosporium herbarum complex 5 0 9 0 3 1 32 0 17 10 0 17 8.1

Clonostachys rosea 8 11 0 0 1 3 0 89 18 0 2 0 11.3

Fusarium oxysporum complex 28 0 6 0 0 0 0 0 0 0 0 0 0.5

Mucor flavus 0 0 0 0 0 0 6 4 0 0 0 13 2.1

Mucor hiemalis 9 84 0 7 11 5 3 67 56 32 8 3 25.1

Mucor luteus 0 0 0 2 0 0 0 8 13 1 8 0 2.9

Mucor racemosus 0 0 18 0 0 0 0 20 43 22 23 28 14.0

Paecilomyces fumosoroseus 0 0 0 0 3 0 23 5 43 13 0 7 8.5

Paecilomyces variotii complex 0 0 32 0 0 11 0 53 68 3 0 13 16.4

Penicillium sp. 1 section Chrysogena 43 203 115 296 73 52 285 0 138 102 98 0 123.8

Penicillium sp. 2 section Chrysogena 17 11 4 0 0 22 3 0 18 13 3 0 6.7

Penicillium sp. 3 section Chrysogena 7 16 0 0 4 0 7 0 31 0 19 1 7.1

Penicillium sp. 1 section Citrina 3 0 0 0 4 18 0 113 0 80 0 14 20.8

Penicillium sp. 2 section Citrina 0 20 0 0 16 2 0 6 0 17 27 85 15.7

Penicillium sp. section Exilicaulis 4 0 18 0 0 2 32 15 0 0 0 0 6.1

Phoma sp. 0 0 0 6 0 0 0 23 6 0 0 0 3.2

Pseudogymnoascus destructans 0 0 0 0 0 1 0 9 17 2 0 0 2.6

Rhizopus stolonifer 0 48 0 2 17 5 0 0 82 0 0 1 14.1

Rhodotorula rubra 0 0 0 0 0 2 19 17 36 7 0 0 7.4

Sarocladium strictum 2 17 4 44 11 5 0 17 6 88 0 0 17.5

Trichoderma harzianum 11 52 0 66 0 1 62 23 159 0 0 0 33.0

Non-sporulating white colonies 1 15 0 2 0 16 0 13 2 0 0 1 4.5

Non-sporulating black colonies 0 19 0 0 2 11 0 18 3 0 1 0 4.9

In total 242 1027 474 595 200 198 781 1083 1201 663 327 418 633.4

1 outside the underground, 2–12 inside the underground
aMeans of CFU/1 cm3 of air for study side from 2 to 12 (inside the underground)
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study sites 3, 5, 6, 8–10 and 12, but most of them (17 CFU/
1 m3 of air) were found in study site 9 (Fig. 1), with the largest
numbers of bats, mainly mouse-eared bat (M. myotis), were
recorded during all inspections (Table 1). The median temper-
ature and relative humidity in study site 9 were 8.7 °C (min-
max 6.1–9.9 °C) and 100 % (min-max 77.5–100.0 %)—
Table 2. In that part of the underground tourist movement is
forbidden in winter, contrary to the sections 7.9.1, 7.8 and
7.11.1, it could be assumed that only bats are responsible for

both transport and high number of spores of Pd in that section
of tunnels.

Fungi from genera Aspergillus and Penicillium were the
most numerous species group of airborne fungi isolated dur-
ing all study periods. Aspergillus spp. were not observed in
March but constituted from 7.1 to 8.5 % of all spores recorded
in November and January, while Penicillium spp. constituted
28.5 % in November, 34.2 % in January and 83.6 % in March
of all recorded CFU/1 m3 (Tables 3, 4 and 5).

Table 4 The total and average number of airborne fungi isolated in BNietoperek^ underground (CFU/1 m3 of air) in January 2014

Fungal species Study site number Meansa

1 2 3 4 5 6 7 8 9 10 11 12

Absidia glauca 0 0 0 0 9 0 0 9 7 0 0 0 2.3

Alternaria alternata complex 5 11 4 23 8 5 37 51 32 32 8 14 20.5

Alternaria botrytis 12 0 0 2 3 11 0 19 0 7 0 0 3.8

Aspergillus sp. section Nigri 0 2 0 17 0 0 17 4 2 0 0 0 3.8

Aspergillus sp. section Flavi 0 0 0 0 7 0 11 32 13 0 0 0 5.7

Aspergillus sp. section Fumigati 0 0 2 0 3 0 0 7 46 0 0 7 5.9

Aspergillus sp. 1 section Circumdati 0 86 7 0 74 16 17 0 0 24 0 1 20.5

Aspergillus sp. 2 section Circumdati 15 2 9 4 0 0 23 105 0 3 0 0 13.3

Candida albicans 0 2 2 0 17 0 3 11 32 41 0 1 9.9

Chaetomium globosum complex 0 0 11 0 0 0 0 4 52 6 0 0 6.6

Cladosporium cladosporioides complex 17 246 164 58 274 43 113 235 188 136 104 108 151.7

Cladosporium herbarum complex 0 2 0 0 3 1 10 6 17 0 0 7 4.2

Clonostachys rosea 0 6 0 0 76 3 0 45 18 0 2 0 13.6

Fusarium oxysporum complex 0 9 0 0 0 0 7 0 0 6 0 3 2.3

Mucor flavus 1 0 0 0 0 0 0 5 0 0 0 1 0.5

Mucor hiemalis 14 33 17 7 11 5 17 50 56 4 8 7 19.5

Mucor luteus 0 11 11 2 0 0 0 16 13 1 0 0 4.9

Mucor racemosus 0 16 2 0 0 0 0 7 43 19 0 0 7.9

Peacilomyces fumoroseus 1 11 0 0 3 0 23 21 43 16 0 5 11.1

Peacilomyces variotii complex 0 0 7 0 0 11 0 30 68 0 0 8 11.3

Penicillium sp. 1 section Chrysogena 38 254 43 214 132 95 285 87 138 152 75 82 141.5

Penicillium sp. 2 section Chrysogena 7 15 6 0 67 17 7 4 31 0 19 11 16.1

Penicillium sp. 3 section Chrysogena 0 1 0 0 0 5 3 29 18 1 3 4 5.8

Penicillium sp. 1 section Citrina 3 8 1 0 4 0 0 32 0 32 0 2 7.2

Penicillium sp. 2 section Citrina 0 20 0 0 16 2 0 27 0 66 27 43 18.3

Penicillium sp. section Exilicaulis 32 0 8 0 0 2 32 0 0 14 0 19 6.8

Phoma sp. 0 0 0 6 12 0 0 0 6 3 0 0 2.5

Pseudogymnoascus destructans 0 0 1 0 9 0 0 3 17 3 0 1 3.1

Rhizopus stolonifer 0 5 0 2 2 5 0 0 82 1 0 0 8.8

Rhodotorula rubra 0 0 1 0 17 2 13 5 36 2 0 8 7.6

Sarocladium strictum 6 5 0 7 11 0 9 22 14 30 0 0 8.9

Trichoderma harzianum 2 2 0 66 16 1 29 0 159 13 0 0 26.0

Non-sporulating white colonies 2 5 0 2 0 16 0 0 2 0 10 1 3.3

Non-sporulating black colonies 0 12 1 0 2 11 0 3 3 4 0 9 4.1

In total 155 764 297 410 776 251 656 869 1136 616 256 342 579.4

1 outside the underground, 2–12 inside the underground
aMeans of CFU/1 cm3 of air for study side from 2 to 12 (inside the underground)
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Discussion

According to the results of previous study, the most important
factors affecting the survival of fungi are air temperature and
humidity. Because of the presence of fungal spores in
bioaerosols, their concentrations are the result of complex in-
teractions between biological and environmental factors. Due
to the dynamic nature of the atmosphere, the individual im-
portance of each factor is hard to assess, especially in specific

conditions observed underground [41]. However, according to
many reports, the most important factors determining occur-
rence of fungal spores in underground spaces are airflow, the
availability of organic matter and the conditions prevailing in
the neighbouring external environment. Generally, larger
numbers of fungi are isolated from air samples taken outside
than inside underground sites [2, 3, 8–10, 42]. Contrary to
these results, during our study, most of the spores were isolat-
ed from the air samples taken inside the underground

Table 5 The total and average number of airborne fungi isolated in BNietoperek^ underground (CFU/1 m3 of air) in March 2014

Fungal species Study site number Meansa

1 2 3 4 5 6 7 8 9 10 11 12

Alternaria alternata complex 0 0 0 0 0 0 5 0 0 0 0 0 0.5

Alternaria botrytis 0 0 0 5 0 40 0 0 0 5 0 0 4.5

Cladosporium cladosporioides complex 0 30 4 4 0 11 4 0 21 2 20 0 8.7

Cladosporium herbarum complex 30 10 20 0 0 0 30 5 5 5 0 20 8.6

Mucor flavus 0 0 0 0 0 0 0 5 0 0 0 0 0.5

Mucor hiemalis 0 0 10 0 0 0 0 0 0 0 0 0 0.9

Peacilomyces fumoroseus 0 0 0 0 10 0 0 0 0 0 0 0 0.9

Penicillium sp. 1 section Chrysogena 40 45 60 125 0 100 90 110 225 60 120 165 100.0

Penicillium sp. 2 section Chrysogena 2 0 0 0 0 0 0 0 0 0 0 0 0.0

Penicillium sp. section Citrina 0 2 5 0 0 0 0 0 0 0 0 0 0.6

Penicillium sp. section Exilicaulis 0 85 25 35 0 135 115 105 70 0 105 95 70.0

Phoma sp. 5 0 0 0 0 0 0 0 0 0 0 0 0.0

Trichoderma harzianum 0 0 0 1 0 0 0 0 0 0 30 2 3.0

Non-sporulating white colonies 25 5 5 0 2 0 0 0 0 0 0 0 1.1

In total 102 177 129 170 12 286 244 225 321 72 275 282 199.4

1 outside the underground, 2–12 inside the underground
aMeans of CFU/1 cm3 of air for study side from 2 to 12 (inside the underground)

Fig. 3 Relationship between
number of bats and airborne
fungal spores (CFU/1m3 of air) in
the nine study sites (2–10)
situated inside the BNietoperek^
underground. The Pearson
correlation coefficient, statistical
significance and regression
equation are r= 0.71, d.f.= 1,25,
P< 0.0001; y= 328.29+ 1.916x
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corridors. The results of previous study indicated that number
and species composition of fungi was positively correlated
with number of tourists and bats visiting underground [3,
43–48], which was confirmed by a positive relationship be-
tween number of bats and number of fungi spores in the air we
found in our study site. In section 9, where the largest number
of spores was recorded, the air movement, which could po-
tentially transport the spores, runs from the entrance situated
in section 7.4.1, whereas study plot 10 was situated the rear
part of the underground corridors (Figs. 1 and 3). In study plot
10, the number of spores was lower than in section 9 (Fig. 3);
moreover, in that part of the underground, tourist movement is
forbidden in winter. Additionally, study plot 9 is situated ca.
750 m from the entrance and probably due to that no insects
and other animals were recorded there during our study. Based
on that, we can assume that bats may be one of the reasons for
the increase in the number of spores in section 9 through the
production of guano and the transport of spores from the ex-
ternal environment. According to Ogórek et al. [49], bat guano
is a very good substrate for the development and survival of
fungi inside underground sites, and it can also be a reservoir of
fungi harmful to bats and humans.

Another aim of our study was to evaluate the risk of
high concentrations of airborne fungi for human health.
Some of the experts propose 5000 CFU of fungi in 1 m3

of air as acceptable [50]. According to the Polish norm PN-
89/Z-04111/03 [51], the air can be not contaminated if it
contains no more than 3000 CFU of fungal spores in 1 m3,
but on the other hand, the World Health Organization sug-
gests that the concentration of airborne fungi as high as
1500 CFU in 1 m3 air is acceptable, but only if it is a
mixture of species [52]. The overall mean concentration
of CFU found during our study was from 102 to
628.5 CFU/1 m3 in the air outside the underground and
from 12 to 1198 inside of it. In other underground fortifi-
cations in Poland, similar concentrations of airborne fungi,
e.g. from 245.5 to 1040.3 CFU (Rzeczka complex), 92–
259 CFU (Osówka complex) and 25–1003 CFU (Włodarz
complex), were recorded [2, 3, 9]. Summarising, the con-
centrations of airborne fungi in the Nietoperek bat reserve
did not exceed official limits and norms for prevention of a
health risk to humans.

In study site 9, where the largest number of Pd spores
was detected (Figs. 1 and 3, Table 1), tourist movement does
not occur in winter, which allows the assumption that only
bats are responsible for both transport and growth of this
fungal species in that section of the tunnels. In addition,
microclimatic conditions in this area such as low tempera-
tures and high relative humidity (8.7 °C, 100 %) are
favourable for the growth of Pd [17], and they are also
preferred by hibernating mouse-eared bats (M. myotis) [53]
and Daubenton’s bats (M. daubentonii) [54], occurred in
Nietoperek in large numbers (Table 1).

The lack of spores of Pd in March is contradictory to the
results of a previous study indicating the highest numbers of
that species towards the end of hibernation season, i.e. in
March and April [18]. Our study showed that in November
and January, when the number of bats and spores of Pd asso-
ciated with them were high, it was possible to detect the pres-
ence of this species in Nietoperek, contrary to the low bat and
spore numbers in March, which probably made it more diffi-
cult to detect the presence of that fungal species.

The study made in the Nietoperek underground during bat
censuses in January 2010–2012 using a standard protocol of
sampling of fungi from muzzles of bats by Scotch tape,
followed by examination of spores under the microscope
(Kokurewicz T., Wibbelt G., Rachwald A., Schofield H.,
Glover A., Duverge L., Haddow J., Whitby D., Hargreaves
D., pers. observations) did not prove the presence of Pd. An
additional factor which should be considered when applying
this procedure is the sensitivity of hibernating bats to tactile
disturbance [55] leading to additional energy loss [56]. Based
on that future study directed at the influence of Pd on hiber-
nating bat populations, we can recommend the method de-
scribed above and tested during our study. Due to the easily
repeatable sampling procedure and especially the low risk of
harm to bats, we would recommend it as the first step, to be
followed by more detailed investigation aimed at potential
influence of Pd on hibernating bat populations, especially
Daubenton’s bat (M. daubentonii), a species declining in num-
ber in many localities in Europe.

Our study is the first aero-mycological evaluation being
done in a large bat hibernation site aimed at describing the
fungal species composition and its changes during hibernation
season by using culture-based analysis and collision method.
In this method, the suction force ensures adherence of all the
fungal propagules to the surface of a suitable culture medium.
Furthermore, we can accurately determine their number allo-
cated to each volume of the air. This method is very fast, and a
large number of samples can be easily taken during a short
time period. Moreover, small air samplers, such as the Air
Ideal 3P, are useful in difficult study conditions such as under-
ground sites [57].

Currently, literature reported that Pd is transmitted with
direct contact between bats or with contaminated environ-
ment bats such as soil and sediment [18, 19, 58]. Probably,
this fungus can be also mechanically transmitted by adhe-
sive spores and mycelium fragments on the body of ecto-
parasites such as spinturnicid mites [59]. We showed for the
first time that the air can be also a reservoir of Pd, and it is
likely that the fungus can be transmitted through the air.
However, we do not know (1) the length of time the struc-
ture of this fungus retains its potential for propagation and to
be infectious in the air and also (2) how many spores in the
air are necessary to infect a bat. Therefore, further study of
Pd in the air is necessary to find answers to the above
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questions. It seems that it will be particularly difficult to
determine the relationship between an infection and the
number of spores in the air, because the result of the infec-
tion depends on determinants of the pathogen, host(s) and
the environment. Any changes in these determinants may
trigger shifts in the complex host-pathogen system [60].

Penicillium from section Chrysogena, e.g. Penicillium
chrysogenum and C. cladosporioides complex were the fungi
species most frequently isolated from air samples taken from
aboveground and underground study sites. Fungi of the genus
Penicillium are cosmopolitan species able to produce spores in
low temperatures observed in the underground, and these have
been identified as important allergens in the indoor environ-
ment and as a rare causative agent of opportunistic mycosis in
humans [61–67]. Fungi of the genus Cladosporium are also a
cosmopolitan and common endophytic fungi [68, 69].
Additionally, studies of atmospheric air of various regions in
Europe show that spores of Cladosporium spp. represent ca.
80 % of all the caught spores, with the peak season for spor-
ulation from June to September when several thousand spores
are produced per cubic metre of air [70, 71].Cladosporium are
very commonly isolated airborne fungi from the external and
internal air of caves and other underground sites [2, 4, 8, 42].

The presence of toxic and allergenic fungi positively cor-
related in number with the number of bats should be consid-
ered when planning tourist movement in the underground
spaces occupied by bats, such as Nietoperek bat reserve and
many others. Based on our results, we suggest that veterinary
examination of bats, and medical examination of bat workers
and underground tourist guides, is necessary to find out more
about the potential threat to bats and to public health also in
other underground environments and wintering bats.

Conclusions

Our study is the first aero-mycological evaluation of a large
bat hibernation site aimed at describing the fungal species
composition and its changes during the hibernation season.
Generally, the density of airborne fungi isolated from the un-
derground air was higher than in the outdoor air samples but
did not exceed official limits and norms established as dan-
gerous for human health. We detected a positive relationship
between number of bats and number of fungal spores under-
ground. The large number of bats and the lack of tourists in the
study sites with largest numbers of spores indicate that the
presence of these animals appears to be the primary factor
determining number and species composition of fungi in the
underground sites.C. cladosporioides complexwas the fungal
species most frequently isolated from the air samples taken
both outside and inside the underground system in November,
but only from inside in January. Penicillium sp. 1 from section
Chrysogena was most frequently isolated from both places in

March and from the outside in January. Microclimatic condi-
tion where Pd was found was preferred by hibernating
M. myotis and M. daubentonii; therefore, these species are
most probably especially prone to infection by this fungi spe-
cies. In addition, the most frequently detected fungi genera
were Aspergillus and Penicillium that can produce myco-
toxins and cause infections. The collision method involving
the Air Ideal 3P sampler and collecting spores on Petri dishes
with appropriate solidified culture medium proved to be a
good way to detect the fungi harmful to bats such as Pd.
Moreover, sampling of airborne fungi is non-invasive, in con-
trast to direct examination of bats, and may be conducted at a
time when bats are absent in hibernacula. Therefore, we rec-
ommend the use of this method as the first step in a mycolog-
ical study of bat hibernation sites, to be followed by more
detailed investigations aimed at recognising the potential in-
fluence of Pd on hibernating bat populations. The fungi spe-
cies found in the underground can be pathogenic for human
health and animals, especially for immunocompromised per-
sons. In addition, we showed the first time that the air can be
also a reservoir of Pd, and it is likely that the fungus can be
transmitted through the air. Therefore, further study of bats
and people visiting the underground environment is necessary
to find out more about the potential threat to these animals as
well as to public health.
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