-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Springer - Publisher Connector

‘ ’ CrossMark
e

Arab. J. Math. (2017) 6:31-54

DOI 10.1007/540065-017-0163-7 Arabian Journal of Mathematics

Abdeldjalil Slama - Ahmed Boudaoui

Approximate controllability of fractional nonlinear neutral
stochastic differential inclusion with nonlocal conditions
and infinite delay

Received: 15 March 2016 / Accepted: 30 January 2017 / Published online: 21 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper we consider a class of fractional nonlinear neutral stochastic evolution inclusions with
nonlocal initial conditions in Hilbert space. Using fractional calculus, stochastic analysis theory, operator
semigroups and Bohnenblust—Karlin’s fixed point theorem, a new set of sufficient conditions are formulated
and proved for the existence of solutions and the approximate controllability of fractional nonlinear stochastic
differential inclusions under the assumption that the associated linear part of the system is approximately
controllable. An example is provided to illustrate the theory.
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1 Introduction

In recent years, the fractional differential equations and inclusions have attracted many physicists, mathe-
maticians and engineers and there was an intensive development of both theory and applications of fractional
differential equations (see [19,28,30,32,38]).

The fractional differential inclusions, initiated by El-Sayed and Ibrahim [16], arise in the mathematical
modeling of certain problems in economics, optimal controls, etc., so the problem of existence of solutions
of fractional differential inclusions has been studied by several authors for different kinds of problems and
several qualitative results were obtained in [1,2,11,38,41,42].

The problem with nonlocal condition, which is a generalization of the problem of classical condition, was
motivated by physical problems. The pioneering work on nonlocal conditions is due to Byszewski (see [8—
10]). Since it is demonstrated that the nonlocal problems have better effects in applications than the classical
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Cauchy problems, stochastic differential equations with nonlocal conditions were studied by many authors
and some basic results on nonlocal problems have been obtained. Balasubramaniam et al. [3] investigated the
approximate controllability of fractional impulsive integro-differential systems with nonlocal conditions in a
Hilbert space. Slama and Boudaoui [40] obtained sufficient conditions for the existence of mild solutions for
the fractional impulsive stochastic differential equation with nonlocal conditions and infinite delay. For more
details see [4,33,39] and the references contained therein.

The controllability is one of the fundamental concepts in linear and nonlinear control theory, and plays a
crucial role in both deterministic and stochastic control systems. Moreover, approximate controllable systems
are more prevalent and very often approximate controllability is completely adequate in applications (see
[37,38]). Approximate controllability for semilinear deterministic and stochastic control systems can be found
in Mahmudov [26]. Moreover, there are many researchers discussing the approximate controllability for the
stochastic fractional systems; for example, see [4,7,33], and the references therein.

For fractional differential inclusions, Sakthivel et al. [38] formulated and proved a new set of sufficient
conditions for the approximate controllability of fractional nonlinear differential inclusions. Yan and Jia [43]
investigated the existence of mild solutions for a class of impulsive fractional partial neutral functional integro-
differential inclusions with infinite delay and analytic «-resolvent operators in Banach spaces. Yan and Jia [44]
studied the approximate controllability of partial fractional neutral stochastic functional integro-differential
inclusions with state-dependent delay under the assumptions that the corresponding linear system is approx-
imately controllable. Guendouzi and Bousmaha [17] investigated the approximate controllability for a class
of fractional neutral stochastic functional integro-differential inclusions involving the Caputo derivative in
Hilbert spaces. A new set of sufficient conditions are formulated and proved for the approximate controllabil-
ity of fractional stochastic integro-differential inclusions under the assumption that the associated linear part
of system is approximately controllable.

Recently also, Yan and Lu [45] considered the approximate controllability of a class of fractional stochastic
neutral integro-differential inclusions with infinite delay in Hilbert spaces. Sakthivel et al. [39] investigated
the approximate controllability of fractional stochastic differential inclusions with nonlocal conditions and
established the approximate controllability results for the fractional stochastic control system with infinite
delay.

However, to the best of our knowledge, so far no work has been reported in the literature about the existence
of solutions and the approximate controllability of fractional nonlinear stochastic differential inclusions with
nonlocal conditions and infinite delay of the form (2.1). Inspired by the above mentioned works, the aim of
this paper is to fill this gap. The purpose of this paper is to show the existence of solutions and the approximate
controllability of fractional nonlinear stochastic differential inclusion of the form (2.1) in a Hilbert space under
simple and fundamental assumptions on the system operators, in particular that the corresponding linear system
is approximate controllable.

The structure of this paper is as follows: In Sect. 2 we briefly present some basic notations and preliminaries.
Section 3 is devoted to the existence of solutions for fractional stochastic control system (2.1). In Sect. 4 we
establish the approximate controllability of fractional stochastic control system (2.1). An example to illustrate
our results is given in Sect. 5. In the last section, concluding remarks are given.

2 Preliminaries

In this section, we introduce some notations and preliminary results, needed to establish our results. Throughout
this paper, H, U be two separable Hilbert spaces and L (U, H) be the space of bounded linear operators from
U into H. For convenience, we will use the same notation || . || to denote the norms in H, U and L (U, H),
and use (., .) to denote the inner product of H and U without any confusion. Let (2, F, {F;};>0,P) be a
complete filtered probability space satisfying that usual conditions (i.e., it is increasing and right continuous,
while Fy contains all P-null sets of F), and E(.) denotes the expectation with respect to the measure P. An
H-valued random variable is an F-measurable function x(¢) : / — H, and the collection of random variables
S ={x(t w): @ - H/tr e J}is called a stochastic process. Generally, we just write x(¢) instead of
x(t,w) and x(¢) : J — H in the space of S. Let {¢;}72, be a complete orthonormal basis of U. Suppose that
W = (W;);>0 is a cylindrical U-valued Wiener process with a finite trace nuclear covariance operator Q > 0,
denote Tr(Q) = > 72, & = A < oo, which satisfies Qe; = Aje;. So, actually, W(r) = > 22, /A Wi(1),
where {W;(#)}72, are mutually independent one-dimensional standard Wiener processes. We assume that
Fr=0{W(s):0 <s <t}isthe o-algebra generated by W and Fr = F.
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Let L (U, H) denote the space of all bounded linear operator from U to H. equipped with the usual operator
norm ||.||. For ¢ € L(U, H we define

oo
loly = Tr@Qe*) = IV higeil?

i=1

If ||<p||2Q < 00, then ¢ is called a Q— Hilbert—Schmidt operator. Let L (U, H) denote the space of all
Q-Hilbert—Schmidt operator ¢. The completion L o (U, H) of L(U, H) with respect to the topology induced
by the norm ||.||o where |l¢ |2 = (¢, @) is a Hilbert space with the above norm topology.

The collection of all strongly measurable, square integrable, H-valued random variables, denoted by
L, (2, H) is a Banach space equipped with the norm | x(.)|z, = (E||x(., @) ”11241)%' LetC(J, L>(S2, H)) be the
Banach space of all continuous maps from J into L, (€2, H) satisfying supy, <7 E||x(7) ”11241 < Q. Lg(SZ, H)
denote the family of all Fy-measurable, H-valued random variables x (0).

The main aim of the present article is to study the approximate controllability of fractional nonlinear
stochastic differential inclusions with nonlocal conditions of the form

“D¥[x(t) — h(t, x;)] € Ax(t) + Bu(t) + f(t, x;)
dw (1)
+Gx)— . 1€/ =10.T]. T >0, 2.1)

x(0)+g(x) =x0=¢, ¢ € Db

where DY is the Caputo fractional derivative of order o, 0 < o < 1, the state variable x(.) takes the value in
the separable Hilbert space H; A : D(A) C H — H is the infinitesimal generator of a strongly continuous
semigroup of a bounded linear operators 7' (), t > 0 in the Hilbert space H. The history x; : (—oo, 0] — H,
x:(0) = x(t40),fort > 0, belongs to an abstract phase space Bj,. The control function u(.) is given in L2(J:; 1),
U is a Hilbert space; B is a bounded linear operator from Uinto H. & : J xH — H; f : J x H — H,
g : By — H are appropriate functions to be specified later. G : J x H — 25\ {#}} is a nonempty bounded,
closed and convex multivalued map. The initial data ¢ = {¢ (¢); r € (—o0, 0]} is an Fp-measurable, 5, -valued
random variable independent of W (¢) with finite second moments.

Let A : D(A) C H — H is the infinitesimal generator of a strongly continuous semigroup of a bounded
linear operators 7'(¢), t > 0 in the Hilbert space H. That is to say, |7 (¢)|| < M for some constant M > 1 and
every t > 0. Without loss of generality, we assume that 0 € p(A), the resolvent set of A. Then it is possible to
deﬁlne the fractional power A® for 0 < o < 1, as a closed linear operator on its domain D(A%) with inverse
AT

The nonlocal term g has a better effect on the solution and is more precise for physical measurements than
the classical condition x(0) = x¢ alone [38]. For example, g(x) can be written as

gx) =Y axn),
k=1

where ¢y = 1;2;...;n) are givenconstants and 0 < t; < --- <1, <T.

Now, we present the abstract space phase Bj,. Assume that /2 : (—oo, 0] — (0, +00) with! = fi)oo h(n)dt <
oo a continuous function. We define the abstract phase space 55, by

By = {q& :(—00,0] > H, forany a >0, (E | ¢ Iz)%

is bounded and measurable function on

0
% [—a,0] and / h(s) sup (E | ¢(0 )2 <+oo}.
—00 §<6<0
If B;, is endowed with the norm
0
1
l¢lB, 1=/ h(s) sup (E|¢©®) )2, ¢ € By,

—00 §<6<0

then (By, ||.1l3,) is a Banach space [34,35].

@ Springer



34 Arab. J. Math. (2017) 6:31-54

Now we consider the space
={x:(—00,T] - H, suchthat x|; € C(J,H) x(0)+ gx)=x0=0¢ € By}
where x| is the restriction of x to J.

We endow a seminorm .|| 5,0n By, it is defined by

1
Ixlg, = llgls, + sup (Ellx($)IIH)2, x € By.

0<s<T
We recall the following lemma

Lemma 2.1 [34] Assume that x € Bp; then fort € J, x; € By,. Moreover

1 1
IEIx®I)? <1 sup E[x(5)I*)7 + [Ixoll,

sel0,1]

where | = fi)oo h(s)ds < oo.
The following are basic properties of A%:

(i) Hy = D(A%) is a Hilbert space with the norm || x|y = ||[A%x]|, for x € D(A%).
(i) T(¢) : H — H,, for ¢t > 0.
(i) A*T(t)x = T(t)A%x, foreachx € D(A) and t > 0.
(iv) Foreveryt > 0, AT (¢) is bounded on H and there exists M, > 0 such that

o

M,
o
14T )] = =

(v) A is a bounded linear operator for 0 < o < 1 in H.
Let us recall the following known definition. For more details see [19,28,30].

Definition 2.2 [30] The fractional integral of order o with the lower limit O for a function f is defined as

t
19f (1) = ﬁ/ﬁ (s =0 ' f(s)ds, t>0, a>0 (2.2)

provided the right-hand side is pointwise defined on [0, co), where the I" is the gamma function.

Definition 2.3 [12] The Caputo derivative of order « for a function f : [0, co) — R, which is at least n-times
differentiable can be defined as

Dif) = m—n /(r )" F W (s)ds = 11" ‘”( f)() >0,
05n—1<a<n. 2.3)

forn—1<a<n,neNIfO<a<1,then

d
DYF) = s / t—5)" ( ’;Es)) 2.4)

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of the Caputo
derivative of order o > 0 is given as

n—1
LIDE (1) 2} =2 F00) = Y 201 f®0) n—1<a <n.

k=0

If f is an abstract function with values in X, then integrals which appear in the above definitions are taken
in Bochner’s sense.

We also introduce some basic definitions and results of multivalued maps. For more details on multivalued
maps, we refer to [5,14,18].
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Definition 2.4 A multivalued map G : H — 2H\ (@} is convex (closed) valued if G (x) is convex (closed) for
all x € H. G is bounded on bounded sets if

G(B) = UyepG(x)
is bounded in H for any bounded set B of H, that is,

sup{sup [|y[ : y € G(x)} < o0.

xeB

Definition 2.5 G is called upper semicontinuous (u.s.c. for short) on H if for each x¢o € H, the set G (xq)
is a nonempty closed subset of H, and if for each open set N of H containing G (xg), there exists an open
neighborhood V' of x¢ such that G(V) € N.

Definition 2.6 The multi-valued operator G is called compact if G (H) is a compact subset of H. G is said to
be completely continuous if G(B) is relatively compact for every bounded subset B of H.

If the multivalued map G is completely continuous with nonempty values, then G is u.s.c., if and only if G
has a closed graph, i.e., x" — x*, y" — y*; y" € Gx" imply y*Gx™*. G has a fixed point if there isa x € H
such that x € G(x).

In the following, BC C (H) denotes the set of all nonempty bounded, closed and convex subset of H.

Definition 2.7 A multi-valued map G : / — BCC(H) is said to be measurable if, for each x € H, the
function ¥ : J — R, defined by

0(t) =dx,G(t)) =inf{||x —z|| : z € G(2)}
belong to LY(J,R)
Definition 2.8 The multi-valued map G : J x H — BCC(H) is said to be L?-Caratheodory if

(i) t — G(t, x) is measurable for each x € H
(i1)) x — G(t,x) is u.s.c. for almost all r € J;
(iii) for each r > 0, there exists [, € L'(J, R) such that

G, x)|>:= sup E|o|> <l.(t) forall ||x||> <r andforae.reJ
oeG(t,x)

Lemma 2.9 [20] Let J be a compact real interval, BC C (H) be the set of all nonempty, bounded, closed and
convex subset of H and G be a L*-Caratheodory multivalued map Sc.x # Wand let T be a linear continuous
mapping from L*>(J, H) to C(J, H). Then, the operator

I'oSg:C(J,H) = BCC(H), x> (I oSs)(x):=T(Sg.),

is a closed graph operatorin C(J, H) x C(J, H), where S¢  is known as the selectors set from G, is given by
oceSgx=1{0¢€ L2(J, L(U,H)):0(t) € G(t,x), foraeteJ}

We present the definition of mild solution for the system (2.1).

Definition 2.10 An F; -adapted stochastic process x : (—oo, 7] — H is called a mild solution of the system
2.1)ifxg = ¢ = x(0)+ g(x) € By, on (—o0, 0] satisfying xg € Lg(Q, H) and the following integral inclusion

t
x(1) € Ty (1)[¢(0) — g(x) — h(0, ¢>)]+h(t,xt)+/ (t — )" 'ASy(t — $)h(s, x5)ds
0
t t
+/ (t—s)“_lSa(t—s)Bu(s)ds—}—/ (t — )% Sy (r — ) f (s, x5)ds
0 0

t
+/ (t — )% 1Sy (t — )G (s, x5)dw(s), € J,
0
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is satisfied, where Ty, () and Sy (¢) are called characteristic solution operators and given by

Ty (1) =/ EL(O)T(70)dl,  Su(t) =Ot/ 0&,(O)T (176)do
0 0
and for 6 € (0, —00)
I 1 _1
§u(0) = =07 "amy(0 ) =0
a

+1) sin(nmo)

— l - _1\yr—lpg—na—1 [ (na :
@ (0) = nZ( "o —

n=1

&y 1s a probability density function defined on (0, 00), that is
o0
Ea(0) > 0,0 € (0,00) and / £,(0)d0 =1
0

Remark 2.11 Tt is not difficult to verify that for v € [0, 1]

ra+v)

/0 0V, (0)do 2/0 0~y (0)dO = e

The following lemmas will be used in the proof of our main results.

Lemma 2.12 [46] The operators T, and S, have the following properties:

(i) Forany fixedt > 0, Ty (t) and S, (t) are linear and bounded operators, i.e., for any x € H,

1T (x| < Mllx]l, IS« llxIl-

oxl < M
rd+a)

(1) {Tu(t),t = 0} and {Sy(t),t > 0} are strongly continuous;, which means that for x € H and for
0< t <t < T, we have

1 To(t )x — Ty (t)x]l = 0 and ||Se(t )x — Su(t)x]| = 0, as t — 1 .

(iii) foreveryt > 0, {Ty(t),t > 0} and {Sy(t), t > O} are also compact if {T (t), t > 0} is compact;
(iv) foranyx € H, B,8 € (0, 1), we have AS,(t)x = A' 7P S, (t)APx and

aCsT (2 — §)

5
[A°Se ()] < (1 +a(l = 98))’

te(0,T]
At the end of this section, we recall the fixed point theorem of Bohnenblust and Karlin’s ([6]) which is
used to establish the existence of the mild solution to the system (2.1).

Lemma 2.13 (Bohnenblust and Karlin [6]) Let D be a nonempty subset of G, which is bounded, closed, and
convex. Suppose G : D — oH \ {@} is w.s.c. with closed, convex values, and such that G(D) € D and G(D)
is compact. Then G has a fixed point.

3 Existence of solutions for fractional stochastic control system

In this section, we first prove the existence of solutions for fractional control system (2.1) by using Bohnenblust—
Karlin’s fixed point theorem. Secondly, we show that under certain assumptions, the approximate controllability
of the fractional stochastic inclusion (2.1) is implied by the approximate controllability of the associated linear
part (3.1).
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Definition 3.1 Let x7(¢, u) be the state value of (2.1) at the terminal time 7 corresponding to the control u
and the initial value ¢. Introduce the set

R(T, §) = {x7(¢; u)(0) : u(.) € L*(J, )},

which is called the reachable set of (2.1) at the terminal time b and its closure in H is denoted by R(T, ¢).
The system (2.1) is said to be approximately controllable on the interval J if R(T, ¢) = H; that is, given an
arbitrary € > 0, it is possible to steer from the point 77 (0) to within a distance € from all points in the state
space H at time T'.

In order to study the approximate controllability for the fractional control system (2.1), we consider its
fractional linear part

‘Dx(t) € Ax(t) + Bu(t) teJ=[0,T], T >0, 3.1)
x(0)=¢, ¢e€By. ’

It is convenient at this point to introduce the controllability and resolvent operators associated with (3.1) as

T
LY =/ (T — 5)So(T — s)Bu(s)ds : L*(J,H) > H
0

T
rf =rtwlh = / (T — $)So(T — $)BB*SX(T —s)ds : H— H
0
respectively, where B* denotes the adjoint of B and S} (¢) is the adjoint of S, (7). It is straightforward that the

operator Fg is a linear bounded operator. Let R (X, FOT )= I — FOT y~!for x > 0.

Lemma 3.2 [27] The linear fractional control system (3.1) is approximately controllable on [0, T| if and only
if AR, FOT ) — 0as A —> 07T in the strong operator topology.

In order to establish the existence result, we need the following hypothesis:

(H1) A generates a strongly continuous compact semigroup 7'(¢) : t > 0 in H.
(H2) The function & : J x B, — H is continuous and there exists a constant M;, > 0,0 < « < 1 such that
h is Hy,-valued and

| AR (11, x) — A%h( DI < My( 1 — 1o | +lx = yIE). x.y€By 1€
1A“R(t, )|1> < My(1+ |Ix]i3,). x€By teld
Moreover, there exists a constant L1 > 0 such that the inequality
AR (t, x)|* < Ly

holds for any x € By,
(H3) The function f : J x B, — H is continuous, and there exists a positive constant M s such that the
function satisfies that

E|f@t,x) = f@. DI <Mglx—ylg,,  ENF@0I? <M+ x]5,)

(H4) The multi-valued map G : J x B, — BCC(L(U, H) is an L2—Carathe0d0ry function satisfies the
following conditions:

(i) Foreacht € J ,the function G(z,.) : B, — BCC(L(U, H) isu.s.c; and for each x € B}, the function
G (., x) is measurable. And for each fixed x € By, the set

Sgx={o € L*(J,L(U,H)) : 0(t) € G(t,x) ae. teJ}

is nonempty;
(ii) There exists a positive function [, : J — R such that

sup{Ello||* : o'(t) € G(t,x)} < 1()
for a.e. r € J and the function s — (t — s)2@ D] (s) belongs to L'([0, t], R") such that

Jo (t = )*@=Di,(s)ds

r

lim inf

=A<
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(HS) g : C([0, T], By) — By is continuous, and there exists some constant M, such that
Elg@)|* < Mglixli,

The following lemma is required to define the control function.

Lemma 3.3 [25] For any X1 € L*(Fr, H), there exists n(.) € L F(€2; L2(J; LO)) such that x7 = EXt +
fo n(s)dW(s).

Now, for any A > 0 and X7 € L?(Fr, H), we define the control function
w(t) = B*SH(T — )OI +T1)™!
X |:E3_CT + /OT n(s)dW(s) + To(T)(¢(0) — g(x) — h(0, ¢)) — h(T, xr)}
—B*SX(T —1) fOT(u +THY™NT = 5)7VASG (T — 1)h(s, x5)ds
—B*SX(T —1) /OT(M +TD™HT = )18 (T — 1) f (s, x5)ds
—B*SX(T —1) /OT(M +TH™HT = $)7 18 (T — 1o (5)dW (s) (3.2)

where, 0 € Sgx = {0 € L2(J, L(U,H)):0() € G(t,x)ae.t € J}.
Let us now explain and prove the following theorem about the existence of solution for the fractional
system (2.1).

Theorem 3.4 Assume that the assumptions (H1)—(H5) hold. Then for each € > 0, the system (2.1) has a mild
solution on J provided that

MMpg \> 42T [ MMz \°> Ci(a, B)T?
[64— ( it ) ( B ) } |:8MgM212+4Mh||A_ﬁ||2l2+4ﬂMhlz

(1 +a) 22 \rd+o (aB)?

g Mo TMMI _ Mo 2T Al <1 33
+ (F(1+a))a_ Y <F(1+a)> rQA | < (3.3)

Proof In order to prove the existence of mild solutions for system (2.1) transform it into a fixed point problem.
For any € > 0, we consider the operator V€ : B, — 285 defined by W€x the set of z € B} such that

Ux(t) =¢((), te(—o0,0],
¢(t) t € (—00,0]
To () (9 (0) — g(x) — h(0, @) + h(z, xt)—i—/ (t —5)* VAS, (r — s)h(s, x;)ds

20 = /(r $)* 1S, (t — s)Bu’ (s)ds+/ (t — )7V Sy(t — 5) f(s, x5))ds

/(r—s)“ 1S, (t — s)o(s)dW(s), t € J.
0

where o € Sg .
For ¢ € By, we define ¢ by

~_[e@).  1e(—o0,0],
M”—{mawmxrea

then € By. Let x(1) = y(t) + ¢(t), —00 <t < T.
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It is evident that y satisfies yo = 0, t € (—o0, 0] and
Y(0) € Tu()(—g(y + @) — h(0. 9)) + h(t, yi + 1)

t
+ / (t —5)* T ASe(t — )h(s, ys + ¢5)ds
0
t
+ /O (t — )% 1S, (1 — s)Bu§+$(s)ds
t
+/ (t — )% 1Syt — 5) £ (5, ys + ¢y)ds
0
t
+f (t — )% 'Sy (t — )G (s, ys + ¢s)dW(s), € J.
0

where for o € Sg x

2 _ pEgE(T T\—1
Wl 5(0) = B*Sy(T = (I +T)

T
x [EfT + /0 ()W (5) + To (T)(—g(y + ¢) — h(0, $)) — h(T, m]
T
—B*Sp(T —1) / W +TH T — ) VASL(T — Dh(s, vy + ¢y)ds
0
T
—B*Sg(T — 1) / O +TH™HT = )7 Sy (T — 1) f (s, y5 + y)ds
0
T
—B*SX(T — t)/ I +TH™HT — ) 1S (T — D)o (s)dW (s) (3.4)
0
Set Bg = {y € By, such that yg =0 € By} and forany y € Bg we have
17l = Iyolls, + sup(Elly@)]%)> = sup(E|ly()|)
tel tel

%30 <r, r > 0}. The set B, is clearly a bounded
b

closed convex set in Bg for each r > 0 and For each y € B,. By Lemma 2.1 we have

thus (B2, ||.||Bg) is a Banach space. Let B, = {y € Bg, Iyl

lye + @i, < 2Cyelil, + I16el%,)

<4(% sup Ellye)IF + lyollg,)
s€l0,1]

+4@* sup E|¢)IF + lpoll,)
s€[0,1]

<4(lglp, + 120+ M2 E|pO)7) :=r’ (3.5)

Define the multi-valued map & : B, — 25 by @y the set of 7 € B, and there exists o € L?(L(U, H)) such
that o € Sg.x and

0,7 € (—00,0] R

To(1)(—g(y + ¢) — h(0, ¢)) + h(z, yr + &)

+/ (t — ) VAS,(t — $)h(s, ys + ¢s)ds
0
t

20 = + / t — ) 1S, (t — s)Bu; L5(6)ds (3.6)

0 o~
+ fott(’ — )47 (t — 5) f (5, ys + bs)ds
+/ (t — )7 1S, (t — 5)o (s)dW(s), 1€ J.
0

Obviously, the operator W€ has a fixed point is equivalent to & has one. So, our aim is to show that & has
a fixed point. For the sake of convenience, we subdivide the proof into several steps.
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Step 1: & is convex for each y € B,. Let if 71, Z2 belong to ®y, then there exist o1, 02 € S » such that
Zj(1) = To (1) (—g(y + @) — h(0, $)) + h(t, yi + 1)

t t
+f (t—s)“_lASa(t—s)h(s,yS+$S)ds+/ (t — 5)* 1S, (t — s)Bu* ~(s)ds
0 0 y+é
+/ (t = %15yt — ) £ (s, vy + Bo)ds
0

t
+/(r—s)“*lso,(z—s)aj(s)dW(s), teld, j=1,2
0

Let0 <y < 1. Then for each ¢t € J, we have
Y7+ 1 = 2)(1) = To (1) (—g(y + ) — h(0, $)) + h(t, yr + 1)

+ /:(t — )YV ASL(t — $)h(s, s + Py)ds

+/Ot<r — 8) 1Sy (t = $) £ (5, Y5 + o)ds

+/Ot(t — )71 So(t — s)BB*Sk(T — s){(u +rH!

x [E?cT + /O @AW (@) + Tu(T) (=g + ) — h(O0, ) — h(T, xr>}
. /Os(u F T UT — )% ASY(T — $)h(t, yr + d2)de

- /OS(M + TN T = 0)* ' Su(T = $) f (1. ye + po)dT

— /Os(u + TN = )W (T = 9)[yoi(r)

+(1 - y)oz(r)]dW<r)}<s>ds

1
-l-/o (t = ) 'St = $)[yoi(s) + (1 = Y)o2(s)IdW (s5)

Since Sg  is convex, yz1 + (1 — y)z2 € Sg.x- Hence yZ1 + (1 — y)z2 € P(x).

Step 2: We show that there exists some r > 0 such that ®(5,) C B,. If it is not true, then there exists A > 0
such that for every positive number r and ¢ € J , there exists a function y” (.) € B,, but ®(y") ¢ B,.
that is, E||(®y") (1) ||> = {IIZrllsz :7" € ®y"} > r. For such A > 0, we can show that

r < E[(@y") (0]
< 6E|Ty(1)(—g(y" 4+ &) — h(0, p))|> + 6E||h(t, y + é0)|I

t
+6II/ (t = )" ASq(t — $)h(s, i + bs)ds|)?
0

t
a—1 A 2
+ 6E|| /o (t— ) St — S)Buy,+$(s)ds||

t
+6EII/ (t =) Syt = 9) £ (5, ¥} + o)ds|)?
0

t 6
+6E|| / (t — )% 1Sy (t — )" ()dW ()| = Z I; (3.7)
0

i=1

for some 0" € Sg .
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Let us estimate each term above /;,i = 1,...,6. By Lemma 2.1 and assumptions (H1)-(H5), we
have
I < 12M>My|ly" + i, + 12M* AP 1P My (1 + 116113,
< 2M*Myr' + 12M* | AP P My (1 + (161133, 3.8)
L < 6[lATP1PMy (1 + ly] + 60,
<6l AP IPMu(1 + 1) 3.9)

By astandard calculation involving Lemma 2.12, assumption (H2), Eq. (3.5) and the Holder inequal-
ity, we can deduce that

t
L<6 / Nl — )% AP S, — $)APh(s, ¥ + $y)ds 2
0

t t
< 6C(a, B) / (t — )P~ 1ds / (t — )P LE|APh(s, y + ¢s)ds
0 0
Ci(a, B)T>F
<6
(@B)?

a2cf_ﬁr2<1+ﬁ)
T2(1+apf)

My (1+7r") (3.10)

where Ci(«, ) =
For 14, we have

t
Lo =6 [ 0= 51000 = 5)Buc 50) s

aMMg \>T* [!
<6—2=2 ) — | ¢ -9 Eut, ~(5)]%d

where ||B|| < Mp. By using (H2)-(HS) Holder’s inequality, Eq. 3.5 and Lemma 2.12, for some
o" € Sg,x, we get

lu* (s, Y™ + )12
1 [ aMMg \? . T )
sp(m> |:7||Exr|| +7E| /0 n()dW (s)]|

X TE|To(T)(—g(y" + @) — h(0, p))|1> + TE (T, ¥ + ¢7)|I
T 2
+7E / (T — 5)* " ASG (T — t)h(s, Y + s)ds
0

T 2
+7E / (T —$)* 7S (T = 1) £ (s, ys + ¢s)ds
0

|

2 T
) [7||Efr||2 + 7/0 Elln)lgds + 14M>Ellg(y" + $)1?

T
+7E / (T — ) 'S (T — 1o (s)dW (s)
0

< 1 OlMMB
2\ +a)
+ 14M2||R(0, §) > + TE|R(T, ¥ + o1
T 2
+7E / (T — )% VASG (T — Dh(s, y + ¢y)ds
0

T 2
+7E f (T —$)* 7S (T = 1) £ (s, ys + ¢s)ds
0

]

T
+7E / (T — ) 'S (T = 1o (s)dW (s)
0
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7 (aMMp \*T 5 (T ) .
=2 \tare) |1E E ds +2M>M
A2 <r(1+a)> [” xrll +f0 ||77(s)||$20 s+ oF

20 M| AP P+ (1gllB,)

+M A_'B 2(1+ /)+C1(O{,ﬂ)T2aﬂM (1+ /)+ ﬂ 2ﬁ]‘4 (l+ /)
Al l )+ — (@pB)? h d Td+a)) a7 '
Mo 2 T 2(a—1)

+ <m> Tr(Q)/O (t—s) lr(s)ds}

Thus;
(aMMB )242T2°‘ ( MMpg )2
Y < A (3.11)
I'(l+a) A2 \rd+a)

where

T
A= [||EYT||2+ /O Elln(s)Iyds +2M>Mer' +2M2 My | A7 I2(1 + 1913,)

Ci(a, BT Ma \* T
FMuIATPIR( 4+ ) + %Mh(l )+ (F(l—i«)) M+
Mo 2 r 2(a—1)
+<m) Tr(Q)/O (t—s) lr(s)dsi|

Together with assumption (H3) and Eq. (3.5), we have

Mo 2 ot ! ~
Is <6(—) /(t—s)“*ldsf (t — ) E|f(s, yi + ¢sl*ds
="\ra+ao/ J 0 ’

< 6<£>2T—MM (1+7) (3.12)
= \ra+a) 2™/ '

A similar argument involves Lemma 2.12, assumption (H4) and Eq. (3.5); we obtain
Mo 2 !
Ie<6(———) Tr t — )@ VE|o" (s)|ds
6= (F(1+a)> (Q)/O( ) o™ (s)l

Mo 2 ! 2(ax—1)
56<m) Tr(Q)/O t —s) 1(s)ds (3.13)

Therefore, with these estimates (3.8)—(3.13), (3.7) becomes

r < E[(@y") (@)
g (eMmp 4212 MMy N (T .
=0T (F(1+a)> 22 (r(1+a)) (” xrl +/0 () S)

aMMp \> 49272 [ MMg \* _
+[6 ( ) ( 2M*Myr' +2M> My | AP |21+ [111,)

rd+a) 22 \I'(l+a)

M ||A7ﬂ||2(l+ /)+C1((x,—ﬂ)T%‘ﬂM 1+ ’)+<£>2T_ZQM,(1+ )
h r ((35,3)2 h r Il +a) o2 f r
Mo 2 ! 2(a—1)
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Dividing both sides of (3.14) by r and taking r — oo, we obtain that

[ (onMB )242T2°‘ ( MMy )2]

6+
Il +a) A2 '+ a)

Ci (e, pT*
(@p)?

4 ﬂ)”—mMﬂ ﬂ)zT Al>1 3.15
* (r(1+a) w2 +<F(1+oe) Q) }— (3.15)

which is a contradiction to our assumption. Thus for @ > 0, for some positive number r and some
o" € Sgx, ®Br) C B,.

Step 3: ®y is equicontinuous. Let € > Osmall,0 <€ <t <+ h < T.Foreach y € B, and 7 belong to
dy, there exists 0 € Sg  such that for each r € J, we have

x |:8MgM212 +AMu|AP)PP + 4 Myl?

E|Z(t +h) —Z()|1> < 22| Tu(t +h) — T )21 (—g(y + @) — h(0, ¢))||?

+22Eh(t 4 hy yen + Gsn) — h(t, yi + )1
2

t+h
+22E/ (t 4+ — )%V ASq(t + h — $)h(s, ys + By)ds
t

t+h 2
+22E / (t+h— )" Salt +h —3)f(s,ys + ¢s)ds
t

2

t+h
+22F / (t+h—5)* " St + 1 — 5)oj(s)dW (s)
t

t+h 2
+22FE / (t+h—9s)1Sy(t +h— s)Bu;Jra(s)ds
t

1—e€
+22E f (t+h— s)o‘_lA[Sa(t 4+ h—s)— Sq(t —s)]h(s, ys + :ﬁs)ds
0

t 2

+22E (t+h— s)o‘_lA[Sa(t +h—s)— Su(t —s)]h(s, ys + @)ds

t—e

2

r—e
+22E / (t+h =) Se(t +h —5) — Se(t — s)]Bu$+$(s)ds
0

t
+22E/ (t4+h—)"[Se(t +h—s5)— Syt — s)]Bu;j+$(s)ds||2
—e

t—e 2
+22E / (t+h =) [Sult +h —5) — Salt +$)1f (s, ys + py)ds
0

1 2
+22E / (t+h =) [Selt +h —5) — St —$)1f(s. y5 + ¢s)ds
t

—€

t—e 2
+22FE / (t+h— s)a_l[Sa(t +h—5)—Sut —s)]o(s)dW(s)
0

t 2

+22F (t+h-— s)o‘_l[Sa(t +h—s5)—Su(t —s)]o(s)dW(s)

t—e

t—e 2
+22F / [(t+h—5)" =@ =Y NASL(t — $)h(s, ys + d5)ds
0

2

t
+22E / [(t+h—95)""" =@ —5)*"NASL(t — )h(s, ys + ¢5)ds
1—e€
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t—e 2
+22F / [(t+h—9%"= (=St — 5)Bu*  ~(s)ds
0 y+¢

t 2

+22F [(t4+h—5"— (-5 St — s)3u¢+$(s)ds

t—e

t—e 2
+22Ef [t +h =) = (1 =) St —5) f (5, ys + ¢py)ds
0

t 2

+22F [+ h— )" = (1 =) NSt —5) £ (s, ys + ¢ps)ds

t—e

t—e 2
+22FE / [(t+h—5""— @ =9 NSyt — 5)o(s)dW (s)
0

2

t
+22E/ [(t4+h—" = =5 NSe (@t — $)o(s)dW(s)

—€

Applying Lemma 2.12 and the Holder inequality, we obtain

E|Z(t +h) —Z()|1> < 22| Tt +h) — Tu )21 (—g(y + @) — h(0, ¢))||?
+22E||A(t + Iy Yeh + Grn) — h(t, v + ¢ I

Ci(a, phF [r+h ®,
+2z%/ (t+h =) PE|APhGs. ys + 69117
t
Mot 2h0¢ t+h 1 =02
n(—r ) L t+h—s)'E s+ ¢sll°d
N (WH)) a/f (t+h =) T E[£ (s, ys + BsIds

Mo \2 t+h sl
L2 (m) Tr(Q)/t (& + h — 2@V (s)ds

2 t+h
Ma ) h* a—1 g A 2
*22(m) Mig [ = o

t—e€

+22(¢ —6)2/ (t+h—s5)P1AA)2

0
X (St +h —5) — Se(t — )IPENAPR(s, ys + )| ds

t
+22¢2 [ (t+h—s)*P A2
t—e
X |[Sa(t +h —5) — Su(t — )NPENAPR(s, ys + )| ds
(l _E)oz ) t—e
My [|Se(t +h —5)
0

— Sa(t — II*E|u*(s)[*ds

+22

o t
+22%M§ (t+h =) St +h—s)

t—e
— Salt = $)IElu 5(5)]1ds

_ o t—e
(t=¢ f tth— Syt +h—s)
o 0

— Su(t = )IPENf(s, ys + bs)[1ds

eoz t
+22— (t4+h—)""Se +h—5)

o Ji—e

— Sat = IPEN f (s, ys + ¢5)1%ds

t—e€
+22Tr(Q)/ (t4+h—)D|Su(t +h—s5)
0

+22
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Step 4:

— So(t — )1 (s)ds

+22Tr(Q) | (t+h—5)*D|Set +h —s)

1—e
— Sa(t = )| (5)ds
(20 (1—p)+1 e o i
+22C](a’ﬂ)2a(l——ﬂ)+1/0 [+h—ys) —@—=5"""]
X E|lAPh(s, ys + 5)|*ds
e2e(1=p ! a—1 a—172
+22C1(a,ﬁ)m/t_e[(l‘+h—5) —(t=95)"""]

X E||APh(s, ys + ¢5)|I7ds

+22 _ Mo 2M2 /IG[(I+h— -t —5)*1d
T+ B A N N s

t—e€
x/ [t +h—5)*" — (- ) E|u*(5)|?
0

22 £)2M2 ' [(t+h )Cl—l_(t_ )oc—l]d
+ (F(l—i—a) B/ze( +h—s s s

t
x [ [t+h=%" =@ - NEN ))?

t—e

oM ’ H[; h—s)*"1— @ —5*1d
+ (r(1+a)>/0 @+h—s N y

1—e€
x/ [t 4+h— )" =t =) NEIf (s, ys + ¢5)|1*ds
0

Mo 2 a—1 a—1

t
x/ [t +h =" =t =) EI f(s. ys + by)]1%ds
+22 (ﬂ)z Tr(Q) /H[(r +h—9)*" =t — ) P (s)ds
rd+a 0 '
+22 (ﬂ)z Tr(Q)/t [(t+h =) =t — )" " (s)ds
rd+a) e '

Therefore, for € sufficiently small, and by the compactness of 7'(¢), S(¢), we can verify that the
right-hand side of the above inequality tends to zero as 1 — 0. Thus E||Z2(t + h) —Z1(¢) ||2 — O as
h — 0 for all x € B,. This implies that ® maps B, into an equicontinuous of functions.

Next we show that the set V(1) = {(Py)(¢) : y € B,} is relatively compact in H. The case r = 0
is trivial. Let ¢ € [0, T] be fixed and for each ¢ € (0, t), arbitrary § > 0 and y € B, we define the
operator @, 5y the setof z, 5 € 82 such that

Zes(t) = /5 Ex ()T (1%0)(—g(y + @) — h(0, $)d0 + h(t — &, yi—e + Pr—e)
t—¢& o0
+a / / 0t — ) & (O)AT ((t — $)*0)h(s, ys + P5)dOds
0 )
1—& o0
+oz/ / 0@t — ) e, (OT ((t — s)“@)Buc_Hg(s)d@ds
0 ) i

t—e poo
+Ol/ / 0(t — )" & (O)T ((t — $)70) f (5. y5 + ¢5)dOds
0 8

; = @ Springer



46 Arab. J. Math. (2017) 6:31-54

t—e o0
—|—Ol/ / 0t —$)* e ()T ((t — $)%0)o (s)dOdW (s)
0 )

= T,(:%9) /6 " )T (0)
ST (8) (—g (v + ) — h(0, $)d0 + h(t — &, vy + Bre)
+T(8)a / - / 00— " 8O AT (@ — 9)%6)
—T(s"a))h(z, Ys jas)deds
+T (8 /0 - fs T 00— " 8 O T — 5)%0)

o A
—T(6°8)) Bu),, 5(s)d6ds

t—¢ o0
+T(s°‘8)af / 0t — s)"_léa(e)(T((t —5)¥0)
0 )
~T(e%8)) f (5, ys + ¢5)dOds

t—e oo
+T(e*8)at f / 0(t —5)* & (O)(T (1 — 5)*
0 )

—T(£%8))0)o (s)dOAW (s)
=:T(*8)p(t, e)
Since T'(¢%§) is compact and p(t, €) is is bounded on B,, the set V. () = {(P.sy)(t), y € B} is

relatively compact set in H for every ¢ € (0, ¢) and for all § > 0. On the other hand, we have for
every y € B, we have

2

5
E|Z(t) = Zes)* < 10E H/o £ (O)T (1°0)(—g(y + @) — h(0, $))do

H10 [h(t — &, yize + Gi-e) — h(t, vy + @) |
2

t )
+100*E //9(t—s)“_lsa(Q)AT((t—s)“@)h(s,ys+$S)d9ds
0 JO

t 00 2
+10a’E / / 0@t — $)* e (O)AT ((t — $)*O)h(s, vs + ;ﬁ;)deds
t—e J§

t § 2
+100’E //9(t—s)“_léa(G)T((t—s)“Q)Bu)‘ —(s)dOds
o Jo y+é

t o] 2
+100’E / / 0(1r — )" e, ()T ((t — 5)*0) Bu’  ~(s)dOds
t—e J§ y+e

2

t B
+102’E //e(t—s)“—lsa(e)T((t—s)ae)f(s,ys+¢?s)d9ds
0 JO

t 0 2
F1002E / / B(1 — )% e (O)T (1 — $)°6) (5. ys + $,)d6ds
t—e Jé

2

t §
+100’E / / 0t —)* &, ()T ((t — $)%0)o (s)dOdW (s)
0 JO

2

t o0
+1002E / / 0(t — ) &, ()T ((t — 5)*0)o (s)dOdW (5)
t—e J§

=% (3.16)
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where
S 2
Ji < 20M% (Mglly + 1% + Mu AP 121 + 191)) ( /0 sa<9>de> (3.17)
T < 10M A2 (&4 [yi—e = i+ $me = 61 (3.18)

t t ) 2
J3 < IOaZMIZ_ﬂ/ (z—s)“ﬂ—lds/ (t — )P LENAPR(s, ys + ¢5) |7 ds (/ ezﬁga(e)w)
0 0 0

(OlMl_ﬂTaﬁ)z . ( ) 2 2
<10 —2—) My +7) f@ ga(e)de) (3.19)
af 0
t t o0 2
Js < 10a2M12,ﬁf (r—s)“ﬂ—‘ds/ (t — )P TEAPR(s, ys + ¢5) ) 7ds (/ ezﬂga(e)de)
t—e t—e s
2 00 2
<10 (‘”Z#) 2P M, (1 + 1) (/ ezﬁsa(e)de> (3.20)
)

t ' 8 2
J5 < 10@MMp)? / (=5 / (t = )" Elluy 5()|*ds ( / esa(mde)
0 0 0

< 10MMg)2T L (2MMB " /59 ©)do ’ (321)
= oo () o ([ o) |
t t o0 2
Jo < IO(aMMB)Z/ (z—s)“—’/ (t = )" Ellul, 5(5)]*ds (f ega(e)de)
t—e t—e Y S
< 10(MMp)2e2 L (M>2A (/009 (9)d9>2 (3.22)
= B 2 \rd + o) 05 '
5 2
J7 < 10M*M (1 + |lys + GlIHT™ ( / esaw)de) (3.23)
0
00 2
Js < 10M*M (1 + |lys + ¢sl1)e™ ( / esa(e)d(a) (3.24)
1)
t s 2
Jo < 10’ M>Tr(Q) / (t — )2« D (s)ds < / esa(e)cw) (3.25)
0 0
t o0 2
Jio < 10a2M2Tr(Q)/ (t — )2 @ D (s)ds (/ ega(e)d9> (3.26)
t—e b

From (3.17) to (3.26), it can be easily seen that J;-Jj¢ tends to zero as ¢ — 0 and § — 0. Thus, for
each y € B,

E|Z(t) = Zes|I> -0 as e >0, §—0

Therefore, there are relative compact sets arbitrarily close to the set V (), r > 0. Hence, the set V (¢),
t > 0 is also relatively compact in H.

Step 5: @ has a closed graph.
Let y" — y*, asn — 00,7" € ®y" for each y" € B,.and 7" — Z* as n — 0o. We shall show that
Z* € dy*. Since 7" € dy”, then there exists 6" € S¢, ,» such that
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0,1t € (—o0,0]
To (1) (—g(y" + @) — h(0, ¢)) + h(t, y!' + br)
+ fo(t — )%V ASG (1 — $)h(s, Y + ¢y)ds

7)) = (3.27)
+ ot = )71 St = $)Bu; S(s)ds
F fo (= )7 S (t = 8) f (5, Y + by)ds
+ fot =)o (t — )a"()dW (s), € J.
We must prove that there exists 0™ € Sg y+ such that
0, te(—o00,0]
To(1)(—g(y* + @) — h(0, $)) + h(t, y} + b;)
+ [yt — )% ASy (t — $)h(s, yE + ¢y )ds
() = (3.28)

+ Jot = )" Sut = 5)Bu S(5)ds
+ Jot = 9% Su(t =) (s, 3] + bo)ds
+ ot — )71y (t — 5)0*(s)dW (s), t e J.

Now, for every t € J , since & is continuous, and from the definition of u* we get

E

<Z”(t) — T (O)(—g(y" + @) — h(0, $)) — h(t, y!' + 1)
t t

—/ (t — )% VA, (t — $)h(s, Y + by)ds —/ (¢ —s)“—lsa(t—s)But+$(s)ds
0 0 )

—/ (t — )" Se(t — 5) f (s, y" +@)dS>
0
—@* (1) — Ta () (—g(y* + @) — h(0, ¢)) — h(t, y} + ¢r)

t t
+/ (t — ) VAS,(r — $)h(s, y*+$s)ds—/ (t — )% 1Sy (t — s)Bu’  ~(s)ds
0 s 0 y+¢

2

t
—f (z—s)“1Sa(t—s)f(s,y§"+q1)ds>
0

—-0 as n—> o©

Consider the linear continuous operator (O )(z) : L>(J, H) — C(J, H)

t
o (o)) = / (t — s)“ilSa(t —s)o(s)dW (s)
0
t
- / (t —)* 718, (t — s)BB*SH(T —1)
0

T
X (/ OI+TH™HT —5)77 s, (T - s)a(s)dW(s)) ds
0
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We can see that the operator ® is linear and continuous. Moreover, on has

joo|? < (M 7 O)llo |2 2 (MMsT™N 2 aMMp
“ —(r(1+a)> r(Dlolizwm (F(l—i—oz)) ﬁ(r(wa))

From Lemma 2.9, it follows that ® o S¢ is a closed graph operator. Also, from the definition of ©,
we have that

(z"(r) — Tu()(—g(Y" 4+ &) — h(0, §)) — h(z, ¥ + 1)
t t
—/ (t — ) VAS,(t — 5)h(s, yi+ as)ds - / (t — ) 1S, (1t — s)BuiJra(s)ds
0 0 )

t
—f (t — )" Sat —5) (s, y! +$s)ds> € O(Sg,y)
0

Since y" — y*, for some y* € S 4, it follows from Lemma 2.9 that

(Z*(t) — Tu()(—g(Y* + @) — h(0, ¢)) — h(t, y} + br)
t t
+f (t — ) VAS, (t — $)h(s, ys*—i—as)ds—/ (t — )% 1S, (t — s)Bu’  ~(s)ds
0 0 y+¢

t
_/ (t —5) 1Syt —5) f (s, v} +$s)dS> € O(Sg,y7)
0

therefore @ has a closed graph.

As a consequence of step 1 to step 5 with the Arzela—Ascoli theorem, we conclude that ® is a compact
multivalued map, u.s.c. with convex closed values. As a consequence of Lemma 2.13, we can deduce that ®
has a fixed point x(.) on ,, which is a mild solution of system (2.1). O

4 Approximate controllability of fractional stochastic control systems

In this section, we present our main result on approximate controllability of system, to prove this, the following
additional assumption is required;

(H6) The linear fractional inclusion (3.1) is approximately controllable.
(H7) The functions & : J x B, — Hg, f:J x By, — Hand G : J x B, — BCC(L(U, H)) are uniformly
bounded for allt € J and x € By,

Theorem 4.1 Assume that the assumptions of Theorem 3.4 hold, and in addition, hypothesis (H6) and (H7)
are satisfied. Then, the fractional stochastic differential inclusion (2.1) is approximately controllable on J.

Proof Letx(.) € B, be afixed point of the operator ®. By Theorem 3.4, any fixed point of ® is a mild solution
of (2.1). This means that there is x* € ®(x*), that is, by the stochastic Fubini theorem, there is 6* € S¢
such that,
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xA(1) = Fr — A0 + T [Efr + /0 NOAW () + Tu(T)0)
— (") = h(0, ) — (T, x%)}
+A /Ol(u +THY™NT — 5)*7VAS( (T — 1)h(s, x1)ds
+A /Ot(u +THY™NT — )7L S (T — 1) £ (5, x1)ds

t
+)\/ W +TH™HT — )18 (T — 1o (s)dW (s)
0
4.1

By the conditions (H2), we can choose a sufficiently small positive constant € > 0, « 4+ € < 1, such that
A*Fep(T, x%) is bounded in HL. Since

h(T, xk) = A=@FI A%t p (T, x2),
we see that h(T, x%) is relatively compact in H, so there is x! € H such that (by passing to a subsequence)
(T, x3) — x!

in .|| asA — 0T

Moreover, by the boundedness of /2, f and G (assumption (H7)) and Dunford—Pettis Theorem, we have that
the sequences {o*(s)}, {APh(s, x}} and {f (s, x})} are weakly compact in L?(J, L(U, H)), L*([0, T], Hp)
and L%([0, T], H), so there are a subsequences still denoted by {0 (s)}, {Aﬂh(s,xsk} and {f (s, x?)}, that
weakly converge to, say, o, h and f respectively in L?(J, L(U, H)), L2([0, T, Hpg) and L2([0, T], H).

On the other hand, by assumption (H6), the operator A(Al + FST )~! — 0 strongly as A —> 0% for all
0 <s < T, and, moreover, |A(A] + FST )"l < 1.Thus, the Lebesgue dominated convergence theorem and

the compactness of S, (¢) yield
E|lx*(t) = X7|1* < 10JA I + T NPENETT + To(T)(9(0) — g(x*) — h(0, p)]II?

F10[AAT + T (T, x3) — xH1? + 1002 +TH 1!
t 2

+10E ,\(,\1+rg)*1/ n(s)dW (s)
0

t 2
+10E / AT +TH™HT — )7 AS, (T — 1) (h(s, x1) — h(s))ds
0

t 2
+10E / AT +TH™HT — )*  AS, (T — 1)h(s)ds
0

t 2
+10E / AT + TN T — )47 LS (T — 1) (f (s, x¥) — f(s))ds
0

2

+10E / AT + TN T — $)*7L8, (T — 1) f(s)ds
0

t
+10E/ [2Gr + T T — )27 S (T — 1) (0 (s) — G(s))“iz(U i ds
) :

t
+10E/ [+ T ™T = 9715 (T = )0 () |27 13,95 — .
) ,

as A — 0T

So x*(t) — X7 holds, which shows that the system (2.1) is is approximately controllable and the proof is
complete. O
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Remark 4.2 We notice that, in the case of infinite-dimensional systems, we can distinguish two concepts
of controllability: Exact and approximate controllability. Exact controllability means that the system can be
steered to an arbitrary final state. Approximate controllability enables us to steer the system to an arbitrary small
neighborhood of the final state. In the finite-dimensional case, the notions of approximate and exact controlla-
bility coincide. Moreover, Approximate controllable systems are more prevalent and very often approximate
controllability is completely adequate in applications (see [37,38]). However, the problems of exact control-
lability are developed in numerous papers. Ren et al. [36] studied the controllability of a class of impulsive
neutral stochastic functional differential inclusions with infinite delay in an abstract space. Sufficient condi-
tions for the controllability are derived with the help of the fixed point theorem for discontinuous multivalued
operators due to Dhage [15]. Li and Zou [23] obtained sufficient conditions for the controllability of nonlinear
neutral stochastic differential inclusions with infinite delay in a Hilbert space with using a fixed-point theorem
for condensing maps due to ORegan [29]. Li and Peng [24], Ganesh Priya and Muthukumar [31] studied the
controllability of a class of fractional stochastic functional differential systems. Based on these works, the
exact controllability of the system 2.1 can be done by relying on a fixed-point theorem for condensing maps
due to ORegan [29] and employing the idea and technique as in Theorem 8 in [23].

5 An example

As an application, we consider a stochastic partial differential inclusion with the following form

t 82
D¢ [v(t,x) —f e4(t_s)v(s,x)ds] € —v(, x)
oo 0x

+b(x)u(t) + / ai(s —t)sinv(s, x))ds
: - 5.1
—i—/ ax(s — t)v(s, x)dsdB(),x € [0,7],t € J =[0,T], T >0, ©-1)

(t,0) = v(t,7) =0 1 €[0,T]
v(0, x) —I—f E(x,2v(t,2)dz = ¢(t,x), t€(—00,0], 0<x<m,.
0

where B(¢) is a standard cylindrical Wiener process in H defined on a stochastic space (2, F, {F;};>0, P); the
fractional derivative DY ,0 < o < 1is understood in the Caputo sense; the functions § € C([0, 7] x [0, 7], R)
and ay, ap are continues.

Let U = H = L2([0, 7r]) with the norm ||.|. Now, we present a special phase space Bj,. Let h(t) = e,

t <0, Thenl = [ h(s)ds = L. Let

0
lels, = / h(s) sup (Ell(®)]%)?
-0 §<60<0
then (Bp, |I.1l5,) is a Banach space.
Define an infinite-dimensional space U by U = {u/u = > 0, uyw, with Y22, U? < oo}. The norm
in U is defined by ||u||%J =3, Unz. Now, define a continuous linear mapping B from U into H as Bu =
2upawy 4 Y o s tgwy foru =Y 00 5 uyw, € U.

We define the operator A by Ax = "7 with domain

ax 9%x

D(A):{ cH, = 2

eH and x(0) =x(w) = 0}
It is well known that A generates an analytic semigroup 7 (¢), ¢ > 0 given by
T()x = Ze n? (x, en)en,

x € H,and ¢, (y) = (2/7r)1/2 sin(ny),n = 1,2, ..., is the orthogonal set of eigenvectors of A.
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For (¢, ¢) € J x By, where ¢(0)(x) = ¢(0,x), (0,x) € (—00,0] x [0, ]. Let v(¢)() = v(¢, x), and
define the bounded linear operator B : U — H by Bu(¢)(x) = b(t)u(x),0 <x < m.

Define the Lipschitz continuous functions 2 : J x By — L%([0, 7]), f:JxB, — L%([0, 7]) and
G :J x By, — L(L*([0, 7]), L*([0, 7 ])) by

0
h(t, 9)(x) = / *® (p(0)(x))de,

—00

0
f(. ) =/ a1 (0)(sin ¢(6)(x))do,

—00

0
G, ¢) =/ a2(0)(¢(6)(x))do.

—00

Then, the system (5.1) can be rewritten as the abstract form of system (2.1). Thus, under the appropriate
conditions on the functions 4, f, G and g as those in (H1)—-(H6), system (5.1) has a mild solution and is
approximately controllable on J.

6 Concluding remarks

In this paper, we have investigated the approximate controllability of class of fractional neutral stochastic
evolution inclusion with nonlocal initial conditions in Hilbert space. Based on a fixed-point theorem, sufficient
conditions for the existence of solutions and the approximate controllability of fractional nonlinear stochas-
tic differential inclusions have been derived. Impulsive fractional differential equations and inclusions have
become important in recent years as mathematical models of many phenomena in both physical and social
sciences [38]. For the basic theory of impulsive differential equations and inclusions the reader can refer to
[5,21]. Recently, Debbouche and Baleanu [13] established the controllability result for a class of fractional
evolution nonlocal impulsive quasilinear delay integro-differential systems in a Banach space by using the
theory of fractional calculus and fixed point technique. More recently, Liu and Li [22] established the con-
trollability of impulsive fractional evolution differential inclusions with initial boundary conditions in Banach
spaces by applying the fixed point theorem for multivalued maps due to Dhage association with an evolution
system. Upon making some appropriate assumption on system functions, by adapting the techniques and ideas
established in the paper of [13] and [22] with suitable modifications, one can prove the existence of solutions
and the approximate controllability of fractional stochastic differential inclusions with nonlocal condition and
impulses of the form:

DY [x(t) — h(t, x)] € Ax(¢) + Bu(t) + f(t, x;)
+G(t,x,)dvgt(t), teJ=[0.T], T>0, t#4

Ax(ty) = I(x(t) =x(t) —x(t)), k=1,....m

x(0)+gx)=x0=¢, ¢€bB.

In our future work we will investigate the existence and controllability results of fractional stochastic
differential inclusions driven by fractional Brownian motion.
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