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Föhringer Ring 6, 80805 München, Germany

E-mail: f.hassler@lmu.de, dieter.luest@lmu.de

Abstract: In this paper, we construct non-trivial solutions to the 2D-dimensional field

equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The

ansatz identifies 2(D−d) internal directions with a twist UMN which is directly connected

to the covariant fluxes FABC . It exhibits 2(D − d) linear independent generalized Killing

vectors K J
I and gives rise to a gauged supergravity in d dimensions. We analyze the

covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We

calculate fluctuations around such vacua and show how they gives rise to massive scalars

field and vectors field with a non-abelian gauge algebra. Because DFT is a background

independent theory, these fields should directly correspond the string excitations in the

corresponding background. For (D − d) = 3 we perform a complete scan of all allowed

covariant fluxes and find two different kinds of backgrounds: the single and the double

elliptic case. The later is not T-dual to a geometric background and cannot be transformed

to a geometric setting by a field redefinition either. While this background fulfills the strong

constraint, it is still consistent with the Killing vectors depending on the coordinates and

the winding coordinates, thereby giving a non-geometric patching. This background can

therefore not be described in Supergravity or Generalized Geometry.

Keywords: Flux compactifications, Superstring Vacua, String Duality

ArXiv ePrint: 1401.5068

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2014)085

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81083354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:f.hassler@lmu.de
mailto:dieter.luest@lmu.de
http://arxiv.org/abs/1401.5068
http://dx.doi.org/10.1007/JHEP05(2014)085


J
H
E
P
0
5
(
2
0
1
4
)
0
8
5

Contents

1 Introduction 1

2 Double field theory 4

2.1 Action and its symmetries 4

2.2 Equations of motion for the generalized metric 7

2.3 Covariant formulation of fluxes 8

3 Twisted backgrounds in DFT 11

3.1 Generalized Kaluza-Klein ansatz 12

3.2 Generalized Scherk-Schwarz ansatz 14

3.3 Gauged (super)gravity and its vacua 19

4 Minkowski vacua 21

4.1 Spectrum of the effective theory 23

4.2 Solution of flux constrains in (D − d) = 3 dimensions 25

5 Twists, Killing vectors and background fields 29

5.1 Fibered backgrounds 30

5.2 Configurations with Minkowski vacuum 32

5.3 Background fields and field redefinitions 36

6 Conclusions and discussion 40

1 Introduction

String theory has several remarkable features. Most interesting are those that are not

present for point particles, but are rather linked to the extended nature of string, like

the appearance of stringy symmetries.These are often discovered when compactifying a

ten-dimensional superstring theory down to lower dimensions. One prominent example

of a stringy symmetry, which becomes manifest during the compactification process, is

T-duality. It relies on the existence of string winding modes. By interchanging winding

and momentum excitations, T-duality links very small and very large compact dimensions

as being completely indistinguishable. Moreover T-duality allows for the existence of new

‘geometries’ as consistent string backgrounds. These are certain generalizations of standard

Riemannian spaces and often called non-geometric string backgrounds [1]. The dynamics of

a string in such a non-geometric background is governed by the interplay between winding

and momentum modes. This gives rise to many new phenomena which are not present in

a geometric background with momentum modes only. One prominent example for such

new effects is a new kind of spatial non-commutativity and non-associativity of the form
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[XI(τ, σ), XJ(τ, σ)] ' PK resp. [[XI(τ, σ), XJ(τ, σ), XK(τ, σ)]] 6= 0 of the closed string

coordinates in the presence of non-geometric Q- and R-fluxes, as has been argued in [2–

10]. In correspondence to Heisenberg’s well know uncertainty relation between position and

momentum, these relations describe a stringy limited resolution of the string’s position,

which can be interpreted as a fuzzy non-commutative and non-associative space. These

effects arise on the interface between large and small compact dimensions, which are very

different for a string compared to a point particle. Furthermore non-geometric backgrounds

extend the landscape of string theory considerably and perhaps help to find one day a string

compactification which reproduces the phenomenology of our universe. Thus it is important

to understand the properties of such backgrounds in more detail.

In this paper we want to discuss the construction of non-geometric backgrounds and

analyze their spectrum in type IIA/IIB superstring theory. We focus on the NS/NS sector,

which consists of three different massless string excitations: the symmetric metric gij , the

antisymmetric B-field Bij and a scalar φ called dilaton. Their complete dynamics are

governed by string field theory in D-dimensions. But in general, string field theory is much

too involved to be evaluated explicitly. Hence an effective field theory is used in the low

energy limit. It is defined by the following action

SNS =

∫
dDx
√
−ge−2φ

(
R+ 4∂µφ∂

µφ− 1

12
HµνρH

µνρ

)
. (1.1)

which describes the NS/NS sector of a N = 2 supergravity. Due to its construction, this

effective theory only considers strings with momentum modes. In order not to violate the

low energy limit, the compact dimensions described by (1.1) have to be large. Due to this

limitation the stringy symmetries, in particular T-duality, are not implemented into this

action. Because non-geometric backgrounds depend on the interplay between winding and

momentum modes, this action is only of limited use when studying the properties of non-

geometric backgrounds. Thus the fields gij , Bij and φ are in generally ill defined (either

globally or even locally) for a non-geometric background. For non-geometric backgrounds

which are T-dual to geometric ones, a fields redefinition can be performed to obtain a well

defined geometric description [11–17]. But for all other non-geometric backgrounds, which

are in the following called truly non-geometric, this is not possible.

Double Field Theory (DFT) [18–22] is a promising approach to overcome these prob-

lems. In particular DFT allows us to make T-duality a manifest symmetry of the effec-

tive theory. Hence, we will investigate consistent Scherk-Schwarz like dimensional reduc-

tions [23, 24] of the 2D-dimensional DFT [25, 26]. Recently, such reductions were also

discussed in the context of generalized geometry [27]. They give rise to a gauged super-

gravity in the remaining d-dimension, exhibiting non-Abelian gauge symmetries together

with a scalar potential on their moduli space (parameters which describe the shape of

the background in the internal direction). This potential can be used to stabilize some

of the moduli and so remove a lot of arbitrariness when choosing the explicit shape of

a background. Furthermore the scalar potential possesses phenomenologically interesting

properties, like a non-vanishing cosmological constant [28]. Similar effects arise in massive

type II theories, which were discussed in DFT [29], too. We find solutions for the field
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equations of the d-dimensional gauged supergravity and lift them up to solution of the full

DFT field equations RMN = 0. Here RMN is the generalized Ricci tensor of the double ge-

ometry, in 2D dimensions. This uplift is possible when the Scherk-Schwarz ansatz exhibits

2(D − d) Killing vectors [23, 24, 30].

Among all the different gauged supergravities, that can arise for a Scherk-Schwarz

ansatz, we are focusing on the ones with a Minkowski vacuum. Such theories exhibit a

minimum of the scalar potential, on which the scalar potential vanishes. This restriction

puts additional constraints on the covariant fluxes FABC [25, 31], which specifies the explicit

form of the Scherk-Schwarz ansatz. As we will show, these fluxes are directly connected to

fluxes Hijk, f
i
jk, Q

ij
k and Rijk which are widely used to characterize non-geometric back-

grounds. Similar calculations were discussed e.g. in [31, 32]. For gauged supergravities with

Minkowski vacuum, we discuss small fluctuations around the vacuum. This gives rise to

(D−d)2 scalar field and 2(D−d) vector gauge bosons. We calculate the masses of the scalars

and the gauge group of the vectors. Because DFT is constructed as a background indepen-

dent low energy description of string theory, the spectrum we have obtained in this way

should be identical to CFT calculations, but we leave an explicit verification to future work.

In order to provide explicit examples for non-geometric spaces, we restrict ourself to

(D − d) = 3 internal dimensions. Here we provide all supergravities with Minkowski vac-

uum and consistent uplift. There are only two of them, which we call single elliptic and

double elliptic case. The double geometries in the internal direction of both cases corre-

spond to fibrations, where the doubled fiber is a four-dimensional torus T4 over a doubled

circle as base. The double elliptic case is not T-dual to a geometric description, an its

generalized geometric description within DFT has been discussed in [33]. It exhibits H-,

f - and Q-flux at the same time. Nevertheless it is compatible with the strong constraint

of DFT. Thus it is a truly non-geometric space. It cannot be written in terms of a globally

well defined metric, B-field and dilaton. Nevertheless, as discussed recently, this notion

of non-geometric backgrounds can be properly defined in DFT [13]. In particular gen-

eralized coordinate transformations can be used as the so-called patching conditions for

non-geometric spaces. This is of particular importance for truly non-geometric spaces that

are not T-dual to any geometric spaces. In fact, without the use of the DFT formalism, the

dimensional reduction on these non-geometric backgrounds could not have been discussed

so far, a fact, which clearly demonstrates the necessity to go beyond the standard effective

string action, when one wants to explore the full landscape [34, 35] of consistent string

compactifications. We give explicit expressions for the Killing vectors, the twist of the

Scherk-Schwarz ansatz, the masses of scalar bosons and the structure coefficients of the

gauge boson’s gauge group. All these results are in accordance with the CFT calculation

for a asymmetric orbifold presented in [36]. Thus we conjecture that the double elliptic

case is the low energy description of superstring theory in this background. This shows,

that non-geometric background are not a mere theoretical construct, but leads to effective

theories which are beyond the case of SUGRA.

The paper is organized as follows: In section 2, we review some important features

and notions of DFT, needed throughout the paper. Section 3 defines the Scherk-Schwarz

ansatz in terms of the twist UMN and connects this twist to the covariant fluxes FABC .
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It discusses several constraints that the covariant fluxes have to fulfill and finally presents

the action of the gauged supergravity obtained by the Scherk-Schwarz ansatz. Gauged

supergavities with a Minkowski vacuum are discussed in section 4. Here further constraints

on the covariant fluxes are defined. The masses of the scalar bosons, which arise through

fluctuations around the vacuum, are calculated. For (D − d) = 3 all flux constraints are

solved explicitly. Finally, section 5 presents the explicit construction of the twist UMN and

the Killing vectors K J
I . It also discusses how different values for the B-field, the β-field

and the metric arise in the elliptic and double elliptic case through field redefinition. A

conclusion about the results in the paper is drawn in section 6.

2 Double field theory

In this section we review some important properties of DFT, which will be relevant for the

calculations in this paper. We start with introducing the DFT action and show its various

symmetries. Afterwards we present the equations of motion which arise from the variation

of this action. Finally we discuss how fluxes arise in DFT.

2.1 Action and its symmetries

DFT is an effective description of closed string theory that takes into account both mo-

mentum and winding modes in compact space time. Hence in addition to the D space

time coordinates x (conjugate to the momentum modes), it introduces D new coordinates

x̃ (conjugate to the winding modes of the string). In total there are now 2D coordinates

which are combined into the 2D-dimensional vector XM =
(
x̃i x

i
)

. To lower and raise

the index M of this vector, the O(D,D) invariant metric

ηMN =

(
0 δij
δji 0

)
and its inverse ηMN =

(
0 δji
δij 0

)
(2.1)

are used. Furthermore one defines the partial derivative according to ∂M =
(
∂i ∂̃

i
)

. Now

the DFT action can be expressed in the generalized metric formulation [22] as

SDFT =

∫
d2DX e−2φ′R (2.2)

where

R = 4HMN∂Mφ
′∂Nφ

′ − ∂M∂NHMN − 4HMN∂Mφ
′∂Nφ

′ + 4∂MHMN∂Nφ
′

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂NHKL∂LHMK (2.3)

is called the generalized Ricci or curvature scaler and

HMN =

(
gij −BikgklBlj −Bikgkj

gikBkj gij

)
(2.4)
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is the generalized metric. It combines the metric gij and the B-field Bij into a O(D,D)

valued, symmetric tensor with the properties

HMNηMLHLK = ηNK and HMN = HNM . (2.5)

The dilaton φ is encoded in the O(D,D) singlet

φ′ = φ− 1

2
log
√
−g . (2.6)

Because it only consists of covariant quantities, the action (2.2) posses a manifest, global

O(D,D) symmetry. The symmetry is global only, but the DFT action (2.2) has further

symmetries which are local.

In order to display one of them, we express the generalized metric in terms of the

generalized vielbein EAM , employing a vielbein formalism, as originally introduced by

Siegel in [18] and applied to DFT in [37]. We thus express the generalized metric in terms

of frame fields via

HMN = EAM δABE
B
N . (2.7)

In the following it is convenient to slightly adapt the frame formalism of [18, 37] in such a

way that the frame field can be viewed as a proper group element, as has been used in [38].

The flat generalized metric is then given by

δAB =

(
ηab 0

0 ηab

)
, (2.8)

where ηab and its inverse ηab are the usual D-dimensional Minkowski metric. From now

on we distinguish between the indices A,B, . . . and M,N, . . . . The former are called flat

and the latter curved. As already mentioned, the generalized metric HMN is an O(D,D)

valued tensor, and here the generalized vielbein is O(D,D) valued, too:

EAM ηMNE
B
N = ηAB with ηAB =

(
0 δba
δab 0

)
. (2.9)

Here ηAB in flat indices does not differ for ηNM in curved ones. Let us now inspect the

local Lorentz group in some detail. Consider the local double Lorentz transformation of

the generalized vielbein

ẼAM = TABE
B
M . (2.10)

Requiring that this leaves the generalized metric invariant, the transformation has to fulfill

TAC δ
CDTBD = δAB . (2.11)

In addition, the transformed generalized vielbein ẼAM has still to satisfy (2.9), which gives

rise to the further constraint

TAC η
CDTBD = ηAB . (2.12)
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Transformations that simultaneously solve (2.11) and (2.12), belong to the local subgroup

O(D − 1, 1)R×O(1, D − 1)L. In order to examine their explicit form, we transform ηAB
into the diagonal form

RĀCη
CDRB̄D = ηĀB̄ =

(
−ηāb̄ 0

0 ηāb̄

)
(2.13)

with RĀB =
1√
2

(
δbā −ηāb
ηāb δāb

)
and R B

Ā =
1√
2

(
δāb −ηāb

ηāb δbā

)
. (2.14)

Here, bared indices are used in order to distinguish between the different representations

of the invariant metric1 . In the same fashion, the bared version

RĀCδ
CDRB̄D = δĀB̄ =

(
ηāb̄ 0

0 ηāb̄

)
(2.15)

of the flat generalized metric is calculated. The deeper meaning of the coordinate transfor-

mation mediated by RĀB becomes clear, when one applies it on the doubled coordinates

XM and obtains

RM̄NX
N =

1√
2

(
x̃ī − xī x̃ī + xī

)
=
(
xR ī xL

ī
)
. (2.16)

Here xR and xL are the positions conjugated to the momenta of the closed string’s right

and left moving part. Expressing (2.11) and (2.12) in bared indices gives rise to(
T c̄
ā Tāc̄
T āc̄ T āc̄

)(
±ηc̄d̄ 0

0 ηc̄d̄

)(
T d̄
b̄
T d̄b̄

Td̄b̄ T
b̄

d̄

)
=

(
±ηāb̄ 0

0 ηāb̄

)
(2.17)

which is solved by Tāb̄ = T āb̄ = 0 and two different O(1, D − 1) transformations

u c̄
ā ηc̄d̄u

d̄
b̄ = ηāb̄ and vāc̄η

c̄d̄vb̄d̄ = ηāb̄ . (2.18)

They are identified with the remaining components TAB as T b̄
ā = u b̄

ā and T ā
b̄

= vā
b̄
. In

unbared indices this transformation reads

TAB = RAC̄T
C̄
D̄R

D̄
B =

(
u b
a + v b

a uab − vab
uab − vab uab + vab

)
. (2.19)

Hence the generalized metric and therewith the DFT action (2.2) are invariant under local

double Lorentz transformations of the form (2.10).

Except for the dilaton, the generalized vielbein combines all fields of the theory. As

an element of O(D,D) it has D(2D − 1) independent degrees of freedom. By gauging the

local double Lorentz symmetry only D2 of them remain. A possible parameterization of

the generalized vielbein is given by

EAM =

(
e i
a e l

a Bli
0 eai

)
(2.20)

1It is important to distinguish its notation form the one introduces in [37]. In [37], a tensor T b̄
ā is relates

to T āb̄ by rising and lowering the bared indices with the Minkowski metric ηab and ηab, respectively. While

in our notation, T b̄
ā and T āb̄ are totally unrelated objects.
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in terms of the metric’s vielbein eai with eaiηabe
b
j = gij and the antisymmetric B-field Bij .

If eai is restricted to be an upper triangular matrix, this parameterization fixes the double

Lorentz symmetry completely. An O(D,D) vielbein without any gauge fixing is

EAM =

(
e i
a e l

a Bli
ealβ

li eai + ealβ
lkBki

)
(2.21)

where eai is an unrestricted vielbein of gij and βij is an antisymmetric bi-vector.

Finally, the DFT action is also invariant under generalized diffeomorphisms. These

transform XM into X̃M = XM −ξM where ξM is infinitesimal. The corresponding changes

of the generalized vielbein and the dilaton are given by the generalized Lie derivatives

δξE
A
M = LξEAM = ξP∂PE

A
M + (∂Mξ

P − ∂P ξM )EAP and (2.22)

δξφ
′ = Lξφ′ = ξM∂Mφ

′ − 1

2
∂Mξ

M . (2.23)

These infinitesimal transformations form the algebra

[δξ1 , δξ2 ] = δξ1δξ2 − δξ2δξ1 = −L[ξ1,ξ2]C (2.24)

which is governed by the C-bracket

[ξ1, ξ2]MC = ξN1 ∂Nξ
M
2 −

1

2
ξ1N∂

MξN2 − (ξ1 ↔ ξ2) , (2.25)

provided we impose the strong constraint

∂N∂
N · = 0 (2.26)

where · is a place holder for fields, gauge parameters and arbitrary products of them.

This is a stronger form of the level-matching constraint L0 − L̄0 = 0 of closed string

theory. In general this algebra does not satisfy the Jacobi identity and so the generalized

diffeomorphisms do not form a Lie group. However, its failure to satisfy the Jacobi identity

is of a trivial form that does not generate a gauge transformation on fields satisfying the

strong constraint. Thus, it is consistent with the Jacobi identity for symmetry variations

on physical fields, which always holds. A trivial way to solve (2.26) is to set ∂̃i = 0. In this

case, the DFT action (2.2) leads to the NS/NS action (1.1) discussed in the introduction.

2.2 Equations of motion for the generalized metric

Consistent background solutions of the DFT are obtained by the variation of the DFT

action. The variation w.r.t. the generalized metric yields

δSDFT

δHMN
= KMN . (2.27)

This does not lead to the equations of motion for the generalized metric directly, because

HMN is a constrained field. To determine the proper projection that encoded the equations

of motion we have to use that the generalized metric is O(D,D) valued and must fulfill

HLMηMNHKN = ηKL . (2.28)
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The variation of this constraint leads to

δHLMHKM +HLMδHKM = 0 (2.29)

and after some relabeling of indices and using HMLHLN = δMN one obtains

δHMN = −HMKδHKLHLN . (2.30)

As described in [22, 39], the most general variation δHMN satisfying (2.29) can be written as

δHMN = P̄MKδMKLP
LN + PMKδMKLP̄

LN (2.31)

with P̄MN =
1

2

(
ηMN +HMN

)
and PMN =

1

2

(
ηMN −HMN

)
, (2.32)

where δMMN is now an arbitrary, unconstrained symmetric variation. Because this new

variation is not subject to any constraints, it leads to

δSDFT =

∫
d2DXKMNδHMN =

∫
d2DXRMNδMMN , (2.33)

where

RMN = PMKKKLP̄LN + P̄MKKKLPLN (2.34)

is called the generalized Ricci tensor. Then the equation

RMN = 0 (2.35)

is the equation of motion for the generalized metric. Because the generalized metric HMN

is symmetric, KMN and RMN are symmetric, too. For completeness we give finally the

explicit expression for KMN which arises from the variation of the DFT action with respect

to the generalized vielbein:2

KMN =
1

8
∂MHKL∂NHKL −

1

4

(
∂L − 2(∂Lφ

′)
) (
HKL∂KHMN

)
+ 2∂M∂Nφ

′

−1

2
∂(MHKL∂LHN)K+

1

2

(
∂L−2(∂Lφ

′)
) (
HKL∂(MHN)K+HK(M∂KH

L
N)

)
.(2.36)

2.3 Covariant formulation of fluxes

Before we discuss how to obtain solutions of the DFT equations of motion, let us connect

the DFT background fields to geometric as well as non-geometric fluxes. It will be useful

to have an O(D,D) covariant characterization of the fluxes, which combines the geometric

and non-geometric fluxes into a single O(D,D) tensor. Without doubling of coordinates,

such a description has already been given a few years ago by Ellwood in [40]. There is a

2Within this paper we use the abbreviations

T[a1...an] =
1

n!

∑
σ∈P

sign(σ)Tσ1...σn and T(a1...an) =
1

n!

∑
σ∈P

Tσ1...σn ,

where P is the set of all permutations of the indices a1, . . . , an, for the (anti)symmetrization of rank n

tensors.
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straightforward extension of this prescription to DFT, most conveniently in the language

of a frame formalism [18, 37]. This has been worked out in the recent papers [25, 41],

giving a slight reformulation of the frame formulation of [18, 37] that is somewhat better

adapted to the usual description of fluxes. In this formulation the covariant fluxes can be

defined covariantly by means of the C-bracket and the O(D,D) inner product as

FABC = [EA , EB ]LCECL . (2.37)

Using the definition of the C-bracket (2.25), (2.37) expands to

FABC = E N
A ∂NE

L
B ECL −

1

2
EAN∂

LE N
B ECL − (A↔ B)

= ΩABC +
1

2
ΩCAB − ΩBAC −

1

2
ΩCBA = ΩABC + ΩCAB + ΩBCA , (2.38)

when introducing the coefficients of anholonomy

ΩABC = E N
A ∂NE

M
B ECM . (2.39)

They are antisymmetric with respect to its last two indices B and C, as a consequence of

E N
A ∂N

(
E M
B ηMLE

L
C

)
= E N

A ∂NηBC = 0 . (2.40)

We thus obtain

FABC = ΩABC + ΩCAB + ΩBCA . (2.41)

Using the antisymmetric property once more, it is evident that the covariant fluxes are

totally asymmetric,

FABC = 3Ω[ABC] . (2.42)

They have three flat indices and thus are subject to double Lorentz transformations.

For completeness, in the following we explicitly calculate the various components of

FABC by starting with a generalized vielbein that is ‘over-parametrized’ in the sense that

it encodes a two-form Bij and a bi-vector βij , as opposed to the physical fields only (i.e.,

either the two-form or the bivector). Put differently, we have not yet gauge fixed to the

physical diagonal subgroup of the double Lorentz group O(D − 1, 1)R×O(1, D − 1)L so

that there are pure gauge modes left. In a given physical situation one may then gauge fix

further to a frame containing only a 2-form, only a bivector, or some intermediate frame.

For a gauge without independent B-field the covariant fluxes reduce to those identified

in [12, 13]. Here we give the vielbein with the flat index lowered and the curved one raised:

E M
A = ηABE

B
N η

NM =

(
eai + eajβ

jkBki e
a
jβ

ji

e j
a Bji e i

a

)
. (2.43)

Due to the fact that the covariant fluxes are described by a totally antisymmetric tensor,

only 4 of the 8 D×D×D blocks FABC consists of are independent from each other. Each of

these independent blocks, namely Fabc, Fabc , Fabc and Fabc, will now be evaluated. By this

calculation, we are able to connect the covariant fluxes with the fluxes Habc, fabc (geometric
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flux), Qabc (Q-flux) and Rabc (R-flux) in flat indices. The three additional fluxes, which

were not discussed so far, are common in the description of non-geometric backgrounds. A

good overview over their structure and properties is given for example by [13, 42].

We start with Fabc which is given in terms of

Fabc = Ωabc + Ωcab + Ωbca = 3Ω[abc] . (2.44)

Putting (2.43) into (2.39), the relevant coefficients of anholonomy evaluate to

Ωabc = e i
a e

j
b e

k
c

(
∂iBjk +Bil∂̃

lBjk

)
. (2.45)

Combining this result with the antisymmetrization of Ωijk in (2.44) gives rise to

Fabc = 3e i
a e

j
b e

k
c

(
∂[iBjk] −Bl[i∂̃lBjk]

)
= Habc . (2.46)

When applying the strong constraint ∂̃i = 0, this expression is equivalent to the H-flux

in flat indices. In the next step, we calculate the three components Ωa
bc, Ω b

a c and Ω c
ab .

These are all combinations with two lowered and one raised index. They are given by the

following expressions

Ωa
bc = eaie

j
b e

k
c

(
∂̃iBjk + βilΩljk

)
, (2.47)

Ω b
a c = e i

a ∂ie
b
je

j
c + e i

a Bij ∂̃
jebke

k
c + e i

a e
b
je

k
c β

jlΩilk , (2.48)

Ω c
ab = −Ω c

a b . (2.49)

With these three components, the covariant fluxes Fabc read

Fabc = Ωa
[bc] + Ω a

[c b] + Ω a
[bc] = Ωa

[bc] + 2Ω a
[c b]

= 2
(
e i

[c ∂ie
a
je

j
b] + e i

[c Bij ∂̃
jeake

k
b]

)
+ eaie

j
b e

k
c

(
∂̃iBjk + βilHljk

)
= fabc . (2.50)

They are equivalent to the geometric fluxes fabc in flat indices. This equivalence gets

manifest, if a frame is chosen where ∂̃i = 0 and βij = 0 holds. Then Fabc becomes

Fabc = 2e i
[b ∂ie

a
je

j
c] = fabc , (2.51)

which is exactly the form given by e.g. [32]. In order to calculate Fabc one needs the

anholonomy coefficient’s components

Ωab
c = eai∂̃

iebje
j
c + eaie

b
je

k
c (βilΩ j

l k+∂̃
iBlkβ

jl) (2.52)

Ω bc
a = e i

a e
b
j e

c
k

(
∂iβ

jk +Bil∂̃
lβjk + βjlβkmΩilm

)
and (2.53)

Ωa c
b = −Ωac

b . (2.54)

They are combined to

Fabc = Ω[ab]
c + Ω [ab]

c + Ω[b a]
c = 2Ω[ab]

c + Ω [ab]
c = 2e

[a
i∂̃
ie
b]
je

j
c

+ e
[a
i e

b]
j e k

c

(
∂kβ

ij +Bkl∂̃
lβij+2∂̃iBlkβ

jl − βli
[
2Ω j

l k + βjnΩkln

])
= Qabc (2.55)
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which is equivalent to the Q-flux in flat indices. In the frame ∂̃i and Bij = 0, this expression

transforms into

Fabc = e ai e
b
j e

k
c

(
∂kβ

ij − βl[if j]kl
)

= Qabc (2.56)

and thus is equivalent to the Q-flux defined in e.g. [17]. Finally, we have

Ωabc = eaie
b
je
c
k

(
∂̃iβjk + βilΩ jk

l +∂̃iBmlβ
ljβkm

)
, (2.57)

which gives rise to

Fabc =3Ω[abc] = eaie
b
je
c
k3
(
∂̃[iβjk] + β[li∂lβ

jk]

+ β[ilBln∂̃
nβjk]+βl[k∂̃iBlmβ

j]m +
1

3
βilβjmβknFlmn

)
(2.58)

and is equivalent to the R-flux in flat indices. To see this, we use the frame ∂̃i = 0 and

Bij = 0 in which (2.58) reads

Fabc = eaie
b
je
c
k3β

[il∂lβ
jk] = Rabc . (2.59)

This expression is equivalent to the R-flux defined in e.g. [13]. All these results agree with

the ones presented in [31, 32] and show that the covariant fluxes are indeed a generalization

of the fluxes known from the SUGRA effective action (1.1).

3 Twisted backgrounds in DFT

When constructing backgrounds for string theory, a major challenge is to find non-trivial

solutions for the background field equations. As shown in section 2.2, these equations are

derived by varying the DFT action (2.2) with respect to the generalized metric’s physical

degrees of freedom. As discussed in section 2.2, they are very involved, and in general it

is impossible to solve them directly. One way to overcome this problem is to start with

known SUGRA solutions, like NS 5-branes or orthogonal intersections of them and apply

various T-duality transformations on them [43]. Here we use another technique, namely a

consistent generalized Scherk-Schwarz compactification. It gives rise to a lower-dimensional

effective action which is easier to handle than the full DFT action. This action describes a

gauged (super)gravity and is equipped with a scalar potential which considerably restricts

the vacua of the effective theory.

Because we use a consistent compactification, the solutions of the effective gauged

(super)gravity’s field equations can be uplifted to solutions of the DFT background field

equations. In fact, the uplift can always be performed in case the background possesses

enough isometries. This was discussed e.g. in [23, 24, 30] for standard dimensional reduc-

tions of higher dimensional supergravity theories on (D−d)-dimensional spaces with D−d
isometries. So in case the generalized Scherk-Schwarz ansatz possesses the doubled number

of isometries, i.e. 2(D−d) isometries with respect to the coordinates as well as with respect

to the dual coordinates, we will argue that the same argument still holds for the consistent

uplift of the reduced DFT.

Thus the steps we are performing are summarized by the following diagram:
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SDFT Seff

field equations

solution .

background field equations

background

consistent compactification ansatz

δSeff = 0

solve (easy)

uplift

δSDFT = 0

solve (involved)

We will now follow the path marked by the solid black lines to find a valid background.

The following subsections describe the way from SDFT to the solution of the effective field

theory’s equations of motion. Section 5 discussed the explicit uplift by considering so called

twisted backgrounds, with enough isometries for a consistent uplift.

3.1 Generalized Kaluza-Klein ansatz

In every compactification one distinguishes between internal and external, i.e. uncompacti-

fied directions. Here we assume that we have d external and D−d internal dimensions. To

make this situation manifest, we split the 2D components of the vector XM =
(
x̃i x

i
)

into

XM̂ =
(
x̃µ x

µ YM
)

=
(
X Y

)
, where µ = 0, . . . , d− 1 (3.1)

counts the external directions and YM is an covariant vector in the internal double space.

In these conventions the O(D,D) invariant metric (2.1) reads

ηM̂N̂ =

 0 δµν 0

δνµ 0 0

0 0 ηMN

 and its inverse ηM̂N̂ =

 0 δνµ 0

δµν 0 0

0 0 ηMN

 . (3.2)

In this subsection we will review as warm-up compactifications of DFT, for which the

internal 2(D− d)-dimensional space does not depend on the coordinates in the internal di-

rections. Hence we are basically dealing with compacifications on a doubled torus T 2(D−d).

Specifically, we demand, that the internal space is invariant under 2(D − d) independent

isometries. An isometry is a shift of the coordinates X Ĵ → X Ĵ − K Ĵ which does not

change the generalized metric. Using the generalized Lie derivative, which generates such

coordinate shifts, an isometry is defined by

L
KĴHM̂N̂ = 0 , (3.3)

where K Ĵ is the Killing vector. This is the generalized Killing equations in the generalized

geometry of DFT. In total we need 2(D−d) independent isometries to construct a consistent

compactification ansatz. They are denotes by K Ĵ
I with I = 1, . . . , 2(D − d) labeling the

different Killing vectors. Condition (3.3) is fulfilled in particular when

L
K Ĵ
I
EÂ

M̂
= 0 → L

K Ĵ
I
HM̂N̂ =

(
LKEÂM̂

)
δABE

B̂
N̂

+ EÂ
M̂
δAB

(
LKEB̂N̂

)
= 0 ,

(3.4)
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although in general one may impose the weaker condition that the Killing vectors leave

the frame field invariant only up to a local Lorentz transformation. This equation allows

us to use the generalized vielbein EÂ
M̂

to look for Killing vectors of the internal space. As

a warm up, we begin with the simplest set of Killing vectors namely

K Ĵ
I =

(
0 0 δJI

)
. (3.5)

The corresponding Killing equation then implies that the generalized vielbein EÂ
M̂

has

to be independent of the internal coordinates Y. This condition leads to the constrained

vielbein ÊÂ
M̂

(X) that depends only on X. This implies that the kinetic part of the energy

in the Y directions vanishes and the Kaluza-Klein tower of states is consistently truncated

to massless states only.

Generalized Lie derivatives on ÊÂ
M̂

should not violate our ansatz by introducing a

Y dependence. Thus, we restrict the gauge parameters ξ to depend on X only. In the

following, Y independent quantities are always marked by a hat. After these restrictions,

one is able to decompose the generalized vielbein into several fields which do not mix under

generalized diffeomorphisms and the other symmetry transformations in section 2.1. These

fields are

• the d-dimensional vielbein eαµ and

• the corresponding B-field Bµν ,

• the µ = 1, . . . , d 2(D − d)-dimensional, covariant vectors ÂMµ and

• the O(D − d,D − d) valued vielbein ÊAM .

They will be considered as the field content of the effective theory which arises after the

compactification. Altogether, they completely parameterize the D2 degrees of freedom of

the totally gauge fixed generalized vielbein in (2.20) and lead to the Kaluza-Klein ansatz

ÊÂ
M̂

(X) =

e
µ
α −e ρ

α Cµρ −e ρ
α ÂMρ

0 eαµ 0

0 ÊALÂ
L
µ ÊAM

 with Cµν = Bµν +
1

2
ÂLµÂLν . (3.6)

This coincides with the ansatz given in [44] once the dependence on internal coordinates

is dropped. Of course ÊÂ
M̂

has to be still O(D,D) valued and hence must satisfy (2.9).

This is the case, if and only if

e µ
α ηαβe ν

β = ηµν and ÊAM ηABÊ
B
N = ηMN , (3.7)

i.e., if Ê is O(D − d,D − d) valued.

In the d uncompactified space time directions, there are no winding modes. Thus in

these directions, the strong constraint (2.26) is trivially solved by ∂̃µ = 0 and the partial

derivative in doubled coordinates reduces to ∂M̂ =
(
∂µ 0 ∂M

)
. We now compute the action

of the generalize diffeomorphisms on the generalized vielbein (3.6). They are defined by
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the generalized Lie derivative (2.22) with the parameter ξ̂M̂ . As already mentioned, ξ̂M̂

only depend on the coordinates X. Its components are

ξ̂M̂ (X) =
(
ξ̃µ ξ

µ Λ̂M
)
. (3.8)

After some algebra, one gets the infinitesimal generalized diffeomorphisms

L
ξ̂
eαµ = Lξe

α
µ , (3.9)

L
ξ̂
Bµν = LξBµν +

(
∂µξ̃ν − ∂ν ξ̃µ

)
+ ∂[µΛ̂M Â

M
ν] , (3.10)

L
ξ̂
ÂMµ = LξÂMµ − ∂µΛ̂M and (3.11)

L
ξ̂
ÊAM = LξÊ

A
M (3.12)

for the various fields of the effective theory, which can also be read off directly from [44].

Here, Lξ is the common Lie derivation in the d-dimensional, extended space time. As

required, these transformations do not mix different fields. In addition, they show that the

M = 1, . . . , 2(D − d) fields AMµ transform like vectors and the generalized vielbein ÊAM
transforms like (D− d)2 scalars in the effective theory. Furthermore the vectors posses an

abelian U(1)2(D−d) gauge symmetry. This symmetry is generated by the parameters Λ̂M
in (3.11).

With the expressions (3.9)–(3.12) for the generalized Lie derivatives of the various

fields, it is immediately clear that the vectors in (3.5) are indeed Killing vectors and

thus fulfill

L
K Ĵ
I
eαµ = L

K Ĵ
I
Bµν = L

K Ĵ
I
ÂMµ = L

K Ĵ
I
ÊAM = 0 . (3.13)

3.2 Generalized Scherk-Schwarz ansatz

Now we want to deform the Kaluza-Klein ansatz from the previous section. This leads to

non-abelian gauge symmetries and massive scalars in the effective theory. Nevertheless,

the 2(D − d) isometries along the compact internal directions Y shall be kept. In order

to achieve this, we replace the N = 1, . . . , 2(D − 1) holonomic basis 1-forms dY N of the

Kaluza-Klein ansatz with the right-invariant 1-forms [45]

ηM = UMN (Y)dY N (3.14)

of a Lie group G. This is done by the so called twist UNM (Y) and breaks the isometries

GL×GR of a bi-invariant metric, like the one used in the last section, down toGR. WhileGR

still consists of enough isometries to perform a consistent truncation, GL is now used to im-

plement the gauge group of the effective theory. In order to connect this new basis 1-forms

with the generalized metric, we have to adapt the scalars EAM and the vectors AMµ as

EAM (X,Y) = ÊAN (X)UNM (Y) and AMµ(X,Y) = ÂNµ(X)UNM (Y) . (3.15)

Of course, one can also write this ansatz in terms of the generalized vielbein

EÂ
M̂

(X,Y) = ÊÂ
N̂

(X)U N̂
M̂

(Y) with U N̂
M̂

=

δ
µ
ν 0 0

0 δνµ 0

0 0 UNM

 , (3.16)
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too. As previously emphasised, the generalized vielbein EÂ
M̂

has to be O(D,D) valued.

The untwisted generalized vielbein ÊÂ
M̂

has this property. Hence the twist U N̂
M̂

also has to

be O(D,D) valued, which is exactly the case if, and only if, UNM is O(D−d,D−d) valued.

Dual to the right-invariant 1-forms ηM are vectors of the form

ξM̂ = ξ̂N̂U M̂
N̂

=
(
ξ̃µ ξ

µ ΛM
)
. (3.17)

They generate left-translations acting on GL. This group, as already explained, was chosen

to implement the gauge symmetry of the effective theory. Thus, transformations ξ̂M̂ with

an arbitrary X-dependent ξ̂N̂ represent gauge transformations of the effective theory. To

check this, we calculate the generalized Lie derivative of the vector VM̂ = V̂N̂U
N̂
M̂

(which

corresponds to a right-invariant 1-form) with the gauge parameter ξL̂:

LξVM̂ = ξP̂∂P̂VM̂ +
(
∂M̂ξ

P̂ − ∂P̂ ξM̂
)
VP̂

= L
ξ̂
V̂ÎU

Î
M̂

+ ξ̂L̂V̂N̂

(
U P̂
L̂
∂P̂U

N̂
M̂

+ ∂M̂U
P̂

L̂
U N̂

P̂
− U N̂

P̂
∂P̂UL̂M̂

)
=
(
L
ξ̂
V̂Î + ξ̂L̂V̂ N̂

[
ΩL̂N̂ Î + ΩÎL̂N̂ − ΩN̂L̂Î

])
U Î

M̂

=
(
L
ξ̂
V̂Î + FÎN̂ L̂ξ̂

N̂ V̂ L̂
)
U Î

M̂
. (3.18)

Here the covariant tensor FM̂N̂L̂ arises through the twist UM̂
N̂

. A similar deformation of

gauge transformations is also part of the DFT formulation of heterotic strings [46]. Due to

the structure of twist, the covariant tensor vanishes in all external directions X. Its non-

vanishing components are linked to the covariant fluxes introduced in (2.41) in section 2.3 by

FABC = Ê I
A Ê J

B Ê K
C FIJK . (3.19)

Hence in the following we will also call FIJK covariant fluxes. They are the structure

constants of the Lie algebra gL associated to the Lie group GL which we choose as gauge

group. Actually, GL is only a group if its associated Lie algebra gL is consistent, i.e., sat-

isfies the Jacobi identity. Explicit calculations using (3.18) and ξµ = ξ̃µ = 0 show that this

condition reads (
FMNLFLIK −FMILFLNK

)
Λ̂N1 Λ̂I2V̂

K = FMNKΛ̂N12V̂
K . (3.20)

Thus, covariant fluxes need to fulfill the Jacobi identity

FLMNFLIK + FLIMFLNK + FLNIFLMK = 0 or FL[MNFLI]K = 0 , (3.21)

taking the total antisymmetry FNML = F[MNL] into account. When (3.21) holds, we find

an effective parameter Λ̂N12 that satisfies (3.20), namely

Λ̂K12 = FKIJ Λ̂I1Λ̂J2 . (3.22)

Remembering the fact that the hatted quantities depend only on the extended directions

X, it becomes clear that the covariant fluxes FKIJ may, if at all, also depend only on these
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directions. Otherwise the gauge algebra would not be closed. But as one sees from (2.39),

FKIJ depends on the compact directions Y only. So, in order to still close the gauge

algebra it have to be

FNML : constant . (3.23)

The closure condition (3.20) is known to hold if the strong constraint (2.26) is imposed.

The strong constraint is satisfied if and only if the twist UMN also fulfills the strong con-

straint. But the mapping between covariant fluxes and twists, i.e. the inverse of (2.39),

is not trivial. Hence it is not obvious how to impose the strong constraint on the level

of the covariant fluxes FIJK directly. In this context the constraints (3.21) and (3.23)

are very useful: In case one of them is violated, the strong constraint is violated as well.

Another check whether the strong constraint is violated can be performed like this: Pro-

vided ∂MU
M

N = 0, which we will assume as usual in Scherk-Schwarz compactification, a

consequence of the strong constraint is

FMNLFMNL = 0 . (3.24)

In order to confirm this we compute

FMNLFMNL = 3ΩMNLΩMNL + 6ΩMNLΩLMN

= 3∂MU
L

N ∂MUNL − 6∂MU
L

N ∂LU
NM = 3∂MU

L
N ∂MUNL = 0 (3.25)

by using (2.41) and the strong constraint (2.26) in the last step. To see that the second

term in the second line vanishes, we used

∂M∂L
(
U L
N UNM

)
= 0 = ∂MU

L
N ∂LU

NM with ∂MU
M

N = 0 . (3.26)

The last expression can also be written as

U M
L ∂MU

K
N ULK = Ω L

LN = −ΩL
LN = 0 ↔ FLLN = 0 . (3.27)

A similar condition we will be given below for the Killing vectors. It guarantees that the

generalized Lie derivative LU M
N
· leaves densities invariant. Summarizing this discussion,

there is the following hierarchy of constraints:

strong constraint ∂M∂
M · = 0 and compactification ansatz

FMNLFMNL = 0

FMNL = constant

FL[MNFLI]K = 0

closure of C-bracket .

and FLLN = 0

Combining (3.18) with (3.11) and (3.12) respectively, one gets the generalized Lie

derivatives

LξAMµ = LξAMµ − ∂µΛ̂M + FMNLΛ̂NALµ and (3.28)

LξEAM = LξE
A
M + FMNLΛ̂NEAL . (3.29)
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for the twisted fields. It is obvious that both AMµ and EAM transform under generalized

diffeomorphisms with non-vanishing ΛM as non-abelian vectors fields. With the twist,

introduced by the Scherk-Schwarz ansatz, we have transformed the abelian gauge symmetry

of the Kaluza-Klein ansatz into a non-abelian one.

The 2(D − d) required Killing vectors K Ĵ
I have to generate right-translations which

leave the generalized vielbein EÂ
M̂

and also the gauge transformation generated by ξM̂

invariant. This is the case when

LK J
I
U M
N = 0 (3.30)

and the K Ĵ
I in the external directions vanish. In this case the generators of GL and GR

commute

L
K Ĵ
I
L
ξM̂
HM̂N̂ = L

ξM̂
L
K Ĵ
Î

HM̂N̂ , (3.31)

and one obtains the direct product GL×GR from which we started. Of course there are also

structure coefficients for the group of isometries associated to the Killing vectors. They

are calculated in the same way as the covariant fluxes in (3.18). This gives rise to

L
K M̂
I
K N̂
J = F̃ K

IJ K N̂
K , (3.32)

with

F̃ K
IJ = K N

I ∂NK
M

J KK
M +KKN∂NK

M
I KJM +K N

J ∂NK
K
MK

M
I . (3.33)

Here KI
J again denotes the inverse transpose of K J

I and K L
I KJ

L = δJI . But nevertheless,

in general, K J
I is not an O(D − d,D − d) matrix. Hence, its first index cannot be raised

or lowered with ηMN or ηMN , respectively.

Furthermore, the transformations generated by K J
I have to leave densities, like e−2φ′ ,

invariant. For the Kaluza-Klein ansatz from the last section, this constraint is fulfilled

trivially, but here we have to check that

LK J
I
φ′ = K J

I ∂Jφ
′ − 1

2
∂JK

J
I =

1

2
∂JK

J
I = 0 → ∂JK

J
I = 0 . (3.34)

As for the reset of the paper, we assumed in the first step φ′ = constant. In analogy

with (3.27), this condition can be also expressed in terms of the structure constants F̃IJK ,

namely

F̃IIJ = 0 . (3.35)

Let us note that the condition (3.34) can be used to prove that the Lagrangian density

does not depend anymore on the internal coordinates. To see this, consider the action

of a Killing vector KI on the Lagrangian defining DFT which, being a scalar density,

transforms as

δKILDFT = ∂J(K J
I LDFT) = ∂JK

J
I LDFT +K J

I ∂JLDFT = K J
I ∂JLDFT = 0 , (3.36)

where we used (3.34) to drop the term with the partial derivative acting on the Killing

vectors K J
I . Because K J

I consists of 2(D − d) linearly independent vector fields, from

this equation we can immediately conclude

∂JLDFT = 0 . (3.37)
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This shows that LDFT does not depend on the internal coordinates Y when there are

2(D − d) linearly independent Killing vectors. Hence, according to our notation, the La-

grange density LDFT can be written as L̂DFT.

In the following we want to argue that the Scherk-Schwarz compactification is consis-

tent in the strong Kaluza-Klein sense that each solution of the lower-dimensional theory

can be lifted to a solution of the original, higher-dimensional theory. We first note that,

by definition, the Killing vectors leaves the generalized Ricci tensor invariant,

δKIRM̂N̂ = 0 . (3.38)

It is now easy to see that this equation is solved by

RM̂N̂ = U Î
M̂
R̂ÎĴU

Ĵ
N̂
, (3.39)

using

LKIU
L̂
M̂

= 0 and LKI R̂L̂K̂ = 0 . (3.40)

Now, acting with U M̂
Î

, the inverse transpose of U Î
M̂

, we can conclude

RM̂N̂ = 0 ↔ R̂M̂N̂ = 0 . (3.41)

Hence, once the Y-independent part of the equations of motion is solved we can immedi-

ately construct the higher-dimensional Ricci tensor (satisfying the original DFT equations)

via (3.39), thus showing the consistency of the Scherk-Schwarz reduction. Put differently,

the dashed and the solid path in the diagram on page 12 commute. For our analysis in sub-

sequent chapters we need the explicit definition of the Ricci tensor in the lower-dimensional

theory,which is computed from

K̂M̂N̂ =
δŜeff

δĤM̂N̂
with Seff =

∫
d2DX L̂DFT (3.42)

using the projection

R̂M̂N̂ = P̂M̂K̂K̂
K̂L̂ ¯̂
P L̂N̂ +

¯̂
P M̂K̂K̂

K̂L̂P̂L̂N̂ . (3.43)

(See section 2.2 for details on the projection).

Finally, we want to mention, that the generalized fluxes presented in this section are

closely related to the embedding tensor Θ α
I of gauged supergravities. In this context they

describe a subset of the global O(D − d,D − d) symmetry transformations of the compact

directions, which is promoted to a gauge symmetry in the effective theory. Comparing the

formalism reviewed in [28] and the one shown here, one finds the connection

F K
IJ = Θ α

I (tα) K
J = (XI)

K
J , (3.44)

where tα are (D−d) [2(D − d)− 1] different O(D − d,D − d) generators and (tα) K
J is the

corresponding representation with respect to 2(D − d)-dimensional vectors. One imposes

two consistency constraints on the embedding tensor, namely the linear and the quadratic

constraint. An explicit discussion of these constrains for D − d = 2, 3 and the connection

to DFT is given in [47].
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3.3 Gauged (super)gravity and its vacua

In section 3.2, we proved that a consistent Scherk-Schwarz ansatz leads to an Y-independent

effective action Seff . The effective action is most conveniently obtained by starting from the

formulation in [44], which reduces to the previous results in [25, 38] for a Scherk-Schwarz

ansatz. Following [44], let us first define a derivate

Dµ = ∂µ − LAMµ
(3.45)

which transforms covariantly under gauge transformations (3.17). Applied on the general-

ized metric HMN , it gives rise to

DµHMN = U IM D̂µĤIJUJN with

D̂µĤMN = ∂µĤMN + F I
MJ ÂJµĤIN + F I

NJ ÂJµĤMI . (3.46)

The field strength of the gauge field A M
µ is defined in analogy with Yang-Mills theory by

setting

FMµν = 2∂[µA
M
ν] − [Aµ, Aν ]MC = F̂Nµν U

M
N with

F̂Mµν = 2∂[µÂ
M
ν] −F

M
NL Â

N
µÂ

L
ν . (3.47)

It describes how two covariant derivative commute

[Dµ, Dν ] = −LFMµν . (3.48)

As shown in [44], FMµν in general does not transform covariantly under gauge transfor-

mations,

∆ξF
M

µν = δξF
M

µν − LξF M
µν = ∂M (∂[µξ

NAν]N ) . (3.49)

This problem is fixed by adding the partial derivative of a 2-form gauge potential to the

field strength defined in (3.47) which compensates for the wrong transformation behavior.

But due to the special properties of the Scherk-Schwarz ansatz for fields (3.15) and gauge

parameter (3.17), the failure of covariance vanishes because the expression in the bracket

depends on the external directions only. Hence for a Scherk-Schwarz compactification,

F M
µν is already a covariant field strength. A short calculation, where the result (2.32)

from [44] is used, shows that also the Bianchi identity

D[µF
M
νρ] = 0 (3.50)

is fulfilled for FMµν . Let us next discuss the field strength for the B-field, which is extended

by a CS terms in order to be invariant under gauge transformations. This gives rise to the

field strength

Ĝµνρ = 3∂[µBνρ] + 3∂[µÂ
M
νÂMρ] −FMNLÂ

M
µÂ

N
νÂ

L
ρ . (3.51)

It transforms covariantly and fulfills the Bianchi identity

∂[µGνρλ] = 0 . (3.52)
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With these quantities at hand, the Kaluza-Klein action in [44] reads

Seff =

∫
dx(D−d)√−ge−2φ

(
R+ 4∂µφ∂

µφ− 1

12
ĜµνρĜ

µνρ

−1

4
ĤMN F̂

MµνF̂Nµν +
1

8
D̂µĤMND̂

µĤMN − V̂
)
. (3.53)

Here R denotes the scalar curvature in the external directions. In the internal directions,

the Lagrange density LDFT is constant. Thus the integrals in these direction can be solve

and give rise to a global factor, which is neglected in (3.53). This result is equivalent to

the one presented by [25]. Finally on has to calculate the scalar potential

V̂ = −R̂(φ′, ĤMN ) . (3.54)

Due to the properties of the Scherk-Schwarz ansatz, it is constant with respect to the

internal direction Y. Hence it is sufficient to calculate it at one special point, lets say

Y N = 0. Using the definition (2.3), φ′ = const.,

∂IU
J
K

∣∣
Y N=0

= Ω J
I K and ∂I∂JU

L
K

∣∣
Y N=0

= Ω L
(I MΩ L

J) K , (3.55)

one obtains after some algebra

V̂ = −1

4
F KL
I FJKL ĤIJ +

1

12
FIKMFJLNĤIJĤKLĤMN . (3.56)

Again, this result is consistent with [25, 31]. In the remaining part of this section and in

section 4 all quantities belong to the effective theory and thus only depend on the d external

coordinates X. To avoid overloading the notation there, we drop the hat we introduced

to emphasis that quantities depend on X only. In section 5, we start to use the hat to

distinguish between X and Y dependent quantities again.

Since we have performed a consistent compactification, each solution of the effective

action is also a solution of the DFT we started with. So in order to find consistent back-

grounds we have to solve the field equations of the effective action. These equation are

obtained by the variation of the effective action Seff which gives rise to

0 =
δSNS

δgij
− 1

2
HMNF

M ρ
µ FNνρ +

1

8
DµHMNDνHMN (3.57)

0 =
δSNS

δφ
− 1

4
HMNF

MµνFNµν +
1

8
DµHMND

µHMN − V (3.58)

0 = 2Dν

(
HMNF

Nµν
)
− 4∂νφHMNF

Nµν + FMνρG
µνρ + F L

MN HLKDµHNK and

(3.59)

0 = PMKKKLP̄LN + P̄MKKKLPLN (3.60)

with

KMN = FMµνFNµν +DµD
µHMN − 2∂µφD

µHMN−4
δV

δHMN
(3.61)
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and additionally, the well know equations of motion for the string’s NS/NS sector

δSNS

δgij
= Rµν + 2∇µ∂νφ−

1

4
GµρλG

ρλ
ν (3.62)

δSNS

δφ
= R+ 4 (∇µ∇µφ− ∂µφ∂µφ)− 1

12
GµνρG

µνρ (3.63)

0 = ∇µGµνρ − 2∂µφGµνρ (3.64)

in the low energy approximation. In (3.60) and (3.61), we have applied the projectors

discussed in section 2.2. They respect that not all components of HMN are physical degrees

of freedom.

4 Minkowski vacua

There are various possibilities how the solve the equations of motion (3.57)–(3.61) of the

effective theory. The most straightforward one is to assume that we have a d-dimensional

Minkowski space. In this case the metric is gµν = ηµν while the dilaton φ and the gener-

alized metric HMN of the internal space are constant. Furthermore the B-field Bµν and

the vectors AMµ vanish. Now the field equations, discussed in the last section, simplify

dramatically into

Rµν = 0 , V = 0 and KMN =
δV

δHMN
. (4.1)

The vacua obtained by these equations fulfill the following requirements:

• They correspond to minima of the effective gauged supergravity potential that must

have vanishing cosmological constant. Hence the uncompatified dimensions are de-

scribed by flat Minkowski space time. At this point it is worth noting that the general-

ized curvatureR of DFT in the internal directions Y precisely corresponds to the vac-

uum energy in the effective theory. Hence the vanishing of the generalized Ricci tensor

RMN ensures that we are dealing with vacua with vanishing cosmological constant.

• The fluctuations around the Minkowski vacua are stable, i.e. the scalar mass matrix

is at lest positive semi-definite, as we show in section 4.1. Hence, the scalar potential

in general leads to the stabilization of some moduli.

In order to solve the equations (4.1), let us fist have a closer look at the variation of

the scalar potential (3.56) with respect to the generalized metric,

KMN =
δV

δHMN
=

1

4

(
−FMKLFNKL + FMIKFNJLHIJHKL

)
. (4.2)

It has to be evaluated for the value H̄MN , which HMN acquires for the vacuum. We express

this value in terms of the vacuum’s generalized vielbein

H̄MN = Ē M
A δABĒ N

B . (4.3)
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In the following, flat and curved indices will be related by means of this background frame

field, which in particular has the consequence that objects with flat indices are X-dependent

that usually are constant. By applying this prescription to the indices of (4.2), one obtains

KMN =
1

4

(
FMAB ηBCFNCD ηDA −FMAB δBCFNCD δDA

)
. (4.4)

A further simplification is achieved when barred indices are used (see (2.13) in section 2.1).

In this case the invariant metric ηĀB̄ and the flat generalized metric δĀB̄ have non-vanishing

entries for Ā = B̄ only. Using this simplification one is able to explicitly evaluate the two

terms in (4.4) (σ = −1 gives rise to the first term, while σ = +1 reproduces to the second

one) as

FM̄āb̄F N̄ c̄d̄ηb̄c̄ηād̄ + 2σFM̄ā
b̄F

N̄ d̄
c̄ η

b̄c̄ηād̄ +FM̄āb̄F
N̄
c̄d̄η

b̄c̄ηād̄

=

{
FM̄

ĀB̄
ηB̄C̄F N̄

C̄D̄
ηD̄Ā for σ = −1

FM̄
ĀB̄

δB̄C̄F N̄
C̄D̄

δD̄Ā for σ = +1
,

(4.5)

where we have used the parameterization

FM̄ĀB̄ =

(
F āb̄
M̄

F ā
M̄ b̄

F b̄
M̄ ā

F
M̄āb̄

)
(4.6)

for the covariant fluxes. With this result it is straightforward to compute

KM̄N̄ = FM̄ ā
b̄ F

N̄ d̄
c̄ η

b̄c̄ηād̄ . (4.7)

Furthermore the projectors PMK and P̄LN , needed to calculate the generalized Ricci ten-

sor (2.34), take the simple form

P̄ĀB̄ =
1

2
(ηĀB̄ + δĀB̄) =

(
0 0

0 ηāb̄

)
and PĀB̄ =

1

2
(ηĀB̄ − δĀB̄) =

(
−ηāb̄ 0

0 0

)
, (4.8)

in barred, flat indices. Hence the generalized Ricci scalar reads

RĀB̄ = −

(
0 Kā

b̄

K b̄
ā 0

)
. (4.9)

This tensor is symmetric and thus the equation of motion RMN = 0 reduces to

Kāb̄ = F ā c̄
d̄ F

f̄

b̄ē
ηd̄ēηc̄f̄ = 0 . (4.10)

Only backgrounds that satisfy this equation are consistent. Thus in addition to (3.21)

and (3.23), we have to impose the further constraint (4.10) on the generalized fluxes. Like

the Jacobi identity (3.21), it is quadratic in the fluxes.

In summary, a valid background (without warp factor) is the direct product of a d-

dimensional Minkowski space and a twisted torus in the compact (D − d)-dimensional

space. The twist of the torus is described in terms of the covariant fluxes FABC . They are

not arbitrary, but severely constrained.
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4.1 Spectrum of the effective theory

In the last section we discussed vacua for the effective field theory in d dimensions. Now

the focus is on small perturbations around these vacua. They play an important rôle in

the process of moduli stabilization, which fixes some or even all of the scalar fields HMN .

This process is governed by mass terms in the effective field theory’s Lagrangian. Due to

these terms some scalars obtain masses and are not excited in the ground state.

The mass term arises from the second order variation of the scalar potential,

δ2V =
∑
α , β

(
δ2V

δHIJδHKL
δHIJ

δφα

δHKL

δφβ
+

δV

δHKL
δ2HKL

δφα δφβ

)
δφαδφβ . (4.11)

Here we have taken into account that HMN has to be O(D − d,D − d) valued and thus

not all of its 2(D − d)(D − d − 1) entries correspond to physical degrees of freedom. So

we express the generalized metric HMN in terms of scalar fields φα, α = 1, . . . , (D − d)2,

which correspond to unconstrained, physical degrees of freedom. Furthermore, we define

MIJKL =
δ2V

δHIJδHKL
=

1

2
FIKMFJLNHMN (4.12)

in analogy with (4.2) and use the abbreviation

(hα) IJ =
δHIJ

δφα
. (4.13)

Now, (4.11) takes the form

δ2V =
∑
α , β

[
MIJKL (hα) IJ (hβ)KL +KKL

δ

δφα
(hβ)KL

]
δφαδφβ . (4.14)

One can regard (hα) IJ as an infinitesimal generator of a field variation of HIJ . Thus it

has to be compatible with the constraint (2.29). It is convenient to work in flat indices like

in (4.4). We again use the generalized vielbein ĒAM of the vacuum to transform curved

indices into flat ones. Then the constraint (2.29) on the variation reads

(hα)ACηCDδ
DB + δACηCD (hα)DB = 0 . (4.15)

In order to construct all generators which fulfill this equation, we switch to barred indices

and define

(hĀB̄)C̄D̄ =
√

2δC̄[ĀδB̄]Ēη
ĒD̄ with α =

(
Ā B̄

)
. (4.16)

For Ā < B̄ this leads to 2(D − d)(D − d − 1) independent generators. Only (D − d)2

are symmetric, the others are antisymmetric. We drop the antisymmetric ones, because

the generalized metric is symmetric and so are its variations. Finally we switch back to

unbarred indices. With these generators at hand, the generalized metric can be expressed

by the exponential map

HAB = exp

[∑
α

(hα)AB φα

]
= δAB +

∑
α

(hα)ABφα +
1

2

∑
α, β

(hα)ACδCD(hβ)DBφαφβ + . . . .

(4.17)
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We recall that we have used the vacuum vielbein to flatten curved indices. In the vacuum,

all φα vanish and according to (4.17), the generalized metric equals HAB = δAB. Back

in curved indices this gives rise to the vacuum generalized metric H̄MN = HMN (φα = 0).

With the parameterization of the generalized metric in (4.17), one obtains

δ2

δφα δφβ
HAB

∣∣∣∣
φγ=0

=

{
(hα)AC δCD (hβ)DB for α ≤ β
(hβ)AC δCD (hα)DB otherwise

. (4.18)

Using this result and

HMN = Ē M
A HABĒ N

B , (4.19)

one is able to evaluate the variation (4.11) explicitly. Finally, (4.14) gives rise to

δ2V =
∑
α , β

Mαβδφαδφβ (4.20)

with the symmetric mass matrix

Mαβ = (MABCD +KADδBC) (hα)AB (hβ) CD . (4.21)

In order to identify massive scalars excitations, this matrix has to be diagonalized. Be-

cause Mαβ is symmetric, this is always possible and leads to (D − d)2 eigenvalues λα and

the corresponding, orthonormal eigenvectors vα with the components (vα)β. In order to

diagonalize we rotate the generators (hα)AB by defining

(h̄α)AB :=
∑
β

(vα)β (hβ)AB . (4.22)

The generalized metric HAB in (4.17) has to invariant under this rotation. Thus one also

has to rotate the scalar fields

φ̄α :=
∑
β

(vα)β φβ . (4.23)

By plugging the rotated generators from (4.22) into the expression for the mass ma-

trix (4.21), one finally obtains the requested diagonal form

M̄αβ := diag(λα) . (4.24)

The first order variation of the scalar potential and its vev vanish due to effective

theory’s field equation
δV

δφα
= 0 . (4.25)

Here a projection like in (3.60) is not necessary, because the φα’s already describe the

physical degrees of freedom only. Thus V is only governed by second order perturbations,

which lead to

V = 2λαφ
2
α +O(φ3) . (4.26)

– 24 –



J
H
E
P
0
5
(
2
0
1
4
)
0
8
5

When inserting the expression for the generalized metric (4.17) into the kinetic term for

the generalized metric in (3.53), one obtains

DµHMND
µHMN =

∑
α

4∂µφα∂
µφα + interaction terms . (4.27)

The interaction terms describe self-couplings among the scalars φα and couplings between

scalars and gauge bosons aMµ, which are fluctuation around the vev of AMµ. The quadratic

part of the Lagrangian for the scalars φα is obtained by plugging (4.26) and (4.27) into the

action (3.53) and reads

Lφ =
1

2

∑
α

(
∂µφα∂

µφα − 4λαφ
2
α

)
. (4.28)

It identifies 2
√
λα = mα as the mass of the scalar field φα. Thus the eigenvalues λα have

to be positive or zero in order to avoid tachyons. So we see that the string theory which

belongs to this background should give rise to (D − d)2 scalars φα with the masses mα.

Furthermore there should be 2(D − d) vector bosons aMµ which arise from the internal

symmetry of the scalars.

4.2 Solution of flux constrains in (D − d) = 3 dimensions

In section 3 and 4, we have discussed various constraints on the covariant fluxes. Only when

all these constraints hold, one is able to construct a consistent background. Now we want

to look systematically for their solutions. We restrict our search to (D−d) = 3-dimensional

compact spaces. In this case the number of compact dimensions is large enough to find

interesting, non-trivial solutions. On the other hand it is still so small that we are able to

manage the search with an appropriate effort.

As shown in (3.44), there is a direct link between the covariant flux F K
IJ and the

embedding tensor of gauged supergravities. For (D − d) = 3, the XI in (3.44) describe

the O(3, 3) generators labelled by I = 1, . . . , 6. Group-theoretically, (XI)
K
J lives in the

tensor product

6⊗ 15 = 6⊕ 10⊕ 10⊕ 64 . (4.29)

The first factor in this product is the vector representation of SO(3, 3) and the second

is the adjoint representation of SO(3, 3). There is one linear constraint, namely that the

covariant fluxes are totally antisymmetric (FIJK = F[IJK]). This implies that the irreps

6 and 64 of the general tensor product decomposition (4.29) are absent. The remaining

irreps 10⊕ 10 matches perfectly the number of independent components of FIJK , which is

6 · 5 · 4/3! = 20 in 2(D − d) = 6 dimensions.

Following the reasoning in [47], one can express (XI)
K
J also as irreps of SL(4), which

is isomorphic to SO(3, 3). In this case (4.29) does not change. To distinguish between

the two different groups, one introduces fundamental SL(4) indices p, q, r = 1, . . . , 4. The

generators (XI)
K
J can also be written in terms of SL(4) indices

(Xmn) q
p =

1

2
δq[mMn]p −

1

4
εmnprM̃

rq , (4.30)
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where Mnp and M̃ rq are symmetric 4 × 4 matrices and ε denotes the Levi-Civita symbol.

The matricesMnp and M̃ rq have 4·5/2 = 10 independent components each and hence match

exactly the remaining irreps 10 and 10 in (4.29). A double index, like mn in (Xmn) q
p , labels

the 6 independent components of the SL(4) irrep 6. These 6 = 4 ·3/2 different components

are the entries of an antisymmetric 4× 4 matrix. They are lowered by

Xmn =
1

2
εmnpqX

pq . (4.31)

At this point, it is important to keep in mind that the indices n, p of Mnp and r, q of

M̃ rq are still fundamental SL(4) indices and not doubled ones. Finally we transform the

fundamental SL(4) indices p and q in (Xmn) q
p to double indices pq and rs respectively by

using the identity

(Xmn) rs
pq = 2 (Xmn)

[r
[p δ

s]
q] . (4.32)

The covariant fluxes in this representation using 6 of SL(4) indices, are linked to one with

6 of SO(3, 3) indices, used throughout the paper, by the ’t Hooft symbols (GI)
mn. For

(D − d) = 3, they are defined as

(
G1
)mn

=


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 (
G2
)mn

=


0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 (
G3
)mn

=


0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0



(G1)mn =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 (G2)mn =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 (G3)mn =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 (4.33)

and fulfill the identities

(GI)mn (GJ)mn = 2ηIJ , (4.34)

(GI)mp (GJ)pn + (GJ)mp (GI)
pn = −δnmηIJ , (4.35)

(GI)mp (GJ)pq (GK)qr (GL)rs (GM )st (GN )tn = δnmεIJKLMN . (4.36)

Finally, we can express the covariant fluxes as

FIJK = (Xmn) rs
pq (GI)

mn (GJ)pq (GK)rs . (4.37)

To evaluate the condition (4.10), which arise from the effective theory’s equations of motion,

one also needs the covariant fluxes in flat indices

FABC = Ē I
A Ē J

B Ē K
A FIJK . (4.38)

This equation is invariant under O(D − d,D − d) transformations of the vacuum’s gener-

alized vielbein and the covariant fluxes, like

Ē I
A → Ē J

A O I
J and FIJK → FLMNO

L
IO

M
JO

N
K with OMN ηMLO

L
K = ηNK .

(4.39)
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Furthermore (4.10) is invariant under double Lorentz transformations

Ē I
A → T B

A Ē I
B with T C

A δCDT
D

B = δAB and T C
A ηCDT

D
B = ηAB . (4.40)

Combining these two transformations, one is able to choose an arbitrary vacuum vielbein

Ē I
A . In the following, we use

Ē I
A := δIA , (4.41)

which allows to identify the components of the covariant fluxes in flat and curved in-

dices. Other choices would be possible too, but they would make explicit calculations more

complicated. This shows nicely that all relevant informations about the vacuum can be

embedded in the covariant fluxes.

Next, we state and solve the constraints on the fluxes in terms of (4.37). First, using

the decomposition (4.30), the Jacobi-type constraint (3.21) on the fluxes reads

MmpM̃
pn =

1

4
δmn MqpM̃

pq . (4.42)

Because Mnp is symmetric, it can always be diagonalized by an SO(4) transformation.

The group SO(4) is the maximal compact subgroup of SL(4) and it is, up to a discrete

Z2, isomorphic to SO(3)×SO(3), the maximal compact subgroup of SO(3, 3). Hence it

is always possible to diagonalize Mnp by an O(3)×O(3) double Lorentz transformation

applied on the covariant fluxes. Such transformations leave all constraints on the covariant

fluxes invariant. When Mnp is diagonal, M̃rq has to be diagonal, too. Otherwise the

constraint (4.42) is violated. In this case one can identify the components

Mmn = diag
(
H123 Q

23
1 Q31

2 Q12
3

)
and M̃mn = diag

(
R123 f1

23 f
2
31 f

3
12

)
(4.43)

by applying (4.30), (4.32), (4.37) and the mapping between the covariant fluxes FABC
in flat indices and the H-, f -, Q- and R-flux derived in section 2.3 successively. These

remaining fluxes automatically fulfill

FMMN = 0 ↔ f iij = 0 and Qiji = 0 , (4.44)

as required by (3.27). Hence, according to (3.24), the strong constraint restricts the

fluxes by

H123R
123 +Q23

1 f
1
23 +Q31

2 f
2
31 +Q12

3 f
3
12 = MqpM̃

pq = 0 . (4.45)

In conjunction with the quadratic constraint (4.42) this gives rise to

H123R
123 = 0 , Q23

1 f
1
23 = 0 , Q31

2 f
2
31 = 0 , Q12

3 f
3
12 = 0 . (4.46)

Finally, the constraint from the field equations (4.10) leads to(
H123 −Q23

1

)2 − (Q31
2 −Q12

3

)2
=
(
R123 − f1

23

)2 − (f2
31 − f3

12

)2
(4.47)(

H123 −Q31
2

)2 − (Q12
3 −Q23

1

)2
=
(
R123 − f2

31

)2 − (f3
12 − f1

23

)2
(4.48)(

H123 −Q12
3

)2 − (Q23
1 −Q31

2

)2
=
(
R123 − f3

12

)2 − (f1
23 − f2

31

)2
. (4.49)
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α mα (h̄α)ij (h̄α)kj φ̄α

1 2 |f |

0 0 0

0 −1 0

0 0 1

 0 τI

2 2 |f |

0 0 0

0 0 1

0 1 0

 0 τR

3 2 |H|

0 0 0

0 1 0

0 0 1

 0 ρI

4 2 |H| 0

0 0 0

0 0 −1

0 1 0

 ρR

Table 1. The massive scalar fields with arise from the fluxes in (4.50).

The only non-trivial solution for these three equations, which is not excluded by the strong

constraint, is

H123 = Q23
1 = H , Q31

2 = Q12
3 = 0 , R123 = f1

23 = 0 and f2
31 = f3

12 = f . (4.50)

In D − d = 3 dimensions, only these fluxes are allowed for backgrounds without a warp

factor. This shows how restrictive the conditions on the covariant fluxes are. The covariant

fluxes in (4.50) are given in flat indices. Thus they are invariant under O(D − d,D − d)

transformations (4.39) but depend on the fixing of the double Lorentz symmetry. In total,

we obtain three different kind of solutions which will be discussed in section 5.2 in detail:

• f 6= 0, H = 0: this is a geometric background, called single elliptic f -flux space.

• f = 0, H 6= 0: this is a non-geometric background, because by (4.50) it has non-

vanishing H and Q flux. It is called single elliptic H,Q-flux space. It is, however,

T-dual to the previous, geometric background.

• f 6= 0, H 6= 0: this is a non-geometric background, called double elliptic f,H,Q-flux

space. It is not T-dual to any geometric space.

Following the reasoning in section 4.1 one is able to express the fluctuations of the

generalized metric around its vev as

δHMN =
∑
α

Ē M
A Ē N

B (h̄α)ABφα . (4.51)

By using Ē M
A = δMA , cf. (4.41), it is straightforward to identify such fluctuation of the

generalized metric (2.4) with

δgij =
∑
α

(h̄α)ijφα and δBij = δik(h̄α)kj . (4.52)
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For the double elliptic background, there are in total four massive and five massless scalar

fields. The massive ones are listed in table 1. In the directions y2 and y3 the shape of

the double tours specified by H̄MN is completely fixed by the massive scalars. A double

torus in these directions is parameterized by four real scalars which correspond the metric

components g22, g33, g23 and the B-field component B23. They can also be expressed in

terms of the complex structure τ = τR + iτI and the Kähler parameter ρ = ρR + iρI as(
g22 g23

g23 g33

)
=
ρI

τI

(
1 τR

τR |τ |2

)
and −B23 = B32 = ρR . (4.53)

For H̄MN = δMN , one gets τ̄I = ρ̄I = 1 and τ̄R = ρ̄R = 0. Here the bar on τ , ρ and

its component τR, τI, ρR and ρI does not indicates complex conjugation, but that these

quantities belong to the vacuum vielbein Ē M
A . The variation of the metric and the B-field

in (4.53) with respect to τR, ρR, τI and ρI leads to the same results as given in table 1.

Hence it is straightforward to identify the scalar moduli φα in this table with the real and

imaginary parts of τ and ρ. The full scalar potential in these moduli reads

V =
f2
(
1 + 2(τ2

R − τ2
I ) + |τ |4

)
2τ2

I

+
H2
(
1 + 2(ρ2

R − ρ2
I ) + |ρ|4

)
2ρ2

I

. (4.54)

A minimum of this potential has to fulfill

∂V

∂τR

∣∣∣∣
τ=τ̄

=
f2τ̄R(1 + |τ̄ |2)

τ̄2
I

= 0 and
∂V

∂τI

∣∣∣∣
τ=τ̄

=
f2
[
2τ̄2

R(τ̄2
I − 1) + 2τ̄4

I − |τ̄ |4 − 1
]

τ̄3
I

= 0 .

(4.55)

From the first equation follows that τ̄R = 0. In this case, the second one simplifies to

τ̄4
I = 1 and thus gives rise to τ̄I = 1. These are exactly the values we expected. The same

argumentation holds for ρ. Plugging the vevs τ̄ and ρ̄ into (4.54), we see that the scalar

potential V (τ̄ , ρ̄) = 0 vanishes for the vacuum. This result is in accordance with (4.1).

After a short calculation, one obtains the Hesse matrix

∂2V

∂φα∂φβ

∣∣∣∣
φ̄

= 4


f2 0 0 0

0 f2 0 0

0 0 H2 0

0 0 0 H2

 with φ = {τR, τI, ρR, ρI} (4.56)

for the vacuum. It is diagonal and so proves that τ and ρ are indeed the right moduli to

describe the massive scalar field which arise in the effective theory.

5 Twists, Killing vectors and background fields

Until now, we have only considered the constant values of the covariant fluxes FIJK . But

in order to construct the metric and B-field or β-field of a doubled geometry, one needs

to know the twist UMN and its action on the scalar fields ĤMN . Here we give twists

that reproduce the given covariant fluxes. We focus on covariant fluxes that describe

fibered backgrounds. For them, we are able to provide an explicit expression for the twist
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and also for the Killing vectors which are associated to it. The background described in

section (4.50) is such a fibration. Hence we can apply these results to study its properties in

more detail. Finally we show how the remaining double Lorentz symmetry of the covariant

fluxes is fixed, for which there are different possibilities related to each other via a field

redefinitions.

5.1 Fibered backgrounds

To construct explicit expressions for the twist UMN and its Killing vectors, we focus on

fibered geometries M2(D−d) of the kind

T 2df ↪→ M2(D−d) ↪→ T 2db . (5.1)

Here T 2df is a 2df -dimensional double torus in the fiber, which is twisted by the covariant

fluxes. While the 2db-dimensional, rectangular base torus T 2db is not affected by this

twist. At first glance this sounds like a strong limitation, which excludes many potential

backgrounds. Nevertheless, the consistent backgrounds from section 4.2, which satisfy the

various constraints discussed in this paper, are exactly of this form. In order to make the

structure of the fibration manifest, we split the 2(D − d) internal, compact coordinates

YM =
(
ỹi y

i
)

into

Y M̂ =
(
Y M̃ YM

)
. (5.2)

Indices with a tilde label the base coordinates and indices without a tilde are assigned to

the directions of the fiber. For these conventions, the invariant metric is given by

ηM̂N̂ =

(
ηM̃Ñ 0

0 ηMN

)
. (5.3)

Analogous expressions hold for the generalized vielbein, the twist and the parameter of

generalized diffeomorphisms. Using this splitting, the twist U M̂
N̂

can be expressed by the

matrix exponential

U M̂
N̂

(Y Ĩ) = exp
(
F M̂
N̂ Ĩ

Y Ĩ
)
. (5.4)

The only non-vanishing covariant fluxes are FNMĨ , while the remaining flux components

FN̂M̂I = 0 and FÑM̃ Î = 0 (5.5)

vanish in order to be compatible with the fibration discussed above. Furthermore, we

consider only matrices in the exponent of (5.4), which commute for arbitrary values of Ĩ

and J̃ . Thus the additional constraint

F M
Ĩ L
F L
J̃ N

−F M
J̃ L
F L
Ĩ N

= 0 or FLM [ĨF
L
J̃ ]N

= 0 (5.6)

has to hold. Without it and (5.5), we are not able to derive the following properties of the

twist:

U M̃
N̂

= δM̃
N̂
, U M̂

Ñ
= δN̂

Ñ
and ∂L̂U

M̂
N̂

=

{
F P
N L̃

U M
P

0 otherwise.
(5.7)
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With them, it is then straightforward to calculate the non-vanishing coefficients of anholon-

omy

ΩĨJK = ∂ĨU
M

J UKM = F N
J Ĩ

U M
N UKM = F N

J Ĩ
ηNK = FĨJK . (5.8)

The remaining components

ΩIJ̃K = −ΩIKJ̃ = 0 (5.9)

vanish. Hence, the non-vanishing components of the covariant fluxes for the twist (5.4) are

FĨJK = ΩĨJK + ΩKĨJ + ΩJKĨ = ΩĨJK , (5.10)

as expected.

Furthermore we have to find the 2(D − d) Killing vectors K Ĵ
Î

connected to the twist

U M̂
N̂

. For the fibration, discussed in this section, they are given by

K Ĵ
Î

= exp

(
−1

2
F Ĵ
Ĩ L̂

Y L̂

)
. (5.11)

Here the Ĩ in F Ĵ
Ĩ L̂

Y L̂ denotes that the matrix given by this expression has only non-

vanishing entries in columns with are associated to base coordinates. Again, we find the

following properties:

K J̃
Î

= δJ̃
Î
, K Ĵ

I = δĴI and ∂L̂K
Ĵ
Î

=

{
−1

2F
J
Ĩ L

0 otherwise.
(5.12)

With these identities, it is straightforward to show that

L
K Ĵ
Î

U M̂
N̂

= K P̃
Î
∂P̃U

M
N + ∂MK P

Ĩ
UN̂P − U

P
N̂

∂PK
M
Ĩ

= F P
N Ĩ

U M
P − 1

2
F PM
Ĩ

UNP +
1

2
U P
N F M

Ĩ P

= F P
ĨN

U M
P − U P

N F M
ĨP

= [
(
FĨ
)
, U ] = 0 . (5.13)

In the last step we have used that according to (5.6) the matrices
(
FĨ
) M

N
have to commute

for all possible values of Ĩ. We can check that the condition

∂ĴK
Ĵ
Î

= −1

2
F J
Ĩ J

= 0 ↔ F L̂
L̂N̂

= 0 (5.14)

holds. According to (3.34) it has to be fulfilled in order to leave densities invariant when

they are shifted along the Killing vectors. For the fibrations discussed here, this condition

is equivalent to (3.27). Finally, we calculate the structure coefficients associated to the

algebra generated by the Killing vectors. According to (3.33), they read

F̃
ÎĴK̂

= −1

2
F
ÎĴK̂

. (5.15)

Despite having the same structure coefficients up to a factor -1/2, the Killing vectors

have very different properties in comparison to the twist. In general, K Ĵ
Î

is not an
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O(D − d,D − d) valued matrix. Furthermore, if U M̂
N̂

fulfills the strong constraint, it

is not guaranteed that the Killing vectors also do so. Nevertheless, the construction in this

section guarantees that their algebra is closed.

The value of the twist after going completely around the base circle in the direction Ĩ

is called monodromy. It is given by the expression

M M
ĨN

= exp
(

2πF M
ĨN

)
(5.16)

and has to be O(D − d,D − d,Z) valued. When only considering pure DFT, an

O(D − d,D − d) valued monodromy would be sufficient. In this case the two different

tori at Y Ĩ = 0 and Y Ĩ = 2π can be identified by a generalized diffeomorphism. But in

string theory tori are only identified by the subgroup O(D − d,D − d,Z) whose elements

parameterize T-duality transformations. As we will show in the following section, this

restriction allows only for discrete values for covariant fluxes.

5.2 Configurations with Minkowski vacuum

Section 4.2 has already presented covariant fluxes, which fulfill the various constraints im-

posed in section 3 and lead to a Minkowski vacuum in the external directions. Additionally,

these fluxes satisfy (5.6) and give rise to a fibered background with df = 2 and db = 1.

Thus we are able to construct the associated twist UMN and the Killing vectors K J
I .

For df = 2, the twist of the fiber is an element of O(2, 2). Such an element can be

decomposed into SO(2, 2) × Z2. The Z2 part consists of two elements, the identity and

an O(2, 2) element T with detT = −1 and T 2 = 1. Here we choose T as a T-duality

transformation along the second direction of the fiber, which amounts to

T =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 = T−1 = T T . (5.17)

The SO(2, 2) part decomposes into SL(2)τ × SL(2)ρ. Thus, in order to express an SO(2, 2)

element, one needs two SL(2) matrices, which we call Mτ and Mρ. They are mapped to

the corresponding SO(2, 2) element M by

M =

(
Mτ 0

0 M−Tτ

)
T

(
Mρ 0

0 M−Tρ

)
T−1 . (5.18)

We interpret τ as the complex structure and ρ as the Kähler parameter of a torus in the

fiber. SL(2) transformations act on these two parameters as

τ ′ =
aτ + b

cτ + d
↔ Mτ =

(
a b

c d

)
and ρ′ =

a′ρ+ b′

c′ρ+ d′
↔ Mρ =

(
a′ b′

c′ d′

)
, (5.19)

respectively. The T-duality transformation T acts as an exchange of τ and ρ. More

precisely, the isomorphism reads

O(2, 2) ∼= SLτ (2)× SLρ(2)× Zτ↔ρ2 . (5.20)
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f mod 1 TrMτ τ̄

0 2 i

1/6 1 (1 +
√

3i)/2

1/4 0 i

1/3 −1 (1 +
√

3i)/2

1/2 −2 i

H mod 1 TrMρ ρ̄

0 2 i

1/6 1 (1 +
√

3i)/2

1/4 0 i

1/3 −1 (1 +
√

3i)/2

1/2 −2 i

Table 2. Quantized values for the fluxes f and h and the corresponding vevs for τ and ρ.

A convenient way to characterize SL(2) group elements is given by their conjugacy classes.

In total there are three different classes, which are discriminated by the traces

|TrM | < 2 elliptic |TrM | = 2 parabolic and |TrM | > 2 hyperbolic

(5.21)

of the corresponding SL(2) element M .
By explicitly evaluating (5.4) with the covariant fluxes obtained in (4.50), we obtain

the twist

UM̂
N̂

(x1)=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos fx1 cosHx1 sin fx1 cosHx1 − sin fx1 sinHx1 cos fx1 sinHx1

0 0 − sin fx1 cosHx1 cos fx1 cosHx1 − cos fx1 sinHx1 − sin fx1 sinHx1

0 0 − sin fx1 sinHx1 cos fx1 sinHx1 cos fx1 cosHx1 sin fx1 cosHx1

0 0 − cos fx1 sinHx1 − sin fx1 sinHx1 − sin fx1 cosHx1 − cos fx1 cosHx1


(5.22)

and with (5.18) we are able to decompose this result into

Uτ (x1) =

(
cos fx1 sin fx1

− sin fx1 cos fx1

)
and Uρ(x

1) =

(
cosHx1 sinHx1

− sinHx1 cosHx1

)
. (5.23)

These twist Uτ and Uρ are both elliptic. Each of them is an element of SO(2), the maximal

compact subgroup of SL(2). As already stated, the possible values of H and f are not

continuous because the monodromy

M M
1 N = UMN (2π) (5.24)

has to be an element of O(2, 2,Z). This subset of O(2, 2) decomposes along the lines

of (5.20) into

O(2, 2,Z) ∼= SL(2,Z)τ × SL(2,Z)ρ × Zτ↔ρ2 . (5.25)

The discrete transformation is not realized by the monodromy. But the remaining two

SL(2, Z) transformations are not trivial and lead to

Mτ =

(
cos 2πf sin 2πf

− sin 2πf cos 2πf

)
and Mρ =

(
cos 2πH sin 2πH

− sin 2πH cos 2πH

)
. (5.26)

Each of these two matrices have to be an element of SL(2,Z), which is obviously the case if
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f mod 1 and H mod 1 are elements of the set 0, 1/2 or 1/4. But this is not an exhaustive

list of all allowed fluxes. We can still apply an O(2, 2) transformation (4.39) to make the

monodromies Mρ and Mτ elements of SL(2,Z). This is possible when both of them have

integer traces. Table 2 lists all different values for the fluxes which fulfill this constraint.

According to (4.39) the vacuum vielbein Ē M
A gets modified by such transformations, too.

Thus, the table also lists the new vevs for τ and ρ, respectively. The covariant fluxes

in flat indices FABC are not affected by (4.39) and their curved counterparts FIJK are

calculated from them with the vacuum vielbein Ē M
A (τ̄ , ρ̄) according to (4.38). Finally, a

transformation into barred indices gives some additional insights into the structure of the

monodromy

MM̄
N̄ = RM̄LM

L
KR

K
N̄

=


cos [2π(f −H)] sin [2π(f −H)] 0 0

− sin [2π(f −H)] cos [2π(f −H)] 0 0

0 0 cos [2π(f +H)] sin [2π(f +H)]

0 0 − sin [2π(f +H)] cos [2π(f +H)]

 .

(5.27)

Remembering that the first two rows describe the string’s right moving part and the re-

maining ones the left moving part, it is obvious that this background is totally symmetric

for H = 0, f 6= 0 and totally asymmetric for H 6= 0, f = 0.

According to (5.12), the Killing vectors read

K Ĵ
Î

=



1 0 0 0 0 0

0 1 −1
2(Hx3 + fx̃3) 1

2(Hx2 + fx̃2) −1
2(fx3 +Hx̃3) 1

2(fx2 +Hx̃2)

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (5.28)

They cannot be combined to an O(3, 3) valued matrix and for H 6= 0, f 6= 0, K Ĵ
2 violates

the strong constraint. Nevertheless the algebra of infinitesimal transformations along the

Killing vectors closes. The only non-trivial Killing vector K Ĵ
2 can be decomposed into

K Ĵ
2 = K ′Ĵ +K ′′Ĵ with (5.29)

K ′Ĵ =
(

0 1
2 −

1
2Hx

3 1
2Hx

2 −1
2fx

3 1
2fx

2
)

and (5.30)

K ′′Ĵ =
(

0 1
2 −

1
2fx̃

3 1
2fx̃

2 −1
2Hx̃

3 1
2Hx̃

2
)
. (5.31)

K ′′Ĵ is equivalent to K ′Ĵ after a T-duality along all fiber directions. K ′Ĵ describes a coordi-

nate transformation and a B-field gauge transformation, while its T-dual K ′′Ĵ describes a

coordinate transformation and a β-field gauge transformation. Thus, for H 6= 0 and f 6= 0,

two coordinate patches of the background are always connected to each other by all possi-

ble kinds of generalized diffeomorphism: coordinate transformation, B- and β-field gauge
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x1 x2 x3 H123 f1
23 f2

31 f3
12 Q23

1 Q31
2 Q12

3 R123

H 0 f f H 0 0 0

• f 0 H H f 0 0 0

• • H 0 f f H 0 0 0

• • • 0 H 0 0 0 f f H

Table 3. T-duality chain for the double elliptic background. Directions, on which T-duality was

applied, are marked by a dot.

transformation at the same time. This clearly shows that the double elliptic case cannot

be discussed in SUGRA or even not in Generalized Geometry, because in these theories

only two different kinds of generalized diffeomorphisms are allowed at the same time.

We close this section, by discussing a chain of T-dualities for the background specified

by the twist (5.22). Such chains are well know from the torus with constant H-flux

Hijk
Ti−→ f ijk

Tj−→ Qijk
Tk−→ Rijk . (5.32)

A T-duality transformation along the i-th direction is given in terms of the O(D − d,D − d)

element

OMN =

(
1−mi mi

mi 1−mi

)
, (5.33)

where mi is a diagonal matrix with a one in the direction i, on which T-duality is performed

and zeros in the other directions. In contrast to (4.39), T-duality act on the covariant

fluxes only. It does not change the vaccum vielbein ̂̄EAM . Hence, the covariant fluxes

FIJK transform like any other covariant object under T-duality, namely as

F ′IJK = FLMNO
L
IO

M
JO

N
K . (5.34)

When we start with the fluxes in (4.50) and do successively T-duality transformations along

x2, x3 (isometric directions) and finally also over x1, we obtain the T-dual configurations

listed in table 3. Here, let us distinguish between the three different cases:

• Single elliptic space with f 6= 0, H = 0: It is a geometric space with geometric f -flux.

When one performs T-duality transformations on this space along the directions x2

and x3, it is mapped to itself. T-duality along x2 transfers it into:

• Single elliptic spaces with f = 0, H 6= 0: Here the first and the third line in table 3

correspond to the same non-geometric space with H- and Q-flux. The second line is

the geometric background with f -Flux only, whereas the forth line corresponds to a

non-geometric space with f - and with R-flux.

• Double elliptic spaces with f 6= 0, H 6= 0: Now all configurations in this table have a

geometric and a non-geometric flux turned on at the same time. Here there is no T-

dual configuration with geometric fluxes only. Hence the double elliptic spaces cannot

be handled with standard supergravity; they always need a full DFT description.
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The most interesting background is the double elliptic space, because it can not be described

by SUGRA. Nevertheless, it is known from CFT [5, 36, 48] and was discussed recently

by [33] in the context of large generalized diffeomorphisms in DFT.

5.3 Background fields and field redefinitions

In this final section of the paper we want to derive explicit expressions for the background

fields, namely the metric, the B-field and the β-field, as functions of the doubled coordinates

Y N . We will focus on the double elliptic background, discussed in the last chapter. The

fields of this background depend on one single coordinate direction, y1 (or in a T-dual

frame ỹ1), only. As usual, the expressions for the background fields are subject to possible

field redefinitions, as used in [11–13]. These field redefinitions for example exchange the

B-field with the β-field or vice versa. In this context it is a crucial question whether there

is a certain field redefinition after which the background is a geometric space. As we will

discuss, this is impossible for the double elliptic background, which is not T-dual to a

geometric space.

As explained in section 2.1, the generalized vielbein EAM of the fiber is subject to a

local double Lorentz symmetry, connecting

ẼAM = TAB Ê
B
NU

N
M and EAM = ÊANU

N
M . (5.35)

Here TAB is a double Lorentz transformation of the fiber, parameterized by df(df − 1) in-

dependent variables. All frames related via such transformations are physically equivalent.

The twist (5.22), which was obtained in the last section, is an element of the double Lorentz

group, too. For the vacuum, where ÊAM = ̂̄EAM = δAM , we are able to choose TAB as

the inverse of the twist. In this case the generalized vielbein describes locally a flat space

without fluxes. At first glance, this result seems strange. Because, we started explicitly

with non-vanishing covariant fluxes in order to obtain a non-abelian gauge symmetry in

the effective theory. This ambiguity is resolved when remembering that the background

has a global monodromy, which can not be removed by local transformations on a single

patch. A background which exhibits exactly this monodromy is the orbifold

T 4/ZR × ZL with R =
1

(f −H) mod 1
and L =

1

(f +H) mod 1
, (5.36)

where H and f are the fluxes we started with. The first discrete group acts on the right

movers and the second one on the left movers. A setup with vanishing f component, is

a completely asymmetric orbifold, while a vanishing H component leads to a symmetric

orbifold. Locally, we are not able to distinguish it from a flat torus. Both are Ricci flat and

satisfy the field equations. Nevertheless, globally they are very different. This observation

emphasizes that the fluxes we started with play a significant rôle and are not only an

unphysical gauge.

Before reading off the fields βµν , Bµν and the metric gµν from the generalized vielbein

EAM in its most general parameterization (2.21), we will fix the local double Lorentz

symmetry. In general, there are two different possibilities to do so. The first and simplest
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one is the trivial choice TAB = δAB. In this case one gets

B23 = −B32 = − tanHx1 , β23 = −β32 =
1

2
sin 2Hx1 and

eai =

1 0 0

0 cos fx1

cosHx1
sin fx1

cosHx1

0 − cos fx1

cosHx1
cos fx1

cosHx1

 . (5.37)

For more sophisticated double Lorentz gauge fixings, we have to choose a different T B
A

at each point of the base. This choice should be done in such a way that it leaves some

functions of components of the generalized vielbein ẼAM , like e.g. fi(Ẽ
A
M ), constant over

the whole base. Technically speaking, this means ∂L̃fi(Ẽ
A
M ) = 0 has to vanish for all

directions L̃ along the base. To evaluate such conditions, we start by calculating

∂L̃Ẽ
A
M = ∂L̃T

A
B Ê

B
NU

N
M + TAB Ê

B
N ∂L̃U

N
M . (5.38)

Furthermore we parameterize TAM in a similar way, as we have done it for UMN in (5.4).

This gives rise to

TAB = exp
[
GAB (XL̃)

]
(5.39)

where the arbitrary functions GAB (XL̃) in bared indices have to fulfill

Gāb̄ = Gāb̄ = 0 (5.40)

in order to restrict TAB to the double Lorentz subgroup of the full O(df , df). The most

significant difference between this definition and (5.4) is that the exponent here is not

restricted to a linear dependence in the base coordinates XL̃. With this definitions at

hand, (5.38) equals

∂L̃E
A
M = TAB

(
∂L̃G

B
C Ê

C
N + ÊBKFKNL̃

)
UNM . (5.41)

Let us now define the constituents of the generalized vielbein in (2.21) as

eai =

(
e1

1 e
1
2

0 e2
2

)
, Bij =

(
0 B

−B 0

)
and βij =

(
0 β

−β 0

)
(5.42)

for our df = 2 example from the last section. This gives rise to

e1
1 =

1

E 1
1

, e1
2 = − E 1

2

E 1
1 E 2

2

, e2
2 =

1

E 2
2

, B =
E12

E 1
1

and β = E12E 1
1 . (5.43)

In the following we use the three different derivatives:

∂1B =
1

E 1
1

(
∂1E12 −

E12

E 1
1

∂1E
1

1

)
, (5.44)

∂1β = E 1
1 ∂1E

12 + E12∂1E
1

1 and (5.45)

∂1 det(eai) = −∂1
1

E 1
1 E 2

2

=
1(

E 1
1 E 2

2

)2 (E 2
2 ∂1E

1
1 + E 1

1 ∂1E
2

2

)
. (5.46)
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Setting one of them to zero, and using the derivative of the generalized vielbein (5.38) gives

rise to a differential equation for GAB (y1), parameterized by

GAB =
1

2


0 ξ(y1) + φ(y1) 0 −ξ(y1) + φ(y1)

−ξ(y1)− φ(y1) 0 ξ(y1)− φ(y1) 0

0 −ξ(y1) + φ(y1) 0 ξ(y1) + φ(y1)

ξ(y1)− φ(y1) 0 −ξ(y1) + φ(y1) 0

 . (5.47)

To obtain both parameters of the double Lorentz transformation, ξ(x1) and φ(x1), one

differential equation is not enough. Hence, we set additionally the derivative

∂1E
2
1 = 0 (5.48)

to zero. This restricts the vielbein eai to an upper triangular matrix and leads to a com-

plete set of two coupled ordinary differential equations for ξ and φ. They can be solved

numerically and depending on which of the derivatives (5.44)–(5.46) is set to zero, one

obtains a totally double Lorentz fixed generalized vielbein ẼAM with

• with constant B (which we choose B = 0) ,

• with constant β (which we choose β = 0) or

• with constant volume V = det(eai) of the fiber.

These three choices are connected to each other via field redefinitions. For all ÊAM 6=̂̄EAM , the first two cases lead to a metric with a discontinuity after one complete cycle

around the base. Thus the field configurations obtained in this way, do not permit a

geometric description and therefore are called non-geometric. Nevertheless, the question

arises, whether there exists a field redefinition leading to a geometric description. This

question naturally arises, because recent works like [11, 12] showed that certain backgrounds

are non-geometric for the β = 0 choice, but become geometric for B = 0.

In order to find a field redefinition which leads to a geometric setup, one first has to

formulate a criterion to distinguish between geometric and non-geometric configurations:

For a geometric configuration, the monodromy of the vielbein eai has to be an element of

the group of large diffeomorphisms on the torus. For df = 2, this group is SL(2, Z) and

one obtains the condition

M i
j = e i

a (y1)eaj(y
1 + 2π) ∈ SL(2, Z) . (5.49)

It can only hold, if

det(M i
j ) =

V (2π + y1)

V (y1)
= 1 ↔ V (2π + y1) = V (y1) (5.50)

is fulfilled. But for B = 0 or β = 0 this condition is violated. Thus the metric becomes dis-

continuous and prohibits a geometric description. This observation justifies the third case
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V =constant for which (5.50) is trivially fulfilled. With this fixing, which is implemented

by setting e2
2 = V/e1

1, the monodromy M i
j reads

M i
j =

 e11(2π+y1)

e11(y1)

e12(y1+2π)

e11(y1)
− e12(y1)

e11(y1+2π)

0
e11(y1)

e11(2π+y1)

 . (5.51)

The differential equation, discussed above, is a straightforward approach to fix the

double Lorentz symmetry, but it is not well suited for more general calculations. Thus

we want to discuss another technique, which leads to the same results. It is based on the

complex structure τ = τR + iτI and the Kähler parameter ρ = ρR + iρI of the fiber torus.

By using the decomposition (5.18) we find

Eρ = ± 1√
V

(
1 B

−V β 1−Bβ

)
and Eτ = ± 1√

V

(
V
e11

0

e1
2 e

1
1

)
. (5.52)

With (5.19), we can assign

ρ =
1√
V
· ±i+B

∓V βi+ 1−Bβ
and τ =

1√
V
·

V
e11
i

±e1
2i+ e1

1

, (5.53)

Solving these two equations for B, β, e1
1 and e1

2 gives rise to

B = ±

√
±ρI

(
ρI ∓ V |ρ|2

)
ρI

, β = ±
−ρR +

√
±ρI

(
ρI ∓ V |ρ|2

)
V |ρ|2

(5.54)

e1
1 = ±

√
±V τI

|τ |2
and e1

2 = ∓
√

V

±τI |τ |2
τR . (5.55)

The vielbein components e1
1 and e1

2 are defined for all τ ∈ C. For B and β, this is not

the case. They are only defined in the complex region

C \
{
ρ ∈ C |

∣∣∣∣ρ− i

2V

∣∣∣∣ < 1

2V
∨
∣∣∣∣ρ+

i

2V

∣∣∣∣ < 1

2V

}
. (5.56)

In order show the implications of this constraint, we consider a ρ(0) = exp(iθ) where

0 ≤ θ ≤ π
2 . From (5.23) it follows that the complex function ρ(y1) is given by

ρ(y1) =
ρ(0) cos(Hy1) + sin(Hy1)

−ρ(0) sin(Hy1) + cos(Hy1)
. (5.57)

In the complex plane, all possible values of this function lay on a circle around the point

z = izI =
iρI(0)

1− ρ2
R(0)

=
i

sin θ
which has the radius R =

ρI(0) ρR(0)

1− ρ2
R(0)

= cot θ . (5.58)

Because zI > R we only need to consider the upper half of the complex plane. The circle

with center z and radius R must not intersect the region where B and β are not defined.

Thus one has to constrain the volume V of the fiber to

V ≤ zI −R =
ρI(0)

1− ρR(0)
=

sin θ

1− cos θ
. (5.59)
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This fact is important, because it shows that when fixing the volume V of the fiber to a

finite value, there are always some field configurations which are not well defined in terms

of B and β.

Finally we discuss the monodromy M i
j for f = 1/4. In this case, the twist gives rise to

τ(2π + y1) = − 1

τ(y1)
. (5.60)

Taking into account that

eai =

√
V

τI

(
τI τR

0 1

)
, (5.61)

one obtains

e1
1(2π) =

1

|τ(0)|
e1

1(0) and e1
2(2π) = − 1

|τ(0)|
e1

2(0) . (5.62)

Plugging this result into (5.51) gives rise to

M i
j =

1

|τ(0)|

(
1 − τR(0)

τI(0)

(
|τ(0)|2 + 1

)
0 |τ(0)|2

)
. (5.63)

Now there are two possibilities: M i
j itself is an SL(2, Z) matrix, or it can be transformed

by a GL(d) transformation tij into such a matrix. GL(d) transformations act as

M̃ i
j = tikM

k
l t

l
j (5.64)

on the monodromy. In accordance with the notation uses so far, t ji is the inverse, transpose

of tij . Such a transformation only exists, when the trace of M is an integer, namely

TrM i
j =

(
|τ(0)|+ 1

|τ(0)|

)
∈ Z . (5.65)

There are some special points for which this constraint hold, but in general it is violated

and one ends with a non-geometric background as expected.

6 Conclusions and discussion

In this paper we have applied a consistent Scherk-Schwarz ansatz to Double Field Theory

in order to construct a reduced effective theory. This effective theory is used to find

1. non-trivial vacuum solutions of DFT’s equations of motion and

2. to describes fluctuations around this vacuum.

To do this, we use a generalization of group manifolds, which are well understood for

ordinary geometry, but has to be adapted to DFT. These manifolds need to have as many

isometries as coordinates. In DFT, isometries are defined by the vanishing generalized Lie

derivatives,

LK J
I
HMN = 0 and LK J

I
φ′ = 0 . (6.1)
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They give rise to homogeneous, doubled spaces which exhibit a constant generalized Ricci

scalar (which is equivalent to the scalar potential in the effective theory). From the effective

theory’s point of view, these spaces are completely specified by the structure coefficients

of the group they are linked to. The structure coefficients can be expressed in terms of the

covariant fluxes FABC . They are not arbitrary, but have to fulfill several constraints. In

general, these constraints can be divided into three different categories: The first kind of

constraints is needed to create a group structure. It requires that the covariant fluxes are

constant and the Jacobi identity (or, more generally, the quadratic constraint) is fulfilled.

Additionally, the second kind of constraints requires that the group manifold is compatible

with the strong constraint. Such constraints are challenging, because the strong constraint

has to be checked on the level of the generalized metric. But the map between covariant

fluxes and generalized metric is involved, so in general one can only find conditions for the

fluxes which lead to a violation of the strong constraint. Nevertheless, they help to restrict

the number of covariant fluxes which survived the constraints of the first kind. Finally

the field equations of the effective theory limit the allowed covariant fluxes. In this paper

we looked for a vacuum solution which gives rise to a Minkowski space in the external

direction. Thus the scalar potential V has to have a minimum with V = 0. This again

puts severe restrictions on the covariant fluxes.

In D−d = 3, the only covariant fluxes which fulfill all constraints, discussed above, are

H123 = Q23
1 = H Q31

2 = Q12
3 = 0 , R123 = f1

23 = 0 and f2
31 = f3

12 = f . (6.2)

For them, we construct the twist UMN and the Killing vectors K J
I . Especially the Killing

vectors are essential for a consistent dimensional reduction. In the literature they have

not been discussed before. For H 6= 0 and f 6= 0, the background which corresponds to

the fluxes above is not T-dual to a background with geometric fluxes only. In this case,

the Killing vectors depend on the coordinates and the dual coordinates. They violate

the strong constraint, but nevertheless the algebra generated by them is closed. These

Killing vectors describe all three possible kinds of generalized diffeomorphism (coordinate

transformations, B- and β-field gauge transformations) at the same time. Thus it is

impossible to describe such background in SUGRA or generalized geometry. We also

showed that it is impossible to find a field redefinition which makes the background

and fluctuations around it well defined. Thus we come to the conclusion that these

backgrounds are beyond the scope of SUGRA and generalized geometry.

We also considered fluctuations around these backgrounds which have the same isome-

tries (Killing vectors) as the background itself. In terms of the effective actions such fluc-

tuations can be expressed as (D−d)2 scalar, and 2(D−d) vector bosons. For these bosons

we calculated the mass spectrum and the gauge group. So we use DFT in a twofold way.

First we use it to calculate the background and afterwards, it is used to study fluctuations

around this background. This is possible because DFT is a background independent the-

ory. So it not only makes predictions about valid backgrounds, but also about fluctuations

around these background. The gaugings we found are compatible with the CFT description

of asymmetric orbifold discussed in [36]. Furthermore, the way the twist UMN acts on the
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generalized vielbein suggests that the double elliptic background has a realization as an

asymmetric orbifold in string theory.

Explicit CFT computations in this kind on string background could also confirm the

mass spectrum we have calculated. This would be an important check that DFT indeed

covers such string backgrounds.
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