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Abstract We study harmonic maps from degenerating Riemann surfaces with uniformly
bounded energy and show the so-called generalized energy identity. We find conditions that
are both necessary and sufficient for the compactness in W 1,2 and C0 modulo bubbles of
sequences of such maps.

1 Introduction

Consider a sequence of harmonic maps from compact Riemann surfaces (Σn, hn) to a com-
pact Riemannian manifold (N , g),

un : Σn → N , (1.1)

with uniformly bounded energy E(un,Σn) ≤ Λ < ∞.
In this paper, we study the compactness of the sequence (1.1). We shall first review

some well-established analytic aspects related to this problem and then focus on the case
that the domains Σn degenerate. Our results indicate that when the topological type of the
degeneration is fixed, one can associate to (un,Σn) a sequence of quantities that characterize
the asymptotic behaviour of maps in the limit process.

At first, let us consider the case that the domain surface is fixed, namely, Σn = Σ . The
uniform energy bound E(un) ≤ Λ allows us to find a map u : Σ → N such that un

subconverges weakly to u. However, in general, strong convergence fails because of energy
concentration at finitely many points on Σ , which are called blow-up points [29,30]. Away
from these points, the convergence is strong. At these points, the “bubbling” phenomenon can
occur and the concentrated energy can be captured by finitely many bubbles, i.e., non-trivial
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64 M. Zhu

harmonic maps from two-spheres [29,30]. During the “bubbling” process, there are some
necks joining the base u : Σ → N to the bubbles or one bubble to the next. Jost [13]
proved that in the limit, these necks contain no energy, which means all concentrated energy
is captured by the bubbles. Parker [22] showed that these necks actually converge to points
in the target manifold, which means that in the limit the base and the bubbles are connected.

Next, we allow the complex structure on the domain surface to vary. In this case, conside-
ration of the degeneration of conformal structures on a Riemann surface will be necessary.
Topologically, the limit surface is obtained by collapsing finitely many simple closed curves
in Σ . In the end we obtain a surface with nodes as singularities. There are two types of col-
lapsing curves. The first is a homotopically trivial one, which corresponds to the “bubbling”
near isolated singularities, for the complex structure varies in a compact region of the moduli
space. The second is a homotopically nontrivial curve, which corresponds to the degenera-
tion of the complex structure. By following the “bubbling” procedure, we can also find a
limit map consisting of a union of smooth harmonic maps. However, in general, energy may
get lost from some necks, and those necks will fail to converge to points, as in the explicit
example given in [22].

It is worth mentioning that if, in addition, un are conformal, i.e., minimal surfaces, then
by the technical tools in minimal surface theory (e.g., the isoperimetric inequality and the
monotonicity property, etc.), we know that in the limit, there is no energy loss and there are
no necks, which gives satisfactory compactness results. For more details see, for instance,
[3,13,23], or [22]. An analogue is Gromov’s compactness theorem for pseudo-holomorphic
curves [8,12,23,38,39].

By an asymptotic analysis of harmonic maps from long cylinders, Chen–Tian [4] obser-
ved that all connecting necks converge exponentially to geodesics in the target manifold.
Moreover, they [4] showed that if, in addition, un is an energy-minimizing sequence in the
same homotopy class, then the limit geodesics are all of finite length and they contain no
energy. In fact, nontrivial geodesics arise only from the degeneration of conformal structures,
not from “bubbling”.

In order to understand how energy is lost when the domain surfaces degenerate, we shall
give a precise expression of the energy loss near the nodes and then show the so-called
generalized energy identity for harmonic maps from degenerating surfaces.

Let u be a harmonic map defined on a standard cylinder P = [t1, t2]× S1 with flat metric
ds2 = dt2 + dθ2. Then the Hopf quadratic differential of u on P is given by Φ(u) =
φ(u)(dt + idθ)2, where

φ(u) = |ut |2 − |uθ |2 − 2iut · uθ . (1.2)

Our main observation is that the following integral:∫

{t}×S1

φ(u)dθ (1.3)

is independent of t ∈ [t1, t2]. Thus (1.3) defines a complex number, which we denote by
α = α(u, P). We will see that this quantity can be applied to study the asymptotic behaviour
of the necks appearing near the nodes (or punctures).

Now we consider a sequence of harmonic maps

un : (Σn, hn, cn) → N (1.4)

with uniformly bounded energy E(un,Σn) ≤ Λ < ∞, where (Σn, hn, cn) is a sequence
of closed hyperbolic Riemann surfaces of genus g > 1 with hyperbolic metrics hn and
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Harmonic maps from degenerating Riemann surfaces 65

compatible complex structures cn . Assume that (Σn, hn, cn) degenerates to a hyperbolic
Riemann surface (Σ, h, c) by collapsing p (1 ≤ p ≤ 3g − 3) pairwise disjoint simple
closed geodesics γ

j
n , j = 1, 2, . . . , p. For each j , the geodesics γ

j
n degenerate into a pair of

punctures (E j,1, E j,2). Denote the hn-length of γ
j

n by l j
n , and let P j

n be the standard cylindrical
collar about γ

j
n .

We associate the sequence (un,Σn) with a sequence of p-tuples (α1
n, . . . , α

p
n ), where

α
j
n := α(un, P j

n ) ∈ C are the quantities defined via (1.3). Pulling back the hyperbolic metrics
hn and the compatible complex structures cn by suitable diffeomorphisms Σ → Σn \∪p

j=1γ
j

n

and passing to a subsequence, we can think of (hn, cn) as all living on the limit surface Σ

and converging in C∞
loc to (h, c). Thus, un becomes a sequence of harmonic maps defined

on (Σ, hn, cn). Then we will show the following generalized energy identity for harmonic
maps from degenerating surfaces:

Theorem 1.1 Let un : (Σn, hn, cn) → N be a sequence of harmonic maps with uni-
formly bounded energy E(un,Σn) ≤ Λ < ∞, where (Σn, hn, cn) is a sequence of clo-
sed hyperbolic Riemann surfaces of genus g > 1 degenerating to a hyperbolic Riemann
surface (Σ, h, c) by collapsing finitely many pairwise disjoint simple closed geodesics
{γ j

n , j = 1, 2, . . . , p}. Then, after selection of a subsequence, there exist finitely many blow-
up points {x1, x2, . . . , xI } which are away from the punctures {(E j,1, E j,2), j = 1, 2, . . . p},
and finitely many harmonic maps

u : (Σ, c) → N, where (Σ, c) is the normalization of (Σ, c),
σ i,l : S2 → N , l = 1, 2, . . . , Li , near the i th blow up point xi ,
ω j,k : S2 → N , k = 1, 2, . . . , K j , near the j th pair of punctures (E j,1, E j,2),

such that un converges to u in C∞
loc on Σ \ {xi , i = 1, 2, . . . , I } and the following holds

lim
n→∞ E(un) = E(u) +

I∑
i=1

Li∑
l=1

E(σ i,l) +
p∑

j=1

K j∑
k=1

E(ω j,k) +
p∑

j=1

lim
n→∞

∣∣∣Reα j
n

∣∣∣ · π2

l j
n

.

(1.5)

Moreover, for each j , there are at most finitely many necks connecting the base u and the
bubbles ω j,k . The sum of the average lengths (see Sect. 3) of those necks is asymptotically
equal to

√
|Reα j

n | · π2

l j
n

. (1.6)

In fact, we have

Theorem 1.2 Assumptions and notations as in Theorem 1.1. Then

(1) (un,Σn) subconverge in W 1,2 modulo bubbles, i.e., in the limit, the necks contain no
energy if and only if

lim inf
n→∞ |Reα j

n | · π2

l j
n

= 0, j = 1, 2, . . . , p. (1.7)

(2) (un,Σn) subconverge in C0 modulo bubbles, i.e., in the limit, the images of the necks
become points if and only if

lim inf
n→∞

√
|Reα j

n | · π2

l j
n

= 0, j = 1, 2, . . . , p. (1.8)
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66 M. Zhu

It is clear from the above theorem that the limits lim infn→∞ |Reα j
n | · π2

l j
n

, j = 1, 2, . . . , p

are the obstructions for (un,Σn) to subconverge in W 1,2 modulo bubbles, and the limits

lim infn→∞
√

|Reα j
n | · π2

l j
n

, j = 1, 2, . . . , p are the obstructions for (un,Σn) to subconverge

in C0 modulo bubbles. For each j , the asymptotic behaviour of the necks appearing near the
j th node is characterized by {(α j

n , l j
n )}∞n=1, namely

E j ≈ |Reα j
n | · π2

l j
n

, L j ≈
√

|Reα j
n | · π2

l j
n

, (1.9)

where E j is the sum of the energies of the necks and L j is the sum of the average lengths of
the necks. Note that the quantities {(α j

n , l j
n )}n≥1, j = 1, 2, . . . , p are defined a priori.

For the asymptotics of the imaginary part of α
j
n , we have the following:

Proposition 1.1 Assumptions and notations as in Theorem 1.1. Then

lim sup
n→∞

|Imα
j
n | · π2

l j
n

= 0, j = 1, 2, . . . , p. (1.10)

When the domain surfaces of (1.1) are degenerating tori, then the study of the asymptotics
of the necks is simpler because of the fact that any holomorphic quadratic differential on a
torus is a constant. Some modifications to Parker’s example [22] can illustrate the asymptotics
mentioned, we refer to [40].

Wolf [36] studied the asymptotics of families of harmonic maps between hyperbolic
surfaces where the domain degenerates via pinching finitely many pairwise disjoint simple
closed geodesics. In this case, the energy of the maps goes to infinity. For the asymptotics of
harmonic maps from surfaces to hyperbolic surfaces or hyperbolic three-manifolds, where
the surfaces degenerate along a Teichmüller ray, see [19,20,35,37].

There are various energy identities for sequences of different approximations of harmonic
maps from a fixed surface: for a min-max sequence by Jost [13]; for Struwe’s harmonic
map flow and certain Palais–Smale sequences with uniformly L2-bounded tension field, see
[6,16,24,26,31,32,34]; for minimizing sequences of Sacks–Uhlenbeck approximation of
harmonic maps by Chen–Tian [4]; for the fourth order approximation of harmonic maps, see
[17]. However, the energy identity for general sequences of Sacks–Uhlenbeck approxima-
tions is still open, a natural question then is whether a certain generalized energy identity
holds. Based on the observations made by Qing [25] and Topping [33], one expects a com-
plete understanding of the asymptotic behaviour of the necks appearing near the finite time
singularity of the harmonic map flow. It would be interesting to ask whether one can associate
to the flow suitable quantities that characterize the asymptotics of the necks mentioned above
in a uniform way. If so, then a classification of the asymptotics in terms of these quantities is
desirable. Recently, Ding et al. [7] introduced a flow for minimal tori and proved the corres-
ponding energy identity. Considered as certain Palais-Smale sequences from degenerating
tori, its higher genus generalization is expected.

Now, we briefly outline the remaining parts of the paper. In Sect. 2 we recall some pre-
liminary facts about harmonic maps from surfaces. In Sect. 3 we develop several analytic
properties of harmonic maps from long cylinders. In Sect. 4 we study harmonic maps from
degenerating surfaces and prove Theorems 1.1 and 1.2.
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Harmonic maps from degenerating Riemann surfaces 67

2 Preliminaries

Let (Σ, h) be a Riemann surface with a metric h = λ2dzdz in conformal coordinates
z = x + iy. Let (N , g) be a compact Riemannian manifold of dimension d , and let its metric
in local coordinates be given by gi j , with Christoffel symbols Γ i

kl .
For u ∈ W 1,2(Σ, N ), the energy of u on Σ is

E(u,Σ) = 1

2

∫

Σ

gi j (u
i
x u j

x + ui
yu j

y)dxdy. (2.1)

A solution of the corresponding Euler–Lagrange equations

∆ui + Γ i
kl(u

k
x ul

x + uk
yul

y) = 0, i = 1, . . . , d, (2.2)

is called a harmonic map. Note that (2.1) and (2.2) are conformally invariant.
If u is in addition conformal, i.e., if the following holds:

g jk

(
u j

x uk
x − u j

yuk
y − 2iu j

x uk
y

)
= 0,

then u is called a (parametric) minimal surface in N .
If we isometrically embed N into some Euclidian space R

K , then (2.2) can be written as
follows:

− ∆u = A(u)(∇u,∇u), (2.3)

where A(·, ·) is the second fundamental form of N in R
K . Any u ∈ W 1,2(Σ, N ) that satisfies

(2.3) weakly is smooth ([10,11], or [28] for a new proof).
For u ∈ W 1,2(Σ, N ), the Hopf quadratic differential associated to u is defined by Φ(u) =

φ(u)dz2, where

φ(u) = |ux |2 − |uy |2 − 2iux · uy .

Lemma 2.1 u harmonic ⇒ φ(u) holomorphic. Also, φ(u) ≡ 0 ⇔ u is conformal.

For a proof, see for instance [13], Lemma 1.2.2.
We list some analytic facts about two-dimensional harmonic maps proved in [29].

Theorem 2.1 There exists a constant ε0 > 0 that depends only on N such that

(1) (ε-regularity) Let u : D → N be a smooth harmonic map satisfying

E(u, D) = 1

2

∫

D

|du|2 ≤ ε0.

Then

‖du‖D̃,1,p ≤ C(D̃, p)‖du‖D,0,2,

∀D̃ ⊂⊂ D and p > 1, where D is some regular domain in R
2, D̃ is any regular

subdomain of D and C(D̃, p) > 1 is a constant depending only on D̃, p, and the
geometry of N .

(2) (Singularity removability) Let u be a smooth finite-energy harmonic map from a punc-
tured disk D\{0} to N. Then u extends to a smooth harmonic map from D to N.

(3) Any non-trivial harmonic map u : S2 → N has energy E(u) ≥ ε0.
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68 M. Zhu

Then, we have the following energy identity theorem [13,22,29].

Theorem 2.2 Let {hn} be a sequence of Riemannian metrics on Σ converging in C∞ to a
Riemannian metric h, and let un : (Σ, hn) → (N , g) be a sequence of hn-harmonic maps
with uniformly bounded energy E(un) ≤ Λ. Then there are finitely many blow-up points
{x1, x2, . . . , xI } ⊂ Σ , an h-harmonic map u : (Σ, h) → (N , g) and finitely many nontrivial
harmonic maps σ i,l : S2 → N , i = 1, 2, . . . , I ; l = 1, 2, . . . , Li , such that after selection
of a subsequence, un converges in C∞

loc to u on Σ\{x1, x2, . . . , xI }, and the following holds

lim
n→∞ E(un) = E(u) +

I∑
i=1

Li∑
l=1

E(σ i,l). (2.4)

During the blow-up process, some necks connecting one bubble to the next or connecting
the base to a bubble appear. Theorem 2.2 shows that in the limit those necks contain no
energy. In this case, we say un subconverges to u in W 1,2 modulo bubbles. Moreover, Parker
[22] proved that all necks converge to points in the target manifold, i.e., un subconverges to
u in C0 modulo bubbles. Using our terminology, we simply state Parker’s results as follows:

Theorem 2.3 (Bubble tree convergence) Notations and assumptions as in Theorem 2.2.
Then, after selection of a subsequence, un converges to u in W 1,2 ∩ C0 modulo bubbles.

For more details on the construction of the bubble trees, see [22,23].

3 Harmonic maps from cylinders

In this section, we study harmonic maps from cylinders and derive some analytic properties.
Let PT1,T2 = [T1, T2] × S1 be a standard cylinder with metric ds2 = dt2 + dθ2, here

S1 = R/2πZ. Since we will only need to consider long cylinders, w.l.o.g., we always assume
that T2 − T1 > 2. Let u : PT1,T2 → N be a C1 map. Denote

Θ(t) :=
∫

{t}×S1

|uθ |2.

The following lemma is a modified version of two lemmas proved in [16,22]. For the
reader’s convenience, we will give a proof using arguments from [16].

Lemma 3.1 There exists ε1 > 0, only depending on N, such that if u : PT1,T2 → N is a
harmonic map and

sup
PT1,T2

|∇u| ≤ ε1,

then

d2

dt2 Θ(t) ≥ Θ(t), ∀t ∈ [T1, T2]. (3.1)

Moreover, we have

T2∫

T1

(Θ(t))νdt ≤ 2
((Θ(T1))

ν + (Θ(T2))
ν)

ν
, ∀ν ∈ (0, 1]. (3.2)
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Harmonic maps from degenerating Riemann surfaces 69

Proof By a straightforward calculation as in [16], Lemma 2.1, we have

d2

dt2

∫

S1

|uθ |2 ≥ (2 − Cε2
1)

∫

S1

|uθ t |2 +
(

3

2
− Cε2

1

)∫

S1

|uθθ |2 − ε2
1

∫

S1

|uθ |2.

Here C is a constant depending only on the geometry of N . If we choose ε1 > 0 small
enough, then

d2

dt2

∫

S1

|uθ |2 ≥ 5

4

∫

S1

|uθθ |2 − 1

4

∫

S1

|uθ |2 ≥
∫

S1

|uθ |2.

Here, in the last step, we used the Poincaré inequality on S1. This proves (3.1).
Let τi = Θ(Ti ), i = 1, 2. Then we can solve the following 2nd order ODE:

ρ̈ − ρ = 0, T1 ≤ t ≤ T2,

ρ(T1) = τ1,

ρ(T2) = τ2.

and obtain a solution ρ(t) = λet + µe−t , where

λ = (eT2τ2 − eT1τ1)

e2T2 − e2T1
, µ = eT1+2T2τ2 − e2T1+T2τ1

e2T2 − e2T1
.

Applying the maximum principle, we conclude

0 ≤ Θ(t) ≤ ρ(t), ∀t ∈ [T1, T2].
Note that T2 > T1, τ1 ≥ 0, τ2 ≥ 0, and ν ∈ (0, 1]. By direct calculation, we have

T2∫

T1

(Θ(t))νdt ≤ |λ|ν (eνT2 − eνT1)

ν
+ |µ|ν (e−νT1 − e−νT2)

ν

≤ 2
|eT2τ2 − eT1τ1|ν
(e2T2 − e2T1)ν

· (eνT2 − eνT1)

ν

≤ 2
((τ1))

ν + (τ2)
ν)

ν

= 2
((Θ(T1))

ν + (Θ(T2))
ν)

ν
.

This gives (3.2). We have thus finished the proof. ��
Combining Lemma 3.1 and the “ε-regularity” portion of Theorem 2.1, we have

Lemma 3.2 There exist ε2 > 0 and C > 0, depending only on N, such that if u is a harmonic
map from PT1,T2 to N and

ω := sup
t∈[T1,T2−1]

∫

[t,t+1]×S1

|du|2 ≤ ε2,

then
T2∫

T1

Θ(t)dt ≤ Cω,

T2∫

T1

√
Θ(t)dt ≤ Cω

1
2 . (3.3)
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70 M. Zhu

Proof Let ε0 > 0 be the constant in Theorem 2.1 (“ε-regularity”), and let ε1 > 0 be the const-
ant in Lemma 3.1. Let ε2 = min{ε0, (

ε1
C0

)2}, where C0 is a constant to be determined later. If

ω = sup
t∈[T1,T2−1]

∫

[t,t+1]×S1

|du|2 ≤ ε2,

then changing variables by translating in u and using ε-regularity property with D =
[−1, 2] × S1 and D̃ = [0, 1] × S1, we have

sup
[T1+1,T2−1]×S1

|∇u| ≤ C1

⎛
⎜⎝ sup

t∈[T1,T2−1]

∫

[t,t+1]×S1

|du|2
⎞
⎟⎠

1
2

= C1ω
1
2 ≤ C1

C0
ε1.

where C1 > 0 is a constant depending only on N , but not on T1, T2. We take C0 to be the
constant C1 here. Then we can apply Lemma 3.1 to conclude that ∀ν ∈ (0, 1],

T2−1∫

T1+1

(Θ(t))νdt ≤ 2
((Θ(T1 + 1))ν + (Θ(T2 − 1))ν)

ν
≤ C sup

PT1+1,T2−1

|∇u|2ν ≤ Cων.

(3.4)

On the other hand, it is not hard to verify that (applying Hölder’s inequality if necessary)

T1+1∫

T1

(Θ(t))νdt +
T2∫

T2−1

(Θ(t))νdt ≤ 2ων, ∀ν ∈ (0, 1]. (3.5)

(3.3) follows from combining (3.4) and (3.5) and taking ν = 1, 1
2 . ��

Lemma 3.3 Let u : PT1,T2 → N be a harmonic map. Then for t ∈ [T1, T2],∫

{t}×S1

φ(u)dθ (3.6)

is independent of t ∈ [T1, T2], where

φ(u) = |ut |2 − |uθ |2 − 2iut · uθ

and φ(u)(dt + idθ)2 is the Hopf quadratic differential of u on PT1,T2 .

Proof By Lemma 2.1, we know that if u is harmonic then φ(u) is holomorphic. Given t1 and
t2 such that T1 ≤ t1 ≤ t2 ≤ T2, consider the rectangle R bounded by [t1, t2] × {0}, {t2} ×
[0, 2π], [t2, t1] × {2π}, and {t1} × [2π, 0]. By Cauchy’s integral theorem, we have∮

∂ R

φ(u) =
∫

R

∂φ(u) = 0,

i.e., ∫

{t1}×S1

φ(u)dθ =
∫

{t2}×S1

φ(u)dθ.

Hence (3.6) is independent of t ∈ [T1, T2]. ��
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Harmonic maps from degenerating Riemann surfaces 71

Definition 3.1 Let u : PT1,T2 → N be harmonic. Then we define a complex number

α(u, PT1,T2) :=
∫

{t}×S1

φ(u)dθ ∈ C (3.7)

that is associated to u along the cylinder PT1,T2 .

Remark 3.1 It follows from Lemma 3.3 that α(u, PT1,T2) is well-defined. Moreover, we have
α(u, Pt ′1,t ′2) = α(u, Pt1,t2), ∀t1 < t ′1 < t ′2 < t2.

Definition 3.2 Let u : PT1,T2 → N be a C1 map. Then we call

L(u, PT1,T2) :=
T2∫

T1

⎛
⎝

2π∫

0

|ut |2dθ

⎞
⎠

1
2

dt.

the average length of u along the cylinder PT1,T2 .

Remark 3.2 Let c : [T1, T2] → N be a C1 curve in N . Then u(t, θ) := c(t) is a θ -independent
C1 map from PT1,T2 to N . It is easy to verify that

L(u, PT1,T2) = √
2π L(c, [T1, T2]),

where L(c, [T1, T2]) = ∫ T2
T1

|ċ(t)|dt is the usual length of the curve c.

Lemma 3.4 Let u : PT1,T2 → N be a harmonic map with α = α(u, PT1,T2). Then we have

(1)

∣∣∣∣E(u, PT1,T2) − 1

2
|Reα| · (T2 − T1)

∣∣∣∣ ≤
T2∫

T1

Θ(t)dt, (3.8)

(2)

|L(u, PT1,T2) − √|Reα| · (T2 − T1)| ≤
T2∫

T1

√
Θ(t)dt, (3.9)

(3)

|Imα| · (T2 − T1) ≤ 2
√

2E(u, PT1,T2) ·

√√√√√√
T2∫

T1

Θ(t)dt . (3.10)

Proof In view of Definition 3.1, we have

Reα =
2π∫

0

|ut |2dθ −
2π∫

0

|uθ |2dθ, Imα = −2

2π∫

0

ut · uθ dθ.

Then by applying the following inequalities,

|(a + b) − |a|| ≤ b, |√a + b − √|a|| ≤ √
b, ∀a, b, a + b ≥ 0, b ≥ 0,

and then integrating with respect to t , we get (3.8) and (3.9). Equation (3.10) follows from
the Cauchy inequality. ��
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The next lemma is inspired by [22].

Lemma 3.5 Let u : PT1,T2 → N be a C1 map. Then

osc
PT1,T2

u ≤ 4π sup
PT1,T2

|∇u| + 1√
2π

L(u, PT1,T2). (3.11)

Proof Let (t1, θ1), (t2, θ2) ∈ PT1,T2 = [T1, T2] × S1, where T1 ≤ t1 < t2 ≤ T2. Then by the
Mean Value Theorem for integration, there exists θ0 ∈ [0, 2π] such that

t2∫

t1

|ut (t, θ0)|dt = 1

2π

2π∫

0

t2∫

t1

|ut |dtdθ. (3.12)

Hence, we have

dist(u(t1, θ1), u(t2, θ2)) ≤ dist(u(t1, θ1), u(t1, θ0)) + dist(u(t1, θ0), u(t2, θ0))

+ dist(u(t2, θ0), u(t2, θ2))

= I + I I + I I I,

It is easy to see that I + I I I ≤ ∫ 2π

0 |uθ (t1, θ)|dθ + ∫ 2π

0 |uθ (t2, θ)|dθ ≤ 4π · sup
PT1,T2

|∇u|. By

(3.12) and the Cauchy inequality, we conclude

I I ≤
t2∫

t1

|ut (t, θ0)|dt = 1

2π
·

2π∫

0

t2∫

t1

|ut |dtdθ ≤ 1√
2π

· L(u, PT1,T2).

(3.11) follows immediately. ��
Based on the neck analysis in [6], we have the following proposition, which gives a refined

“bubble domain and neck domain” decomposition for a sequence of harmonic maps from
long cylinders under certain assumptions.

Proposition 3.1 Let un ∈ C∞(Pn, N )be a sequence of harmonic maps withαn = α(un, Pn),
where Pn = [T 1

n , T 2
n ] × S1. Assume that:

(1) “Long cylinder property”

1 � T 1
n � T 2

n , i.e., lim
n→∞

1

T 1
n

= 0, lim
n→∞

T 1
n

T 2
n

= 0, (3.13)

(2) “Uniform energy bound”

E(un, Pn) ≤ Λ < ∞, (3.14)

(3) “Asymptotic boundary conditions”

lim
n→∞ ω(un, PT 1

n ,T 1
n +R) = lim

n→∞ ω(un, PT 2
n −R,T 2

n
) = 0, ∀R ≥ 1, (3.15)

lim
n→∞ osc

P
T 1

n ,T 1
n +1

un = lim
n→∞ osc

P
T 2

n −1,T 2
n

un = 0,

where

ω(u, PT1,T2) := sup
t∈[T1,T2−1]

∫

[t,t+1]×S1

|du|2.
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Then, after selection of a subsequence, which we still denote by (un, Pn), either

(I)

lim
n→∞ ω(un, Pn) = 0, (3.16)

or
(II) ∃K > 0 independent of n and 2K sequences {a1

n}, {b1
n}, {a2

n}, {b2
n}, . . . , {aK

n }, {bK
n }

such that

T 1
n ≤ a1

n � b1
n ≤ · · · ≤ aK

n � bK
n ≤ T 2

n ( here ai
n � bi

n means lim
n→∞ bi

n − ai
n =∞)

(3.17)

and

(bi
n − ai

n) � T 2
n , i.e., lim

n→∞
bi

n − ai
n

T 2
n

= 0, i = 1, 2, . . . , K . (3.18)

Denote

J j
n := [a j

n , b j
n ] × S1, j = 1, 2, . . . , K ,

I 0
n := [T 1

n , a1
n] × S1, I K

n := [bK
n , T 2

n ] × S1, I i
n := [bi

n, ai+1
n ] × S1,

i = 1, 2, . . . , K − 1.

Then

(i) ∀i = 0, 1, . . . , K , lim
n→∞ ω(un, I i

n) = 0. The maps un : I i
n → N are necks

corresponding to collapsing homotopically nontrivial curves.
(ii) ∀ j = 1, 2, . . . , K , there are finitely many harmonic maps ω j,l : S2 → N , l =

1, 2, . . . , L j , such that:

lim
n→∞ E(un, J j

n ) =
L j∑

l=1

E(ω j,l).

Proof If lim inf
n→∞ ω(un, Pn) = 0, then, after selection of a subsequence, we get (3.16). Other-

wise, w.l.o.g., we can assume that

lim
n→∞ ω(un, Pn) = lim

n→∞ sup
t∈[T 1

n ,T 2
n −1]

∫

[t,t+1]×S1

|dun |2dtdθ > 0.

Then ∃ε > 0, {tn} ∈ [T 1
n , T 2

n − 1], such that for all n large enough,
∫

[tn ,tn+1]×S1

|dun |2dtdθ ≥ ε.

It follows from the “asymptotic boundary conditions” (3.15) that tn−T 1
n → ∞ and T 2

n −tn →
∞. By translation t → t−tn , we can think of un as a harmonic map defined on [−Rn, Rn]×S1

with Rn → ∞ and∫

[0,1]×S1

|dun|2dtdθ ≥ ε,

∫

[−Rn ,Rn ]×S1

|dun |2dtdθ ≤ Λ. (3.19)
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As n → ∞, [−Rn, Rn]× S1 exhaust (−∞,∞)× S1, which is conformally equivalent to S2

with two punctures. Hence by the conformal invariance of two-dimensional harmonic maps
and the bubble tree convergence theorem, we can choose a subsequence of (un, Pn) (still
denoted by (un, Pn)) such that there exist {a1

n}, {b1
n} satisfying

T 1
n ≤ a1

n � b1
n ≤ T 2

n , (b1
n − a1

n) � T 2
n

and such that the following sequence of harmonic maps

ũ1
n(t, θ) :

[
−b1

n − a1
n

2
,

b1
n − a1

n

2

]
× S1 → N

converges to a bubble tree ũ1∞ (cf. [22]), where ũ1
n(t, θ) := un(t + a1

n+b1
n

2 , θ). Moreover,
there exist finitely many harmonic maps ω1,l : S2 → N , l = 1, 2, . . . , L1, such that

lim
n→∞ E(un, [a1

n, b1
n] × S1) = lim

n→∞ E (̃u1
n) =

L1∑
l=1

E(ω1,l). (3.20)

By (3.19), (3.20) and Theorem 2.1, we have lim sup
n→∞

E(un, Pn \([a1
n, b1

n] × S1)) ≤ Λ − ε0.

Denote

J 1
n := [a1

n, b1
n] × S1, I 0

n := [T 1
n , a1

n] × S1, I 1
n := [b1

n, T 2
n ] × S1.

Then (3.20) becomes lim
n→∞ E(un, J 1

n ) = ∑L1
l=1 E(ω1,l). After selection of a subsequence,

un : I i
n → N , i = 0, 1, satisfy the conditions (3.14) and (3.15) with Λ replaced by Λ − ε0.

Now if the following hold:

lim inf
n→∞ ω(un, I i

n) = 0, i = 0, 1,

then, after passing to a further subsequence, we finish the proof. Otherwise, we can do the
same procedure as in the beginning of the proof [note that we do not need (3.13)] and take
subsequences if necessary. The whole procedure ends within finitely many steps because of
the uniform energy bound (3.14). The proof can be completed by induction on K , the number
of the bubble trees, and reordering {ai

n, bi
n}, i = 1, 2, . . . , K . ��

Now we study the limit of the energy and average lengths of the necks

un : I i
n → N , i = 0, 1, . . . , K .

Recall that these necks satisfy limn→∞ ω(un, I i
n) = 0, hence we can apply Lemma 3.2 and

Lemma 3.4 to estimate E(un, I i
n) and L(un, I i

n).

Main Proposition 3.1 Assumptions and notations as in Proposition 3.1, w.l.o.g., we assume
that both limn→∞ |Reαn | · |Pn | and limn→∞

√|Reαn | · |Pn | exist in [0,+∞]. Then

(1) lim
n→∞

K∑
i=0

E(un, I i
n) = 1

2
lim

n→∞ |Reαn | · |Pn |, (3.21)

(2) lim
n→∞

K∑
i=0

L(un, I i
n) = lim

n→∞
√|Reαn | · |Pn |. (3.22)
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Proof We write

K∑
i=0

E(un, I i
n) =

K∑
i=0

1

2
|Reαn | · |I i

n | +
K∑

i=0

(
E(un, I i

n) − 1

2
|Reαn | · |I i

n |
)

= I + I I, (3.23)

where

I :=
K∑

i=0

1

2
|Reαn | · |I i

n |

= 1

2
|Reαn | ·

[
(T 2

n − T 1
n ) −

K∑
i=1

(bi
n − ai

n)

]

= 1

2
|Reαn | · (T 2

n − T 1
n ) ·

(
T 2

n

T 2
n − T 1

n

)
·
[(

1 − T 1
n

T 2
n

)
−

K∑
i=1

(bi
n − ai

n)

T 2
n

]
(3.24)

and

I I :=
K∑

i=0

(
E(un, I i

n) − 1

2
|Reαn | · |I i

n |
)

.

Denote Θn(t) = ∫
{t}×S1 |(un)θ |2. By Lemma 3.2, Lemma 3.4 and Proposition 3.1,

|I I | ≤
K∑

i=0

∣∣∣∣E(un, I i
n) − 1

2
|Reαn | · |I i

n |
∣∣∣∣

≤
a1

n∫

T 1
n

Θn(t)dt +
K−1∑
i=1

ai+1
n∫

bi
n

Θn(t)dt +
T 2

n∫

bK
n

Θn(t)dt

≤ C(Λ)

K∑
i=0

ω(un, I i
n) → 0, n → ∞, (3.25)

We write

K∑
i=0

L(un, I i
n) =

K∑
i=0

√|Reαn | · |I i
n | +

K∑
i=0

(L(un, I i
n) − √|Reαn | · |I i

n |)

= I I I + I V, (3.26)

where

I I I :=
K∑

i=0

√|Reαn | · |I i
n |

= √|Reαn | ·
[
(T 2

n − T 1
n ) −

K∑
i=1

(bi
n − ai

n)

]

= √|Reαn | · (T 2
n − T 1

n ) ·
(

T 2
n

T 2
n − T 1

n

)
·
[(

1 − T 1
n

T 2
n

)
−

K∑
i=1

(bi
n − ai

n)

T 2
n

]
(3.27)
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and

I V :=
K∑

i=0

(L(un, I i
n) − √|Reαn | · |I i

n |).

Applying Lemmas 3.2, 3.4 and Proposition 3.1, we get

|I V | =
K∑

i=0

|L(un, I i
n) − √|Reαn | · |I i

n ||

≤
a1

n∫

T 1
n

√
Θn(t)dt +

K−1∑
i=1

ai+1
n∫

bi
n

√
Θn(t)dt +

T 2
n∫

bK
n

√
Θn(t)dt

≤ C(Λ)

K∑
i=0

√
ω(un, I i

n) → 0, n → ∞. (3.28)

Recall the properties (3.13), (3.17) and (3.18) in Proposition 3.1, namely

1 � T 1
n � T 2

n , 1 � (bi
n − ai

n) � T 2
n , i = 1, 2, . . . , K .

Then, combining (3.23), (3.24) and (3.25), we conclude

lim
n→∞

K∑
i=0

E(un, I i
n) = lim

n→∞(I + I I ) = 1

2
lim

n→∞ |Reαn | · |Pn |.

Similarly, combining (3.26)–(3.28) gives

lim
n→∞

K∑
i=0

L(un, I i
n) = lim

n→∞(I I I + I V ) = lim
n→∞

√|Reαn | · |Pn |.

Thus we have proved (3.21) and (3.22). ��
Remark 3.3 It follows from Remark 3.1 that

α(un, I i
n) = α(un, Pn), i = 0, 1, . . . , K .

Thus, we can study the properties of the necks un : I i
n → N in a uniform way, but not

separately.

Applying similar arguments as in the proof of Main Proposition 3.1, we get

Proposition 3.2 With the same assumptions and notations as in Proposition 3.1, we have

lim sup
n→∞

|Reαn | · |Pn | ≤ 2Λ, lim sup
n→∞

|Imαn | · |Pn | = 0,

Proof By Lemmas 3.2, 3.4, Proposition 3.1 and Main Proposition 3.1. ��
Theorem 3.1 Assumptions and notations as in Proposition 3.1. Then

(1) (un, Pn) subconverge in W 1,2 modulo bubbles, i.e., in the limit, the necks contain no
energy if and only if

lim inf
n→∞ |Reαn | · |Pn | = 0. (3.29)
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(2) (un, Pn) subconverge in C0 modulo bubbles, i.e., in the limit, the images of the necks
become points if and only if

lim inf
n→∞

√|Reαn | · |Pn | = 0. (3.30)

Proof (1) The result is a direct consequence of the identity (3.21) in Main Proposition 3.1.
(2) “⇐”: If lim infn→∞

√|Reαn | · |Pn | = 0, then by Main Proposition 3.1 and passing
to subsequences if necessary, we have limn→∞ L(un, I i

n) = 0, i = 0, 1, . . . , K . On the
other hand, by “ε-regularity” and the fact that limn→∞ ω(un, I i

n) = 0, i = 0, 1, . . . , K , we
get limn→∞ supI i

n
|∇un | = 0, i = 0, 1, . . . , K . Here we used the fact that, after passing to

subsequences, the local energy of un over a neighborhood of the two boundary components
of I i

n can be arbitrary small. Finally, applying Lemma 3.5, we conclude

K∑
i=0

osc
I i
n

un ≤
K∑

i=0

(
4π · sup

I i
n

|∇un | + 1√
2π

· L(un, I i
n)

)
→ 0, n → ∞.

Thus, all necks converge to points in the target.
“⇒”: If (un, Pn) subconverges in C0 modulo bubbles, then by the bubble and neck decom-

position in Proposition 3.1 and passing to subsequences if necessary, we get

lim
n→∞ osc

I i
n

un = 0, i = 0, 1, . . . , K . (3.31)

Hence, we have un(I i
n) ⊂ B(yi , ρi ) for some yi ∈ N with ρi < min( π

2κ
, inj(yi )), where

κ2 is an upper bound on the sectional curvature of N . Fix i ∈ {0, 1, . . . , K } and write
I i
n = [t1

n , t2
n ] × S1. Then the universal cover of I i

n is

Ĩ i
n = {(t, θ) ∈ R

2, t ∈ [t1
n , t2

n ]}.
It is clear that un : I i

n → B(yi , ρi ) lifts to a harmonic map

ũn : Ĩ i
n → B(yi , ρi ).

Applying the interior gradient bound for harmonic maps [13,14], we get

|dũn(x0)| ≤ c0 max
x∈B(x0,R)

d (̃un(x), ũn(x0))

R
(3.32)

provided B(x0, R) ⊆ Ĩ i
n , where c0 is a constant depending only on N . Let t0 = t2

n +t1
n

2 and

take x0 ∈ {t0} × R. Then B(x0,
t2
n −t1

n
2 ) ⊆ Ĩ i

n , and by (3.32), we have

|dũn(x0)| ≤ 2c0

t2
n − t1

n
· osc

I i
n

ũn .

Hence, for (t0, θ) ∈ {t0} × S1,

|dun(t0, θ)| ≤ 2c0

t2
n − t1

n
· osc

I i
n

un .

It follows from Lemma 3.3 and Definition 3.1 that
√|Reαn | = |

∫

{t0}×S1

|(un)t |2 − |(un)θ |2dθ | 1
2 ≤ 2c0

t2
n − t1

n
· osc

I i
n

un . (3.33)
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Multiplying by |I i
n | = |t2

n − t1
n | on both sides of (3.33) gives
√|Reαn | · |I i

n | ≤ C0 osc
I i
n

un,

where C0 is a constant depending only on N , but not on i and n. Summing up the inequalities
on I i

n and applying (3.31), we get

K∑
i=0

√|Reαn | · |I i
n | ≤ C0

K∑
i=0

osc
I i
n

un → 0, n → ∞.

We thus conclude from Main Proposition 3.1 that

lim
n→∞

K∑
i=0

L(un, I i
n) = lim

n→∞
√|Reαn | · |Pn | = lim

n→∞

K∑
i=0

√|Reαn | · |I i
n | = 0.

��
Combining Proposition 3.1 and Main Proposition 3.1 gives the following:

Theorem 3.2 Assumptions and notations as in Main Proposition 3.1. Then there exist finitely
many harmonic spheres ω j,l : S2 → N , j = 1, 2, . . . , K ; l = 1, 2, . . . , L j , such that after
selection of a subsequence of (un, Pn), we have

lim
n→∞ E(un, Pn) =

K∑
j=1

L j∑
l=1

E(ω j,l) + 1

2
lim

n→∞ |Reαn | · |Pn |.

4 Harmonic maps from degenerating surfaces

In order to study the compactness of a sequence of harmonic maps un : Σn → N , we need
to know how the domain surface varies. We collect some well-known facts about hyperbolic
Riemann surface theory and refer to [1,2,12] for more details.
Hyperbolic Riemann surfaces. We only consider surfaces without boundary. A Riemann
surface (Σ, c) is an orientable surface with a complex structure c. A hyperbolic surface
(Σ, h) is an oriented surface with a complete Riemannian metric h of constant curvature −1
having finite area. The topological type of a surface is determined by its signature (g, k),
where k is the number of punctures and g is the genus of the surface obtained by adding a
point at each puncture. The type (g, k) is called general if

2g + k > 2.

By the uniformization theorem, every Riemann surface of general type can be represented
as a quotient H/Γ , where H is the Poincaré upper half plane and Γ is a Fuchsian group.
Thus, it inherits a hyperbolic metric, where the punctures become ends. Conversely, for any
hyperbolic surface (Σ, h), the induced complex structure extends uniquely to a conformal
structure on the compact surface obtained by adding a point at each puncture. In fact, there
is a natural one-to-one correspondence between complex structures and hyperbolic metrics
on surfaces of general type.

Two surfaces Σ,Σ ′ of type (g, k) are called equivalent if there exists a conformal diffeo-
morphism Σ → Σ ′ preserving the punctures (if there are any). The space of equivalence
classes is called the moduli space Mg,k of Riemann surfaces of type (g, k). The moduli
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space Mg,k in general has certain singularities and thus does not admit a C∞-structure. It
has a covering space that is a manifold, namely the corresponding Teichmüller space. To this
end, we fix a topological model surface Σ0 of genus g with k punctures and then consider
marked surfaces (Σ, f ), where Σ is a Riemann surface of type (g, k), and f : Σ → Σ0

is a homeomorphism preserving the punctures. Two marked surfaces (Σ, f ) and (Σ ′, f ′)
are called equivalent if there exists a conformal diffeomorphism Σ → Σ ′ homotopic to
f ′−1 ◦ f . The space of equivalence classes is called the Teichmüller space Tg,k of Riemann
surfaces of type (g, k).

Now we consider closed Riemann surfaces of genus g > 1. Any such surface is of general
type and it acquires a complete hyperbolic metric. Thus, we are working on the compactness
of a sequence of harmonic maps whose domain surface Σ varies in Mg . Ideally, we hope
the domain varies in a compact region. Unfortunately, the moduli space Mg is non-compact
because the conformal structure on Σ can degenerate. The following lemma [18] shows that
the only process by which the conformal structure on Σ can degenerate is the shrinking of
simple closed geodesics on Σ . We represent Σ as a quotient H/Γ .

Lemma 4.1 Let {Γn} be a sequence of Fuchsian groups which are isomorphic as abstract
groups and with non-singular compact quotients H/Γn. Suppose the lengths of simple clo-
sed geodesics on H/Γn are uniformly bounded from below by a positive constant. Then a
subsequence of {Γn} converges to some Fuchsian group Γ which is isomorphic to all Γn.
The convergence can be interpreted as the convergence of suitably normalized fundamental
regions.

The natural way to compactify Mg , then, is to allow the lengths of the geodesics to become
zero and thus admit surfaces with nodes as singularities. Topologically, one cuts the surface
at a collection of finitely many homotopically independent pairwise disjoint simple closed
curves and pinches the cut curves to points. This yields the Deligne–Mumford compactifica-
tion Mg , whose boundary Mg\Mg consists of surfaces with nodes [5]. On Tg , one can use
Fenchel–Nielsen coordinates to describe this process and obtain the corresponding partial
compactification T g (cf. [1,2]).

Here, following [12], we describe this process in terms of hyperbolic surface theory. Let
Σ0 be a topological model surface and E J = {γ j , j ∈ J } a possibly empty collection of
finitely many pairwise disjoint, homotopically nontrivial, simple closed curves on Σ0. Let Σ̃

be the surface obtained from Σ0 by pinching all curves γ j to points E j . We remove all E j from
Σ̃ and place a complete hyperbolic metric h on the resulting surface Σ = Σ̃ \ ∪ j∈J E j . For
j ∈ J , we denote by (E j,1, E j,2) a pair of punctures on (Σ, h) corresponding to E j . Denote by
Σ the surface obtained by adding a point at each puncture of Σ . Then the complex structure
c on Σ that is compatible with the hyperbolic structure h extends to a complex structure c
on Σ . (Σ̃, h, c) is called a nodal surface. (Σ, c) is called the normalization of (Σ̃, h, c) or
(Σ, h, c). Σ is a surface of lower topological type.

Let (Σn, hn, cn) be a sequence of closed hyperbolic Riemann surfaces of genus g > 1. We
say that (Σn, hn, cn) converges to a nodal surface (Σ̃, h, c) or a hyperbolic surface (Σ, h, c),
if there exist possibly empty collections E J

n = {γ j
n , j ∈ J } of finitely many pairwise disjoint

simple closed geodesics on each (Σn, hn, cn) and continuous maps τn : Σn → Σ̃ with
τn(γ

j
n ) = E j for j ∈ J and each n, such that:

(1) The lengths �(γ
j

n ) = l j
n → 0 for all j ∈ J .

(2) τn : Σn \∪ j∈J γ
j

n → Σ is a diffeomorphism for each n.
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(3) (τn)∗hn → h in C∞
loc on Σ .

(4) (τn)∗cn → c in C∞
loc on Σ .

By the thick–thin decomposition of a closed hyperbolic surface of genus g > 1, the number
of small simple closed geodesics (of lengths < 2arcsinh(1)) is bounded by 3g − 3 (cf. [12],
Lemma IV.4.1). Thus, we have 0 ≤ |J | ≤ 3g−3. If |J | > 0, we say (Σn, hn, cn) degenerates
to a nodal surface (Σ̃, h, c) or a hyperbolic surface (Σ, h, c). Using our notations, we state
the following proposition and refer to [12] for a detailed proof.

Proposition 4.1 Let (Σn, hn, cn) be a sequence of closed hyperbolic Riemann surfaces of
genus g > 1. Then, after selection of a subsequence, (Σn, hn, cn) converges to a nodal
surface (Σ̃, h, c) or a hyperbolic surface (Σ, h, c).

Thus, the analysis of the degeneration of hyperbolic surfaces is reduced to the local
behaviour of the pinched geodesics. A fundamental tool to realize this localization is the
following collar lemma [9,15,21,27]. We again represent a closed Riemann surface of genus
g > 1 as a quotient H/Γ .

Lemma 4.2 Let γ be a simple closed geodesic of length �(γ ) = l in H/Γ . Then there is a
collar of area l

sinh( l
2 )

around γ , i.e., H/Γ contains an isometric copy of the region

A =
{

z = reiφ ∈ H : 1 ≤ r ≤ el , arctan

(
sinh

(
l

2

))
< φ < π − arctan

(
sinh

(
l

2

))}
,

(4.1)

where γ corresponds to {rei π
2 ∈ H : 1 ≤ r ≤ el}, and the lines {r = 1}, {r = el} are

identified via z → el z.

This collar neighborhood is a topological cylinder and its geometry is determined by the
length of the core geodesic and is hence independent of the surface. There are other versions
of the collar in terms of different coordinates, for example, a hyperbolic cylinder with Fermi
coordinates [2]. In view of the results developed in Sect. 3, we need a standard cylindrical
version of the collar (4.1). To this end, we consider the following conformal transformation:

reiφ → (t, θ) =
(

2π

l
φ,

2π

l
log r

)
. (4.2)

Then the collar A in Lemma 4.2 is isometric to the following cylinder:

P =
{
(t, θ) : 2π

l
arctan

(
sinh

(
l

2

))
< t <

2π

l

(
π − arctan

(
sinh

(
l

2

)))
, 0 ≤ θ ≤ 2π

}

(4.3)

with metric

ds2 =
(

l

2π sin lt
2π

)2 (
dt2 + dθ2) ;

here γ ⊂ A corresponds to {t = π2

l } ⊂ P , and the lines {θ = 0},{θ = 2π} in (4.3) are
identified.
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Let injrad(φ, r) be the injectivity radius at the point (φ, r) of A. Then, by results from
hyperbolic trigonometry (see [12], Example 5.5 or [2], Chapter 2), one can verify that

sinh(injrad(φ, r)) sin(φ) = sinh

(
l

2

)
, (φ, r) ∈ A. (4.4)

Hence, applying the isometric transformation (4.2), we have

sinh(injrad(t, θ)) sin

(
lt

2π

)
= sinh

(
l

2

)
, (t, θ) ∈ P, (4.5)

where injrad(t, θ) is the injectivity radius at the point (t, θ) of P .

Remark 4.1 (4.4) and (4.5) are very useful in that they give explicit expressions of the
injectivity radius in terms of two different coordinates of the points in the collar.

Generalized energy identity. Consider a sequence of harmonic maps

un : (Σn, hn, cn) → N , (4.6)

with uniformly bounded energy E(un,Σn) ≤ Λ < ∞, where (Σn, hn, cn) is a sequence
of closed hyperbolic Riemann surfaces of genus g > 1 with hyperbolic metrics hn and
compatible complex structures cn . We are only interested in the case that degeneration occurs.
Thus, by Proposition 4.1, we can assume that (Σn, hn, cn) converges to a hyperbolic Riemann
surface (Σ, h, c) by collapsing p (1 ≤ p ≤ 3g−3) pairwise disjoint simple closed geodesics
γ

j
n , j = 1, 2, . . . , p. Denote the hn-length of γ

j
n by l j

n . Then in the degeneration (n → ∞),
we have l j

n → 0, j = 1, 2, . . . , p. For each j , the geodesics γ
j

n degenerate into a pair of
punctures (E j,1, E j,2).

Proof of Theorem 1.1 We first consider the simpler case that p = 1 and hence omit the
indices j . Since limn→∞ ln = 0, w.l.o.g., we assume that ln ≤ 2arcsinh(1) for all n. Let Pn

be the cylindrical collar aboutγn given by (4.3) and letαn = α(un, Pn)be the complex number
associated to un along the collar Pn as in Definition 3.1. After passing to a subsequence, we
can assume that the limit

lim
n→∞ |Reαn | · π2

ln

exists in [0,∞]. We will eventually see that the limit is finite, since the total energy of un is
uniformly bounded.

For 0 < δ < arcsinh(1), let Σδ := {z ∈ Σ, injrad(z; h) ≥ δ} be the δ-thick part of the
hyperbolic surface (Σ, h). Recall that there are diffeomorphisms τn : Σn \ γn → Σ such
that ((τn)∗hn, (τn)∗cn) converges to (h, c) in C∞

loc on Σ . Set

un = (τn)∗un, hn = (τn)∗hn, cn = (τn)∗cn,

and consider the following sequence of harmonic maps:

un : (Σ, hn, cn) → N .

Then for each fixed δ > 0, (hn, cn) converges to (h, c) in C∞ on Σδ . Choose a fixed sequence
δn ↘ 0 such that Σδn exhaust Σ . Then by Theorem 2.2 and a standard diagonal argument,
there exist finitely many blow-up points {x1, x2, . . . , xI } ⊂ Σ which are away from the
punctures (E1, E2), finitely many harmonic maps σ i,l : S2 → N , l = 1, 2, . . . , Li , near the
i-th blow-up point xi and a harmonic map u : (Σ, h, c) → N such that, after selection of a
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subsequence of (un,Σn), un : (Σδn , hn, cn) → N converges in C∞
loc to u on Σ . u extends

smoothly to the normalization (Σ, c) of (Σ, h, c). Moreover, the following holds:

lim
n→∞ E(un, τ−1

n (Σδn )) = lim
n→∞ E(un,Σδn ) = E(u) +

I∑
i=1

Li∑
l=1

E(σ i,l). (4.7)

It should be remarked that the subsequence (un,Σn) can be taken in such a way that
limn→∞ osc∂Σδn un = 0, or equivalently, limn→∞ osc

∂(Σn\τ−1
n (Σδn ))

un = 0.

To recover the energy concentration at the punctures (E1, E2), we have to study (un,Σ \
Σδn ), or equivalently, (un,Σn\τ−1

n (Σδn )). For each n and δ, Σn\τ−1
n (Σδ) is not the δ-thin

part of (Σn, hn). However, we claim that for fixed small δ > 0 and for n sufficiently large,
Σn \τ−1

n (Σδ) is almost the δ-thin part of (Σn, hn).
To see this, fix δ > 0 small and let z ∈ Σ be a point satisfying injrad(z; h) = δ. Since

(τn)∗hn converges to h in C∞
loc on Σ , then for all δ1, δ2 > 0 such that δ1 < δ < δ2, the

following holds:

δ1 < injrad(z; (τn)∗hn) < δ2, for all n large enough. (4.8)

Recall that for 0 < δ < arcsinh(1), the δ-thin part of a hyperbolic surface is either an annulus
or a cusp (cf. [12], Proposition IV.4.2). For n ≥ 1 and δ ∈ [ ln

2 , arcsinh(1)], let us see what
the δ-thin part of (Σn, hn) looks like. Recall that Pn is the cylindrical collar about γn . Now,
we define the following δ-subcollars of Pn

Pδ
n := [

T 1,δ
n , T 2,δ

n

] × S1 ⊆ Pn, (4.9)

where

T 1,δ
n = 2π

ln
arcsin

(
sinh( ln

2 )

sinh δ

)
, T 2,δ

n = 2π2

ln
− 2π

ln
arcsin

(
sinh( ln

2 )

sinh δ

)
. (4.10)

By (4.5), one can verify that Pδ
n is exactly the δ-thin part of (Σn, hn), namely

Pδ
n = {z ∈ Σn, injrad(z; hn) ≤ δ}. (4.11)

Thus, fix δ > 0 small, for all δ1, δ2 > 0 satisfying ln
2 < δ1 < δ < δ2 < arcsinh(1), it follows

from (4.8) and (4.11) that

Pδ1
n ⊆ Σn \τ−1

n (Σδ) ⊆ Pδ2
n , for all n large enough. (4.12)

If we choose δ1, δ2 in (4.12) sufficiently close to δ, then for n large enough, Σn\τ−1
n (Σδ) is

almost the δ-thin part Pδ
n of (Σn, hn). Thus we have verified our claim.

For δ > 0 small and for n large enough, denote

Ωδ
n := {(Σn \τ−1

n (Σδ))\Pδ
n } ∪ {Pδ

n \(Σn \τ−1
n (Σδ))}.

Note that Pn are equipped with hyperbolic metrics which are conformal to dt2 + dθ2. By
the conformal invariance of harmonic maps, we can replace the hyperbolic metrics with the
metric dt2 + dθ2. Recall that lim

n→∞ osc
∂(Σn\τ−1

n (Σδn ))
un = 0. By applying “ε-regularity” and

taking subsequences, we have

lim
n→∞ oscΩδ

n
un = 0, lim

n→∞ E(un,Ωδ
n) = 0.

Thus, after passing to further subsequences, we conclude

lim
n→∞ E(un,Σn \ τ−1

n (Σδn )) = lim
n→∞ E(un, Pδn

n ). (4.13)
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Now the energy concentration at the punctures is reduced to the study of (un, Pδn
n ). In view

of (4.9) and (4.10), by choosing further subsequences of (un,Σn), we have

|Pδn
n | = 2π2

ln
− 4π

ln
arcsin

⎛
⎝ sinh

(
ln
2

)

sinh δn

⎞
⎠ = 2π2

ln
(1 + o(1)), n → ∞.

To apply Theorem 3.2 with domain cylinders Pδn
n , we see that the first two conditions, the

“long cylinder property”(3.13) and the “uniform energy bound”(3.14), are satisfied. We need
to check the “asymptotic boundary conditions”(3.15). For any fixed R ≥ 0 and for fixed
small δ > 0, denote

A1
n(δ, R) := [T 1,δ

n − 1, T 1,δ
n + R] × S1, A2

n(δ, R) := [T 2,δ
n − R, T 2,δ

n + 1] × S1.

Then by (4.5), one can verify that the injectivity radii of the points in Ai
n(δ, R), i = 1, 2,

are uniformly bounded from below by a positive constant as n → ∞. Hence the images
τn(Ai

n(δ, R)), i = 1, 2 are uniformly away from the punctures of Σ . Moreover, the energies∑
i E(un, Ai

n(δ, R)) can be uniformly controlled by E(u,Σ\Σδ′
) (for some δ′ > δ), which

goes to 0 as δ′ → 0. Thus, after passing to subsequences, one can verify the “asymptotic
boundary conditions”. Now, by Theorem 3.2, there exist finitely many harmonic maps ωk :
S2 → N , k = 1, 2, . . . , K , such that after selection of a subsequence, the following holds:

lim
n→∞ E(un, Pδn

n ) =
K∑

k=1

E(ωk) + lim
n→∞ |Reαn | · π2

ln
. (4.14)

Combining (4.7), (4.13) and (4.14) gives

lim
n→∞ E(un) = E(u) +

I∑
i=1

Li∑
l=1

E(σ i,l) +
K∑

k=1

E(ωk) + lim
n→∞ |Reα| · π2

ln
.

Finally, we consider the general case p > 1. By the thick-thin decomposition of hyperbolic
surfaces (cf. [12], Lemma IV.4.1 and Proposition IV.4.2), both the short simple closed geo-
desics [of lengths < 2arcsinh(1)] and the corresponding arcsinh(1)-thin parts of the collars
around them are pairwise disjoint. Hence we can deal with the corresponding subcollars
separately, and the remaining proof is analogous to the simpler case. This completes the
proof. ��

Proof of Theorem 1.2 W.l.o.g., we assume that p = 1 and the limit lim inf
n→∞

√|Reαn | · π2

ln
exist in [0,∞]. Then the results follow from applying Theorem 3.1 with domain cylinders
Pδn

n as in the proof of Theorem 1.1. ��
Proof of Proposition 1.1 By Theorem 1.1 and Proposition 3.2. ��
Asymptotic behaviour. For each j , the asymptotic behaviour of the necks appearing near
the j-th node is characterized by {(α j

n , l j
n )}∞n=1, namely

E j ≈ |Reα j
n | · π2

l j
n

, L j ≈
√

|Reα j
n | · π2

l j
n

, (4.15)

where E j is the sum of the energies of the necks and L j is the sum of the average lengths of
the necks. In general, we have the following four cases as n → ∞:
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(1) E j → E0, L j → ∞,

(2) E j → 0, L j → ∞,

(3) E j → 0, L j → L0,

(4) E j → 0, L j → 0.

Here E0 ∈ (0,Λ] and L0 ∈ (0,∞) are two constants.

Remark 4.2 (1) If un : (Σ, hn) → (N , g) are conformal harmonic maps (i.e., minimal
surfaces, in particular, pseudo-holomorphic curves [8]), i.e., Φ(un) ≡ 0, then it is easy
to verify that α

j
n ≡ 0, for all n and j . It follows immediately that

lim inf
n→∞ |Reα j

n | · π2

l j
n

= 0, lim inf
n→∞

√
|Reα j

n | · π2

l j
n

= 0, ∀ j = 1, 2, . . . , p.

(2) If, in addition, we assume that un is an energy-minimizing sequence in the same homo-
topy class, then, using a replacing argument from [4], one can show that in the limit

the lengths of the necks are all finite, i.e., lim infn→∞
√

|Reα j
n | · π2

l j
n

< ∞ for each j ,

which yields

lim inf
n→∞ |Reα j

n | · π2

l j
n

= 0, ∀ j = 1, 2, . . . , p.

(3) When the domain surfaces are degenerating tori, the problem is simpler for two rea-
sons. Firstly, the moduli space of complex structures on the torus is simple. Secondly,
any holomorphic quadratic differential on a torus is a constant. We refer to [40] for
more details. It is worth mentioning that Parker’s example [22] illustrates the asympto-
tics that the necks become longer and longer geodesics and carry a certain amount of
energy. Some modifications to his example can illustrate the four cases of asymptotics
mentioned, see [40].
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