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Abstract We study the design of price mechanisms for communication network
problems in which a user’s utility depends on the amount of flow she sends through
the network, and the congestion on each link depends on the total traffic flows over
it. The price mechanisms are characterized by a set of axioms that have been adopted
in the cost-sharing games, and we search for the price mechanisms that provide the
minimum price of anarchy. We show that, given the non-decreasing and concave util-
ities of users and the convex quadratic congestion costs in each link, if the price
mechanism cannot depend on utility functions, the best achievable price of anarchy is
4(3 − 2

√
2) ≈ 31.4%. Thus, the popular marginal cost pricing with price of anarchy

less than 1/3 ≈ 33.3% is nearly optimal. We also investigate the scenario in which
the price mechanisms can be made contingent on the users’ preference profile while
such information is available.
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1 Introduction

We consider a communication network in which a set of users require services from
links in the network. The utility of a user depends on the amount of flow she sends
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through the network, and the congestion on each link depends on the total traffic flows
over it. Typically, in the centralized system, the system designer has full control over
the flows and aims at maximizing the users’ aggregate utility net the congestion cost.
As such control is impossible in the decentralized system, congestion pricing, i.e.,
imposing surcharges on users while sending the communication flows, has been pro-
posed to align the users’ incentives. These mechanisms treat the network as a collection
of scarce resources, and allocate these resources among competing streams through
a price scheme that depends on the congestion cost; see [23] for a comprehensive
survey. Among those congestion pricing schemes, the common price mechanism is of
particular interest. In a common price mechanism, users choose communication flows
via each available path, but they are charged a common unit price in each link for
the rate they send through that link. Such a mechanism avoids the burden of keeping
track of link flows from each user and balances the trade-off between simplicity and
efficiency for network flow allocations. Moreover, it eliminates the users’ incentives
to split their requests of communication flows or to submit a common request and then
redistribute the flows.

The proportionally-fair price mechanism proposed by [12] is an example of the
common price mechanism. Specifically, under this price mechanism, the users are
charged proportional to the shares of resource they use; the specific weights used in
their mechanism follow from the shadow prices that capture their impacts on the net-
works. Despite its simplicity, Kelly et al. show that the centralized solution can be
achieved when the users are price takers, i.e., they do not anticipate the consequence
of price change in response to their communication flows. However, this remarkable
result does not hold if price anticipation exists [34]. When the price anticipation is
considered, the decentralized behavior exhibits a Nash equilibrium, in which each user
chooses a communication flow profile that is her best response against other users’
decisions. Johari and Tsitsiklis [11] elaborate on such strategic interactions among
users and establish the efficiency guarantee under the marginal cost pricing, i.e., the
price charged to a user corresponds to the incremental cost that arises from the users’
flow requests by one additional unit of flow.

A natural question is whether there exists a mechanism for communication net-
works better than the marginal cost pricing. In fact, the network resource allocation
falls into a broad category of cost-sharing games, in which users share the joint output,
but incur costs individually for their contributions [35]. In the economics literature,
many price mechanisms have been proposed for allocating the joint costs to align the
users’ incentives, whereas the marginal cost pricing is merely one of these alterna-
tives. Other popular price mechanisms include, e.g., the Aumann-Shapley pricing, the
average cost pricing, and the Ramsey pricing (see [32]).

To study the design of price mechanisms for communication networks, we adopt
the axiomatic approach to confine the set of price schemes and characterize the price
mechanisms that achieve the minimum price of anarchy. The price of anarchy can be
informally stated as the worst case efficiency loss of equilibria under a given mech-
anism [14]. Its central idea is to provide a lower bound for the ratio of aggregate
payoff in any Nash equilibrium over that of the centralized solution—this is denoted
as the coordination ratio. Price of anarchy has been applied in various areas, including
transportation problems, resource allocation of network bandwidths, communication
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network design, competitive dynamic pricing, supply chain management, and alloca-
tion of divisible goods; see the excellent survey by [23]. Notably, price of anarchy
also coincides with the worst case ratio or the performance guarantee of the online
algorithms as well as approximation algorithms for NP-hard problems. In this paper, a
price mechanism is said to be better than another if it provides a smaller price of anar-
chy. This, however, does not imply the dominance between two mechanisms either for
every instance or on average. For ease of presentation, even though price of anarchy
and efficiency loss are interchangeable and are both widely used in the literature, we
in the sequel use price of anarchy throughout to avoid confusion.

The axiomatic approach follows closely the literature on cost-sharing games. In
this literature, the axiomatic approach is one of the main themes because it provides a
normative justification in purely economic terms for mechanisms that are considered
desirable. In particular, our candidate mechanisms are characterized by four axioms
(rescaling, additivity, positivity, and weak consistency) proposed by [28]; these axi-
oms are adopted and investigated in various papers, including [4,13,19], and [31].
These price mechanisms include some popular schemes with various applications
such as Aumann-Shapley pricing [3], average cost sharing scheme [21], and marginal
cost pricing; hence, they are natural candidates of our network allocation problem.
Moreover, this allows us to compare the optimal price mechanism to the marginal
cost pricing, the benchmark mechanism that has been investigated by [11]. Further,
since [11] have established that the price of anarchy is at most 1/3 ≈ 33.3% under
the marginal cost pricing, a constant performance bound is guaranteed to exist in this
class of price mechanisms, thereby making our pricing design problem meaningful.
In Sect. 3.1, we provide detailed illustrations of these axioms and the rationale behind
those popular axioms.

We make similar assumptions on model characteristics as those in [11]. In partic-
ular, we assume that a user’s utility depends only on the aggregate flow (throughput)
she sends through the network, regardless of the paths she chooses; nevertheless, the
congestion cost is incurred on a per link basis to represent the aggregate disutility of the
users that use the same link. Users’ utility functions are non-decreasing and concave,
and the congestion cost of each link is a convex and quadratic function of aggregate
flow. Note that the quadratic structure is equivalent to the affine marginal latency
assumption in [26] for transportation networks. The affine marginal cost assumption
serves as the first-order approximation when detailed descriptions of cost per link are
either unavailable or unimportant, and it is still quite rich in the recent literature (see
[2,6,11,26,27], and references therein). It is also worth noting that the monetary cost
is substituted for latency only under this affine assumption.

We show that, given the non-decreasing and concave utilities of users and the con-
vex quadratic congestion costs in each link, if the price mechanism cannot depend
on utility functions, the best achievable price of anarchy is 4(3 − 2

√
2) ≈ 31.4%.

To obtain this bound, it is crucial that the congestion costs are decomposable and
the users’ utilities depend merely on aggregate flows. Hence, the inherent nature of
communication flow problems leads to an efficient scalable price mechanism. The
marginal cost pricing studied in [11] falls into this category, and that the price of anar-
chy is 1/3 ≈ 33.3% implies it is nearly optimal even when price anticipation exists.
Our result may justify why the marginal cost pricing is adopted in cost-sharing games.
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We also investigate the scenario in which the users’ utility profile is publicly known,
and show that whether efficiency can be achieved critically depends on the properties
of the users’ utilities.

Our paper is closely related to [11]. The main contribution of [11] is to derive the
price of anarchy for the marginal cost pricing, while our paper focuses on the char-
acterization of the optimal pricing mechanism. Furthermore, our approach to derive
price of anarchy for a given mechanism is different from that in [11]. They prove that
worst case scenarios can be identified through a sequence of optimization problems,
and then obtain price of anarchy after solving the Nash equilibria in detail for the
worst cases. On the contrary, we obtain bounds directly from subgradient inequalities
that represent the equilibrium conditions. We further provide tight bounds that are
contingent on the number of users. Another closely related work is a recent paper
by [20], who compares the serial, average, and incremental cost sharing rules for the
single-output environment. Nevertheless, he includes the prices paid by users as sur-
plus loss and excludes the aggregate system cost–which he calls the parsimonious
computation. Based on this alternate accounting, he shows that all three methods do
not offer a non-vanishing efficiency guarantee, but asymptotically serial cost sharing
outperforms the others. Unlike his work, our paper incorporates the network structure,
adopts the conventional definition of the aggregate surplus, and addresses optimal
mechanism design.

The rest of this paper is organized as follows. In Sect. 2, we present the model
setting. In Sect. 3, we first introduce the four axioms, and then focus on the single-link
case and characterize price mechanisms that satisfy those axioms. Section 4 analyzes
the price of anarchy when price mechanisms cannot depend on users’ preferences.
In Sect. 5, we allow the dependence on users’ preferences, and obtain the price of
anarchy for single-link problems. Section 6 concludes.

2 The model

We consider a communication network in which a set of users I (where |I | = n ≥ 2)
require services from links in the network. User i ∈ I can choose an amount of flow
qi from her position to the desired destinations through a number of paths. Let �i

be the set of paths that are available to user i , and define path p ∈ �i if path p is
available to user i . Define the entire set of paths � = ⋃

i∈I �i . For user i , we have
qi = ∑

p∈�i
qip, where qip is the flow over path p. Let E be the set of links, and

e = 1, . . . , |E | denote the indices of the links in the network. A link e satisfies e ∈ p
if path p goes through e. We use yie to denote the total flow that user i sends via link
e. From the flow conservation, yie = ∑

p:p∈�i ,e∈p qip, for any i ∈ I and e ∈ E .

The congestion cost in a link depends on its aggregate traffic flow; thus, we use
Ce(Qe) to represent this congestion cost, where Qe ≡ ∑

i∈I yie is the aggregate traffic
flow on link e. In this paper, we are primarily interested in the case with quadratic
cost structure, i.e., Ce(Qe) = be Qe + (1/2)ae Q2

e , where constants be ≥ 0, ae > 0.
In Sect. 4.3, we investigate the scenario in which price mechanisms are extended to
incorporate general continuous cost structure. We let Q ≡ (Q1, . . . , Q|E |) ∈ R|E |

+
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represent the traffic flows in this network, where Rm+ denotes the set of all m-dimen-
sional nonnegative vectors and R+ ≡ R1+.

Now we introduce the users’ payoffs. User i gets gross payoff Ui (qi ) while sending
flow qi , where Ui (·) is nonnegative, increasing, and concave. From the fact that Ui (qi )

depends on user i’s total traffic flow qi , users do not discriminate against any path.
When users’ utilities are linear, we define Ui (qi ) = ui qi , where ui ’s are nonnegative
constants, and u1 = maxi∈I ui without loss of generality. In the single-link problem,
we suppress the subscripts associated with the link. That is, C(Q) = bQ + (1/2)aQ2,
where Q = ∑

i∈I qi .

2.1 Centralized system

The centralized solution is the allocation {qip} that solves the optimization problem:

max
qip≥0

n∑

i=1

Ui

⎛

⎝
∑

p∈�i

qip

⎞

⎠−
|E |∑

e=1

Ce

(
n∑

i=1

∑

p:e∈p

qip

)

.

Let {q∗
i p}’s and {Q∗

e}’s denote respectively the planned flows on paths and links, and
�∗ denotes the aggregate payoff under this allocation. Recall that for any m ∈ N , a
vector ξ ∈ Rm is called a subgradient of a concave function f : Rm → R at x ∈ Rm

if

f (x
′
) ≤ f (x) + ξ(x

′ − x)T , ∀x
′ ∈ Rm,

where yT is the transpose of vector y. With the quadratic cost structure, we assume
that

Assumption 1 There exist i ∈ I and p ∈ �i such that ξ −∑
e∈p be > 0, where ξ is

a subgradient of Ui (·) at 0.

Assumption 1 eliminates trivial cases where {q∗
i p = 0, ∀p ∈ �i , ∀i ∈ I } is the

centralized solution. To see this, if {q∗
i p = 0, ∀p ∈ �i , ∀i ∈ I } were the centralized

solution, the Karush-Kuhn-Tucker (KKT) condition would imply that sending any
infinitesimal flow via any path is unprofitable, which contradicts Assumption 1.

Now we derive the centralized solution for a special case, namely the single-link
problem when users possess linear utility functions. This simple case not only is
illustrative but will be recalled intensively for our analysis later on. Note that in this
case, Assumption 1 implies that u1 > b. The central planner’s problem becomes
maxq

{∑
i ui qi − (bQ + (1/2)aQ2)| s.t. qi ≥ 0, ∀i ∈ I

}
. Since all quantities have

the same impact on the aggregate cost bQ + (1/2)aQ2, it is always optimal to allo-
cate q1 = Q and for all other users qi = 0. The centralized solution boils down to
a quadratic maximization problem maxq1≥0{u1q1 − bq1 − (1/2)aq2

1 }. Applying the
first-order condition, the centralized solution is q∗

1 = Q∗ = (u1 − b)/a, which yields
the aggregate payoff �∗ = (u1 − b)2/(2a).
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2.2 Nash equilibrium

Now we introduce the decentralized system. The price mechanism P(C, Q) ≡
(P1(C, Q), . . . , P|E |(C, Q)) specifies the common price charged per link, where
C denotes the aggregate cost function. Given P(C, Q), user i’s net payoff is
Ui (qi ) −∑p∈�i

qip
∑

e∈p Pe(C, Q) (i.e., the gross payoff net the prices paid in each
link). The equilibrium concept is Nash equilibrium, and we focus on pure-strategy
equilibria throughout this paper. In a Nash equilibrium, each user’s strategy (i.e.,
flows {qip, p ∈ �i }) is her best response given all others’ strategies [8]. Note that
these flows depend on the price mechanism P(C, Q). In the sequel, we suppress this
dependence for ease of presentation.

More specifically, suppose that the flow profiles {qip, p ∈ �i , i ∈ I } correspond to
a Nash equilibrium given P, and denote

{
qi , q−i

}
as the flow profile while replacing

user i’s strategies in {qip}’s by {qip}p∈�i . A Nash equilibrium requires that for every
user i,

{qip}p∈�i ∈ argmax{qip≥0}

⎧
⎨

⎩
Ui

⎛

⎝
∑

p∈�i

qip

⎞

⎠−
∑

p∈�i

qip

∑

e∈p

Pe
(
Ce,

{
qi , q−i

})
⎫
⎬

⎭
,

(1)

where {qip}p∈�i is the flow profile selected by user i . Let

�({qip}) =
∑

i∈I

Ui (qi ) −
∑

e∈E

[

be Qe + 1

2
ae Q

2
e

]

be the aggregate payoff, where qi = ∑
p∈�i

q̄i p, and Q̄e = ∑
i∈I
∑

p:e∈p,p∈�i
q̄i p.

Note that the prices charged on users do not contribute to the aggregate payoff, but
they affect users’ payoffs and behavior in equilibrium. Moreover, the aggregate prices
paid by users may not be equal to the aggregate cost, i.e., price mechanisms need not
be budget balancing.

As we demonstrate in Sects. 3 and 4, a Nash equilibrium typically exists for the
general network case; however, the uniqueness can only be guaranteed if we restrict
ourselves to the single-link problem. Since there may exist multiple equilibria given a
price mechanism, we denote �̄ = min{q̄i p} �̄({q̄i p}), and the worst case coordination
ratio (efficiency) under price mechanism P is defined as min{�̄/�∗}, where the mini-
mum is taken over all network structures, all Nash equilibria, all utility profiles, and all
quadratic cost functions. Note that �̄ is the aggregate payoff of the worst equilibrium
because we are unable to coordinate the users into choosing a particular equilibrium.
The price of anarchy is defined as 1−min{�̄/�∗}. Assumption 1 and Ui (qi ) ≥ 0, for
all qi ≥ 0, guarantee that the denominator, i.e., the social surplus under the centralized
solution, is always strictly positive. Therefore, the coordination ratio is well-defined.

Since users’ behavior depends crucially on the price mechanism P, in the next
section we focus on the selection of price mechanisms.
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3 Price mechanisms and axiomatic approach

In this section, we first review the axiomatic approach and introduce four axioms, and
then focus on single-link problems to characterize price schemes that satisfy these
axioms. In the end we discuss the existence and uniqueness of Nash equilibrium for
the single-link problems.

3.1 Axiomatic approach and the four axioms

The axiomatic approach of cost sharing problems was first introduced by Aumann
and Shapley, where they consider values of cooperative non-atomic games, see [32]
for an extensive survey. Since then, the attention of economists has been put mainly
on the axiomatic characterization of existing allocation rules (e.g., [18,28]), and the
development of new sharing rules by pre-selecting a set of desirable axioms, see [7]
and [22]. In this paper, we will focus on the price mechanisms under which users are
charged a common unit price [32]. Samet and Tauman [28] find four axioms (rescaling,
weak consistency, additivity, and positivity) that characterize a family of mechanisms,
which include the marginal cost pricing and the Aumann-Shapley price. The marginal
cost pricing can be characterized axiomatically by strengthening the positivity axiom,
and the Aumann-Shapley price is the only cost-sharing mechanism that satisfies the
above four axioms. These price mechanisms have been adopted due to their simplicity.

Since these price mechanisms have been adopted and include the benchmark
case (the marginal cost pricing studied in [11]), they shall be natural candidates
for our network allocation problem. Recall that Pl(C, Q) is the unit price for link
l if the cost structure is C(Q) ≡ C(Q1, . . . , Qm) and the flow profile is Q, and
Pm(C, Q) ≡ (P1(C, Q), . . . , Pm(C, Q)) is the price vector. In our network model,
the aggregate cost is quadratic and separable, i.e., C(Q) = ∑

e∈E Ce(Qe) =∑
e∈E

(
be Qe + (1/2)ae Q2

e

)
. Note that these axioms are defined for general cost struc-

ture C(Q) ≡ C(Q1, . . . , Qm) for arbitrary cost-sharing games, where the integer
m > 0 is the number of distinct outputs and Q1, . . . , Qm are the aggregate amounts
of these outputs.

The definitions and interpretations of these axioms are stated in the following.

Axiom 1 (Rescaling). Let α1, . . . , αm be m positive numbers. If C(Q) = F(α1 Q1,

. . . , αm Qm), for all Q ∈ Rm+ , then Pl(C, Q) = αl Pl(F, (α1 Q1, . . . , αm

Qm)), for all l ∈ {1, . . . , m}.
The rescaling axiom requires that the price mechanism should be invariant to the

change of scale. To illustrate, consider a simple example in which there is only one link
and suppose that congestion cost is F when the flow is measured in fluid ounce. Denote
C as the congestion cost when the flow is measured in quart, then C(Q) = F(32Q).
From our definition of the price mechanisms, the price per quart charged on this link,
P(C, Q), and the price per fluid ounce, P(F, 32Q), should satisfy the following rela-
tion: P(C, Q) = 32P(F, 32Q). Next, if the aggregate flows of each link contribute
to the aggregate congestion cost in a homogeneous way, then the prices in different
links should be identical.
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Axiom 2 (Weak consistency). If C(Q) = G
(∑m

l=1 Ql
)
, for all Q ∈ Rm+ , then

Pj (C, Q) = Pk(C, Q) = P1

(

G,

m∑

l=1

Ql

)

, ∀ j, k ∈ {1, . . . , m},

where P1 is the price defined for the single-link case.

To elaborate on this axiom, suppose that a user splits her flow, say 15 units, along
one particular link to two parts, say type-1 flows q1 = 10 and type-2 flows q2 = 5;
further, these two types of flows are in essence identical in generating the congestion
cost in this link. The user can certainly interpret the congestion cost as a two-variable
function C(q1, q2), but in fact the aggregate cost depends only on the aggregate flows
q1 +q2 = 15. In such a scenario, we can find a cost function G(q1 +q2) = C(q1, q2),

and it is reasonable to assume that the price charged to the user according to G(q1+q2)

should be the same under these two cost functions. Note that under our quadratic cost
structure, the parameters ae and be are allowed to be arbitrary. Thus, the condition of
this axiom does not hold in the generic cases and it only imposes a very mild restriction
to our network flow pricing problem.

The next axiom requires that if the cost can be decomposed, then we can also
decompose the price scheme.

Axiom 3 (Additivity). For any pair of continuous cost functions (F, G) such that
C(Q) = F(Q) + G(Q), for all Q ∈ Rm+ , the price mechanism satisfies Pm(C, Q) =
Pm(F, Q) + Pm(G, Q).

As an illustration, let us consider the example in which the congestion cost may
come from the wasted labor and the fuel. In this case, we can decompose the conges-
tion cost into two parts, and charge the users based on their impacts on the wasted
labor and the fuel. The additivity axiom requires that the aggregate price should be
the sum of the prices arising from the wasted labor and the fuel.

Finally, if the aggregate cost increases as the flow profile Q1, . . . , Qm increases,
then the price mechanism should be nonnegative at that point Q1, . . . , Qm . Two vec-
tors Q

′
, Q are said to satisfy Q

′ ≤ Q if Q
′
l ≤ Ql , for all l ∈ {1, . . . , m}.

Axiom 4 (Positivity). Let Q ∈ Rm+ . If for all Q
′ ≤ Q, C(Q

′
) is nondecreasing, i.e.,

all the components of the gradient ∇C(Q
′
) are nonnegative, then Pm(C, Q) ≥ 0.

This axiom implies that if a user’s flow increases the congestion cost in any link,
she should be charged a nonnegative price for this behavior. Having introduced the
four axioms, we next focus on the single-link problems and characterize the price
mechanisms that satisfy these axioms.

3.2 Price mechanisms and Nash equilibria in single-link problems

In the following, we define P1(C, Q) as the unit price if the cost structure is C(·)
and the aggregate traffic flow is Q. The rescaling axiom in the single-link problems
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requires only a single scaling factor α, and the weak consistency axiom degenerates
in this special case. As we focus on the quadratic cost function C(Q) in this paper,
the price mechanism is defined only for the space of quadratic functions C(Q) =
bQ + (1/2)aQ2 where Q ≥ 0. According to the following lemma, the price mecha-
nism that satisfies the axioms turns out to be linear:

Lemma 1 In the single-link problems, a price mechanism for C(Q) = bQ +
(1/2)aQ2 satisfies the rescaling, additivity, and positivity axioms if and only if
P1(C, Q) = λ(bβ + aQ), where λ ≥ 0, β ≥ 0.

Proof Let us first show that the price scheme satisfies those axioms. Consider the addi-
tivity under quadratic costs. Suppose C(Q) = F(Q) + G(Q), and C(·), F(·), G(·)
are all quadratic. We obtain the relation between their parameters: bC = bF + bG and
aC = aF + aG , where the superscripts denote the corresponding cost functions. Now
our price scheme satisfies P1(C, Q) = λ(bCβ +aC Q) = λ(bFβ +aF Q)+λ(bGβ +
aG Q) = P1(F, Q) + P1(G, Q), and therefore the additivity under quadratic costs
holds.

Next, we verify the rescaling axiom. Since C(Q) = F(αQ), we obtain that

bC Q + 1

2
aC Q2 = bFαQ + 1

2
aF (αQ)2, ∀Q ≥ 0, (2)

where bC , aC , bF , and aF are the corresponding coefficients in the cost functions C
and F . The above Eq. (2) implies that

bC − αbF = 1

2

(
α2aF − aC

)
Q.

Thus, the only possibility is that bF = bC/α and aF = aC/α2. Therefore, we have

αP1(F, αQ) = αλ(bFβ + aFαQ) = αλ

(
bC

α
β + aC

α2 αQ

)

= P1(C, Q).

The price scheme is clearly nonnegative when λ ≥ 0, β ≥ 0, and therefore it satisfies
the positivity axiom as well. We conclude that the price scheme satisfies all those
axioms.

Now we proceed to show that if a price mechanism satisfies all the axioms, it must
take the linear form as presented. Suppose P1(C, Q) satisfies those axioms. Since
C(Q) can be parameterized by the coefficients a, b, we define P1(C, Q) ≡ �(c, Q),
where c ≡ (a, b). Given two pairs c1 ≡ (a1, b1) and c2 ≡ (a2, b2) and an arbitrary
constant τ ∈ [0, 1], we obtain that

[τb1 + (1 − τ)b2]Q + 1

2
[τa1 + (1 − τ)a2]Q2

= τ

(

b1 Q + 1

2
a1 Q2

)

+ (1 − τ)

(

b2 Q + 1

2
a2 Q2

)

.

123
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Thus, from the additivity axiom, we know that

�(τc1 + (1 − τ)c2, Q) = τ�(c1, Q) + (1 − τ)�(c2, Q),

for every pair (c1, c2), any τ ∈ [0, 1], and any aggregate flow Q ≥ 0. Thus P1(c, Q)

is both concave and convex in c, where the domain of c is (0,∞) × [0,∞), a convex
set. Therefore, �(c, Q) is linear in c, and we can represent �(c, Q) as �((a, b), Q) =
a f (Q) + bg(Q), with both f (Q), g(Q) being independent of a, b.

Now apply the rescaling axiom. Consider two convex and quadratic cost functions
C, F such that C(Q) = F(αQ). We obtain bF = bC/α, aF = aC/α2, and the
rescaling axiom requires that

α

(
aC

α2 f (αQ) + bC

α
g(αQ)

)

= aC f (Q) + bC g(Q), ∀Q ≥ 0,

∀α > 0,∀aC > 0, ∀bC ≥ 0.

Plugging in bC = 0 leads to f (Q) = f (αQ)/α, for all Q ≥ 0, for all α > 0, which
immediately implies that f (Q) is linear in Q, i.e., f (Q) = C f Q, for some constant
C f . Moreover, g(αQ) = g(Q) holds for every Q ≥ 0 and every α > 0; consequently,
g(Q) = Cg is a constant function.

In sum, P1(C, Q) = CgbC + C f aC Q. This can be rewritten as P1(C, Q) =
λ(bCβ + aC Q), and λ ≥ 0 and β ≥ 0 are necessary so that P1(C, Q) ≥ 0, for all
(aC , bC ). ��

The marginal cost pricing and the average cost pricing correspond to respectively
(λ = 1, β = 1) and (λ = 1/2, β = 2). That is, they are respectively P1(C, Q) =
b + aQ, and P1(C, Q) = b + (1/2)aQ. Note also that when the users possess linear
utility functions, the centralized solution is q∗

1 = Q∗ = (u1 − b)/a, which yields the
aggregate payoff �∗ = (u1 − b)2/(2a).

Lemma 1 shows that the unit price for our single-link communication flow problems
has to take the linear form. This reduces the problem of finding the price mechanism
that could potentially be very complicated to an optimization problem over two param-
eters λ and β in single-link problems.

Existence and uniqueness of Nash equilibrium. Given the price mechanism, a
Nash equilibrium {q̄i }’s requires that for all i ∈ I, q̄i ∈ argmaxqi ≥0 {Ui (qi )−qiλ(bβ+
a(qi +∑

j �=i q̄ j ))}. We neglect the trivial case λ = 0, i.e., P1(Q) = 0, in which all
users want to send unbounded flows. Except this, the existence and uniqueness of
Nash equilibrium can be established.

Lemma 2 Suppose λ > 0. In a single-link problem with price P1(Q) = λ(bβ +aQ),
there exists a unique Nash equilibrium, for every pair λ > 0 and β ≥ 0.

Proof This is a direct extension of [33, Theorem 2]. We merely have to redefine the
cost function C(Q) = Qλ(bβ + aQ) = λbβQ + λaQ2, which is strictly convex. ��

The existence and uniqueness of Nash equilibrium allow us to predict the users’
behavior in the decentralized system. We then move on to study the price of anarchy
and design the optimal mechanisms.
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4 Price of anarchy when prices are independent of users’ preferences

In this section, we assume that information of users’ preferences is not available.
Therefore, the price mechanisms shall depend merely on the cost parameters, i.e.,
{be, ae}’s. We first focus on the single-link problem with linear utilities and obtain the
optimal price mechanism. We then propose to use the common parameters obtained
in this special case for unit prices per link in the general problem, and establish lower
bounds of the coordination ratios. In the end, we discuss the optimality when the price
mechanisms are defined for all continuous costs. Since we do not use extensively the
number of links, we replace the notation P(C, Q) by P(Q).

4.1 Price of anarchy in single-link problems with linear utilities

We first consider the single-link problem (C(Q) = bQ + (1/2)aQ2), and assume
that utilities are all linear, i.e., Ui (qi ) = ui qi . Note that according to Lemma 1, we
can focus on the design of λ and β. For ease of notation, we use {q̄i }’s to denote
the equilibrium flow profiles for a given pair (λ, β), and use �̄ to denote the corre-
sponding aggregate net payoffs of the users. Recall that the centralized solution is
q∗

1 = Q∗ = (u1 − b)/a, and the associated aggregate payoff is �∗ = (u1 − b)2/(2a).
The following lemma establishes a lower bound of the aggregate payoff in the Nash
equilibrium for some special cases, which turns out to be useful as we derive the price
of anarchy for given price mechanisms.

Lemma 3 Consider the single-link problem with linear utilities, quadratic cost, and
the corresponding price mechanism P1(Q) = λ(bβ + aQ). Then for every pair λ >

(n − 1)/[4(n + 1)] and β ≥ 0, if q̄1 > 0, we have

�̄ ≥ 1

2
a(Q∗)2 2(n(2λ − 1) + 2λ)

λ(n(4λ − 1) + 4λ + 1)

+bQ∗ −2(n(λ − 1) + λ)(βλ + λ − 1)

λ(n(4λ − 1) + 4λ + 1)
− b2

a

(n(λ + 2) − λ)(βλ + λ − 1)2

2λ(n(4λ − 1) + 4λ + 1)
.

Proof The best response of user i requires that (ui − λbβ − λaQ̄ − λaq̄i )q̄i = 0.

Summing over i ∈ I , we have

�̄ ≡
n∑

i=1

ui q̄i −
(

bQ̄ + 1

2
aQ̄2

)

= (λβ − 1)bQ̄ +
(

λ − 1

2

)

aQ̄2 + λa
n∑

i=1

q̄2
i .

Since q̄1 > 0, by the first-order condition for user 1,

q̄1 + Q̄ = u1/λ − b

a
− b − βb

a
= 1

λ
Q∗ + b

a

1 − λβ

λ
.
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We can then rewrite
∑n

i=1 q̄2
i as

n∑

i=1

q̄2
i = q̄2

1 +
n∑

i≥2

q̄2
i ≥ q̄2

1 + 1

n − 1

⎛

⎝
n∑

i≥2

q̄i

⎞

⎠

2

= q̄2
1 + 1

n − 1
(Q̄ − q̄1)

2.

Using this and replacing Q̄ by

1

λ
Q∗ + b

a

1 − λβ

λ
− q̄1,

we have

�̄ ≥ (λβ − 1)bQ̄ +
(

λ − 1

2

)

aQ̄2 + λaq̄2
1 + λa

n − 1
(Q̄ − q̄1)

2

= (λβ−1)b

(
1

λ
Q∗+ b

a

1 − λβ

λ
−q̄1

)

+
(

λ− 1

2

)

a

(
1

λ
Q∗ + b

a

1 − λβ

λ
− q̄1

)2

+ λaq̄2
1 + λa

n − 1

(
1

λ
Q∗ + b

a

1 − λβ

λ
− 2q̄1

)2

.

We can rearrange the above formula according to the descending order of q̄1. The
coefficient of q̄2

1 is

a

(
2n + 2

n − 1
λ − 1

2

)

,

and the coefficient of q̄1 is

−a((2n + 2)λ − n + 1)

λ(n − 1)
Q∗ + (λβ − 1)b

(

−1 + 1

λ

(2n + 2)λ − n + 1

n − 1

)

.

Applying the inequality

Ay2 + By ≥ − B2

4A

provided that A > 0, we have

�̄ ≥ (λβ − 1)b

(
1

λ
Q∗ + b

a

1 − λβ

λ

)

+ a

(

λ − 1

2
+ λ

n − 1

)(
1

λ
Q∗ + b

a

1 − λβ

λ

)2

−
(
− a((2n+2)λ−n+1)

λ(n−1)
Q∗ + (λβ − 1)b(−1 + 1

λ
(2n+2)λ−n+1

n−1 )
)2

4a
(

2n+2
n−1 λ − 1

2

) ,
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if

2n + 2

n − 1
λ − 1

2
> 0.

We can rearrange it by descending order of Q∗. Hence if (2n+2)λ/(n−1)−1/2 > 0,

�̄ ≥ 1

2
a(Q∗)2 2(n(2λ − 1) + 2λ)

λ(n(4λ − 1) + 4λ + 1)

+bQ∗ −2(n(λ − 1) + λ)(βλ + λ − 1)

λ(n(4λ − 1) + 4λ + 1
− b2

a

(n(λ + 2) − λ)(βλ + λ − 1)2

2λ(n(4λ − 1) + 4λ + 1
.

��
The lower bound obtained in the above lemma will be used to derive the price of

anarchy for given price mechanisms. We first show that a tight lower bound can be
obtained in the special case of λβ = 1. We later verify that the optimal price mecha-
nism belongs to this group and it is the only family of price mechanisms that provide
strictly positive bounds of coordination ratios.

Theorem 1 Consider the single-link problem with linear utilities and quadratic cost.
Suppose Assumption 1 holds. When P(Q) = b +λaQ where λ ∈ [n/(2n + 2), 1], the
coordination ratio is at least

2(n(2λ − 1) + 2λ)

λ(n(4λ − 1) + 4λ + 1)
.

Proof In a Nash equilibrium {q̄i }’s, the best response of user i requires that (ui −λbβ−
λaQ̄ −λaq̄i )q̄i = 0. When P(Q) = b +λaQ, {q̄i = 0,∀i ∈ I } cannot be an equilib-
rium since if this were the case, the KKT condition for user 1 would require u1−b ≤ 0,
a contradiction to Assumption 1. If in equilibrium, q̄1 = 0 but we can find a user i �= 1
such that q̄i > 0, then u1 − b − λaQ̄ ≥ ui − b − λaQ̄ > ui − b − λaQ̄ − λaq̄i = 0,
and hence q̄1 = 0 cannot be user 1’s best response. Therefore, q̄1 > 0.

Recall the formula in Lemma 3. The price scheme P(Q) = b + λaQ implies that
λβ = 1, in which case the last two terms vanish, and the coefficient of (1/2)aQ∗2 =
�∗ becomes the lower bound of the desired ratio. Note that within the range λ ∈
[n/(2n + 2), 1], λ ≥ 0 and β ≥ 1 under condition λβ = 1, and the bound is nonneg-
ative as well. ��

We next show that these bounds are all tight, in the sense that the worse case works
for arbitrary quadratic costs.

Lemma 4 Consider the single-link problem with linear utilities and quadratic costs.
Suppose Assumption 1 holds and P(Q) = b + λaQ where λ ∈ [n/(2n + 2), 1] , the
coordination ratio is at most 2(n(2λ − 1) + 2λ)[λ(n(4λ − 1) + 4λ + 1)].
Proof Let

ui − b

u1 − b
= 2nλ + 2λ + 1

n(4λ − 1) + 4λ + 1
≡ θ, ∀i ≥ 2,
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where θ ∈ [1/2, 1] if λ ∈ [n/(2n + 2), 1]. Consider the following allocations:

q̄1 = 1

λ

(

1 − (n − 1)θ + 1

n + 1

)

Q∗, q̄i = 1

λ

(

θ − (n − 1)θ + 1

n + 1

)

Q∗, i ≥ 2.

Summing over i ∈ I to obtain Q̄, we obtain

q̄1 + Q̄ = 1

λ
Q∗, q̄i + Q̄ = 1

λ
θ Q∗, i ≥ 2.

It can then be verified that q̄i > 0 and the KKT conditions are satisfied. Thus, {q̄i }’s
constitute a Nash equilibrium.

Since �̄ = ∑
i∈I (ui − b)q̄i − (1/2)aQ̄2, the ratio of aggregate payoff is

�̄

�∗ = 2

λ

(

1 − (n − 1)θ + 1

n + 1

)

+ 2(n − 1)

λ
θ

(

θ − (n − 1)θ + 1

n + 1

)

− 1

λ2

(
(n − 1)θ + 1

n + 1

)2

,

where the right-hand side can be simplified to 2(n(2λ−1)+2λ)[λ(n(4λ−1)+4λ+1)]
while plugging in

θ = 2nλ + 2λ + 1

n(4λ − 1) + 4λ + 1
.

Thus, the price of anarchy in this case is upper bounded as mentioned in the lemma.
��

When λ, β satisfy the conditions of Theorem 1, the bound is decreasing in the
number of users. Therefore, the coordination problem deteriorates as the population
becomes large. However, when

n(1 + δ)

2n + 2
≤ λ ≤ 1,

where δ > 0, a constant limit always exists for arbitrary quadratic costs. The marginal
cost pricing corresponds to λ = 1 and β = 1, in which case the bound becomes
(2n + 4)/(3n + 5), and it converges to 2/3 as obtained in [11]. However, our result
refines that of [11], since we provide tight bounds for any number of users (we in
Sect. 4.2 show that this bound works for general network problems with concave
utilities). From Lemma 4, when users’ utilities are linear, the worst case occurs when

ui − b

u1 − b
= 2n + 3

3n + 5
,
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for all i ≥ 2. This is obtained as we plug in λ = 1 in

ui − b

u1 − b
= 2nλ + 2λ + 1

n(4λ − 1) + 4λ + 1
,

and it is the worst case because the bound is attained. The average cost pricing (λ =
1/2, β = 2) leads to the bound 4/(n + 3), which vanishes as n approaches ∞. Under
quadratic costs, the average cost pricing coincides with the Aumann-Shapley price, the
Shapley-Shubik price and the nucleolus rule [30]. Nevertheless, this sharing rule per-
forms extremely poorly when we take into consideration the non-cooperative strategic
interaction among users.

Now we characterize the optimal price mechanism and provide the bounds of coor-
dination ratios.

Theorem 2 Consider the single-link problem with linear utilities and quadratic cost.
Suppose that Assumption 1 holds and the price mechanisms depend merely on the cost
structures. Let

λ∗ = 2n + 2n2 +√
2n(1 + n)3

4(1 + n)2 , and β∗ = 1

λ∗ ,

the tight bound of coordination ratio is

ηn ≡ 4(1 + n)2
√

2n(1 + n)3

(1 + 2n + n2 +√
2n(1 + n)3)(2n + 2n2 +√

2n(1 + n)3)
,

with 4(3 − 2
√

2) ≈ 0.686 being its limit. Moreover, for all λ > 0, β ≥ 1 that differ
from the above pair, the price of anarchy is strictly less than ηn.

Proof We first consider the price parameters

λ = 2n + 2n2 + √
2
√

n(1 + n)3

4(1 + n)2 , and β = 4(1 + n)2

2n + 2n2 + √
2
√

n(1 + n)3
.

Note that such a choice satisfies the conditions in Theorem 1, and hence we obtain a
tight bound given this price mechanism.

We shall prove that for any other choice, the bound of coordination ratio cannot
be further improved. We first consider the region discussed in Theorem 1. The ratio
2(n(2λ − 1) + 2λ)/[λ(n(4λ − 1) + 4λ + 1)] does not depend on β, is unimodal in λ,
and achieves the maximum when

λ = 2n + 2n2 + √
2
√

n(1 + n)3

4(1 + n)2 ∈
[

n

2n + 2
, 1

]

.

Hence the lower bound in this region is always less than ηn from Lemma 4.
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Now we consider the case λβ − 1 = 0 but λ /∈ [n/(2n + 2), 1], and construct
examples to obtain the upper bound. When λ ∈ (0, 1/4], we choose

θ ≡ ui − b

u1 − b
∈
(

0,
1

2

]

, for all i ≥ 2.

It can be verified that for all users other than user 1, q̄i = 0 in equilibrium. Applying
the first-order condition on q̄1, we have q̄1 = (u1 −b)/(2λa), and hence the aggregate
payoff becomes

�̄ =
(

2λ − 1

2

)

a
(u1 − b)2

4λ2a2 = 1

λ

(

1 − 1

4λ

)

�∗.

This gives us a non-positive ratio as λ ∈ (0, 1
4 ]. On the other hand, if λ ∈ (1/4, n/(2n+

2)], we set ui = u1, for all i ≥ 2. By symmetry the equilibrium quantity q̄i = q̄ j , for
all i, j ∈ I , and hence the first-order condition yields

q̄i = 1

λ(n + 1)
Q∗.

The corresponding ratio of aggregate payoff is

n(2λ + n(2λ − 1))

λ2(n + 1)2 ≡ A(λ).

Differentiating A(λ), we obtain

A
′
(λ) = 2n(n − λ(n + 1))

λ3(n + 1)2 ≥ 2n

λ3(n + 1)2

(

n − n

2n + 2
(n+1)

)

= n2

λ3(n + 1)2 >0,

where the first inequality follows from λ ≤ n/(2n + 2). Thus, A(λ) is increasing
in λ. If we fix ui = u1, for all i ≥ 2, the upper bound of coordination ratio when
λ ∈ (1/4, n/(2n + 2)] is less than A(n/(2n + 2)) = 0, i.e., no positive bound can be
obtained.

If λβ − 1 ≡ γ > 0, we can let u1 ∈ (b, λβb). KKT conditions suggest that
q̄i = 0, for all i ∈ I , which makes the aggregate payoff 0 and hence no strictly
positive bound can be obtained.

Finally, suppose that λβ −1 ≡ γ < 0. Define D = b/(u1 −b) and let ui = u1, for
all i ≥ 2. From the first-order condition and symmetry among users,

q̄i = 1

n + 1

(
1

λ
− γ D

)

Q∗.

Note that 1/λ − γ D > 0 for all D > 0, since γ < 0. The aggregate payoff becomes

�̄=
∑

i∈I

(ui −b)q̄i − 1

2
aQ̄2 = �∗

(
2n

n + 1

(
1

λ
− γ D

)

−
(

n

n + 1

(
1

λ
− γ D

))2
)

.
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Fig. 1 Efficiency bounds for given λ’s when λβ = 1 as n → ∞

The ratio can be expressed as a quadratic function of D where the coefficient of D2 is
−n2γ 2/(n+1)2 < 0, and hence it approaches −∞ while letting D approach ∞. Thus
for any fixed constant M , there exists D such that �̄/�∗ < −M if γ < 0. Following
a similar argument, we can show that when γ > 0 and 0 < λ < 1/2, as n → ∞ and
D → 0, the ratio will be in the neighborhood of (2λ − 1)/λ < 0. ��

The above theorem shows that our proposed price mechanism indeed achieves the
smallest price of anarchy if the central planner has no access to users’ preferences.
The optimal pricing scheme is

P(Q) = b + 2n + 2n2 + √
2
√

n(1 + n)3

4(1 + n)2 aQ,

which has never been proposed elsewhere. The worst case occurs when users possess
linear utilities, and except the highest one they are identical. When the optimal price
mechanism is used, it is achieved when (ui − b)/(u1 − b) → √

2/2 as n approaches
∞ (according to Lemma 4). Such a relation among users’ preferences is nontrivial as
well.

Figure 1 shows the bounds of coordination ratios for given λ’s, where the bounds
are achieved when the number of users approaches infinity. When λ < 1/2, the price
mechanism provides no guarantee of price of anarchy. When λ is above 1/2, which
corresponds to the average cost pricing, the bound increases and attains its optimum
at around 0.833 ≈ (2 + √

2)/4. It then decreases as λ becomes large. Figure 2 com-
pares the bounds of coordination ratios with respect to the number of users under the
marginal cost pricing, the average cost pricing, and our optimal price mechanism. As
the population becomes large, the bound deteriorates due to the increasing difficulty
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Fig. 2 Efficiency bounds versus n

of coordination among users, regardless of the price mechanisms used for congestion
control. We further find that the marginal cost pricing outperforms the average cost
pricing except when there are only two users, and the gap between the optimal mecha-
nism and the marginal cost pricing becomes narrower when the system scale becomes
large. The limiting bounds are respectively 4(3 − 2

√
2) ≈ 68.6% and 2/3 ≈ 66.7%.

Thus, the marginal cost pricing not only achieves social optimality when the market
is perfectly competitive (i.e., when users are price takers), but also provides a nearly
optimal, although suboptimal, guarantee of coordination ratio in any large-scale com-
munication networks with price anticipation.

Finally, since we change the price faced by the users, when λβ �= 1, the cost in
equilibrium actually exceeds the aggregate utility of the users. Although a user can
always ensure herself a zero payoff by setting qi = 0, the price mechanism may induce
the users to request too much and ultimately the cost outweighs the aggregate utility.
Thus, the ratio could be negative and is not bounded below. Inappropriate selections
of price mechanisms may cause disasters.

4.2 Extension to general network problems with concave utilities

We now consider the general network structure when users possess concave utili-
ties. We propose to adopt the linear unit prices for each link in the network struc-
ture, and use the common parameters λ∗, β∗ for all unit prices. That is, we choose
Pe(Q) = λ∗(beβ

∗ + ae Qe), where

λ∗ = 2n + 2n2 + √
2
√

n(1 + n)3

4(1 + n)2 , and β∗ = 1

λ∗ .
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Note that a slight generalization of Lemma 1 shows that this price mechanism satisfies
the four axioms.

Given the price mechanisms, the existence of Nash equilibrium follows from an
argument similar to [11]. Furthermore, we can follow the procedure of [10] and [34]
to establish lower bounds of coordination ratios in the general network. Note that
even though [11] focus primarily on the marginal cost pricing, their proof technique
remains valid for our more general price mechanisms (with appropriate modifications).
Thus, since in Sect. 4.1 we have proved that the proposed price scheme is the unique
mechanism that provides the maximum achievable bound of coordination ratio for
the single-link problems, it is suboptimal to adopt any mechanism that is properly
different from our proposed price scheme in the single-link problem. We need not
characterize the set of price mechanisms that satisfy the four axioms in the general
network structure, nor do we modify the rescaling axiom to make it compatible to the
flow conservation. This simple price scheme outperforms all other mechanisms that
satisfy the four axioms in terms of price of anarchy. We summarize the results in the
following corollary.

Corollary 1 In the general network problems with concave utilities and quadratic
cost, suppose that Assumption 1 holds and the price mechanisms depend merely on
the cost structures. Then the tight bound of coordination ratio is ηn . Moreover, for
all pairs of λ > 0 and β ≥ 1 that differ from the above pair, the price of anarchy is
strictly less than ηn.

4.3 Optimality when price mechanisms are extended to incorporate continuous costs

We now briefly discuss the case when price mechanisms are extended to incorporate
continuous costs. The purpose of introducing the continuous costs is to demonstrate
the flexibility of the family of price mechanisms that follow from the four axioms.
Since we focus only on the quadratic cost structures in our flow allocation prob-
lem, we are mainly interested in the corresponding unit price P1(C, Q) for C(Q) =
bQ + (1/2)aQ2. The following lemma shows that the linearity continues to hold,
but the parameter β can take value from [1,∞) (cf. in Lemma 1, the region of β is
[0,∞)).

Lemma 5 Suppose the price mechanism is defined for all continuous cost functions.
In the single-link problem, the price mechanism satisfies the rescaling, additivity, and
positivity axioms only if there exist constants λ ≥ 0 and β ≥ 1 such that the unit price
for C(Q) = bQ + (1/2)aQ2 is P1(C, Q) = λ(bβ + aQ), for all Q. Conversely, if
such λ and β exist for quadratic costs, then there exists a mechanism that satisfies the
above axioms for all continuous functions and coincides with P1(C, Q) = λ(bβ+aQ)

when applied to the cost C(Q) = bQ + (1/2)aQ2.

Proof When the number of outputs m = 1, [28, Propositions 1 and 2] show that for
a general cost function C̃(Q), if a price mechanism satisfies the rescaling, additivity,
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and positivity axioms, then there exists a nonnegative measure μ such that

P1(C̃, Q) =
1∫

0

∂C̃

∂ Q
(t Q)dμ(t).

This price mechanism is defined for all continuous cost functions C̃(·). In particular,
when C(Q) = bQ + (1/2)aQ2, the corresponding price mechanism translates to

P1(C, Q) =
1∫

0

∂C

∂ Q
(t Q)dμ(t) = b

1∫

0

dμ(t) + aQ

1∫

0

tdμ(t).

Thus, if we define

λ =
1∫

0

tdμ(t), and β =
∫ 1

0 dμ(t)
∫ 1

0 tdμ(t)
,

the price mechanism for this particular cost can be expressed as P1(C, Q) = λ(bβ +
aQ). The facts λ ≥ 0 and β ≥ 1 follow from that μ is nonnegative and

1∫

0

dμ(t) ≥
1∫

0

tdμ(t).

On the other hand, suppose that there exist nonnegative constants λ and β such
that P1(C, Q) = λ(bβ + aQ). We shall extend this unit price to a price mechanism
that is defined for all continuous cost functions. Let us define the measure μ as such:
μ(0) = λβ,μ(1) = λ, and μ(x) = 0,for all x /∈ {0, 1}. With this choice, μ is
nonnegative and

P1(C, Q) = b

1∫

0

dμ(t) + aQ

1∫

0

tdμ(t).

For general continuous cost C̃ , we propose to use the same measure and define

P1(C̃, Q) =
1∫

0

∂C̃

∂ Q
(t Q)dμ(t).

Since this price is a linear functional, the rescaling and additivity axioms hold, and
the positivity follows from the nonnegativity of measure μ. ��
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Lemma 5 reduces the problem of finding the price mechanism to an optimization
problem over two parameters λ and β in single-link problems as well. Under this
price mechanism, the existence and uniqueness of Nash equilibrium is guaranteed as
Lemma 2 applies equally well to this alternative scenario.

Note that Lemma 5 guarantees that if we find a mechanism that achieves the optimal
price of anarchy, we can construct an extended mechanism defined for all continu-
ous functions. Moreover, the price parameters now satisfy λ ≥ 0, β ≥ 1. There-
fore, Lemma 2 continues to apply here, and we can extend our proposed Pe(Q) =
be +λ∗ae Qe, to a price mechanism for continuous costs. Under this price mechanism

β∗ = 4(1 + n)2

2n + 2n2 + √
2
√

n(1 + n)3
≥ 1,

and hence it remains feasible even if the price mechanism is defined for all continuous
cost functions. In the single-link problem, since P(Q) = b +λ∗aQ achieves the min-
imum price of anarchy among all prices with λ ≥ 0, β ≥ 0, it remains optimal when
the search is confined within λ ≥ 0, β ≥ 1. This bound goes through in the general
network problem with concave utilities; hence, our proposed price mechanism is still
optimal for the quadratic cost functions, even if price mechanisms are defined for all
continuous costs. Note that this does not imply that our price mechanism remains opti-
mal for other cost structures. Our point here is that we can easily extend our proposed
price mechanism to incorporate general cost structures.

5 Price of anarchy when information of users’ preferences is available
for single-link problems

In this section, we assume that the system designer knows the users’ preference profile,
and the price mechanism can therefore depend on the users’ preferences. There are
several examples of price mechanisms that depend on the users’ preferences, including
Ramsey pricing [32], traffic tolls on peak-hour congestion and gasoline [24], and exter-
nality-reducing taxation [29]. This informational requirement is not stricter than that
needed when the system optimal routing/transmission is implementable, as assumed in
the centralized communication networks for decades [12]. Furthermore, this assump-
tion is adopted in a number of economics papers in different contexts, including, e.g.,
the optimal taxation design [25] and the monopoly pricing problem [9]. The utility
profile may be known to the public when either the planner has statistical knowledge of
the society [25] or when the monopoly seller has access to general market research [9].
Our purpose, in this section, is to demonstrate that information acquisition regarding
user preferences may lead to significant efficiency improvement for the communica-
tion networks. Note also that the system efficiency may still suffer from the impact of
hidden actions because the users can self-select their communication flows and they
are free to split or combine their flows.

We focus on the single-link problem, and again use the notation P(Q) ≡ P1(C, Q),
and adopt P(Q) = λ(bβ + aQ). However, we use q̄i (λ, β) ≡ q̄i (P) to denote the
equilibrium flows. From Lemma 2, q̄i (λ, β) is uniquely determined by λ > 0, β ≥ 1.
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This makes the mechanism design problem tractable, as opposed to the network case.
In this scenario, the system designer knows the utilities {Ui }’s but not whom they
belong to. Thus, the system designer will use this information to design the price
mechanism.

5.1 Linear utilities

We first consider the case with linear utilities, i.e., Ui (qi ) = ui qi , and show that
system optimality is achieved for any instance {ui }’s.

Theorem 3 Consider the single-link problem with quadratic cost and suppose users’
preferences are accessible. With linear utilities, there exist a continuum of (λ, β)’s
such that �̄(λ, β) = �∗.

Proof Let

�i (qi , q̄−i (λ, β)) = ui qi − λ

⎡

⎣bβ + a(qi +
∑

j �=i

q̄ j (λ, β))

⎤

⎦ qi

be user i’s payoff while sending qi , assuming that other users follow the equilibrium
strategies. The derivative of user i’s net payoff with respect to qi is

∂�i (qi , q̄−i (λ, β))

∂qi
= ui − λbβ − λa(qi +

∑

j �=i

q̄ j (λ, β)) − λaqi

= a

[
ui − b

a
− b

a
(λβ − 1)

]

− λa

⎛

⎝
∑

j �=i

q̄ j (λ, β) + 2qi

⎞

⎠

= aQ∗
[

ui −b

u1 − b
− b

aQ∗ (λβ − 1)

]

− λa

⎛

⎝
∑

j�=i

q̄ j (λ, β) + 2qi

⎞

⎠.

Let us first assume that u1 > u2 ≥ · · · ≥ un . Define

θ = u2 − b

u1 − b
∈ [0, 1).

Since q∗
i = 0, for all i ≥ 2, our goal is to show that there exists a pair (λ, β)

such that q̄i (λ, β) = 0, for all i ≥ 2 and q̄1(λ, β) = Q∗. From the derivatives
∂�i (qi , q̄−i (λ, β))/∂qi , it suffices to check the feasibility of

1 − (λβ − 1) b
u1−b

2λ
= 1, θ ≤ (λβ − 1)

b

u1 − b
, (3)

and that λ ≥ 0 and β ≥ 1. Note that the second condition in (3) guarantees that
q̄i (λ, β) = 0, for all i ≥ 2, and the first condition results in q̄1(λ, β) = Q∗. If we
choose
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λ ∈
(

0,
1 − θ

2

]

and β = 1 + b
u1−b − 2λ − λ b

u1−b

λb/(u1 − b)
+ 1

accordingly, this combination is feasible to (3) and λ ≥ 0 and β ≥ 1.
Now consider the case when the first k users have the same utilities, i.e., u1 = · · · =

uk > uk+1 ≥ · · · ≥ un . In this case, to induce the system optimal solution in the Nash
equilibrium, we must ensure that q̄i = 0, for all i ≥ k + 1, and

∑k
i=1 q̄i (λ, β) = Q∗.

In this case, we can follow the above argument to check the feasibility of

1 − (λβ − 1) b
u1−b

(k + 1)λ
= 1, θ ≤ (λβ − 1)

b

u1 − b
.

Any solution for which

λ ∈
(

0,
1 − θ

k + 1

]

, β = 1 + b
u1−b − (k + 1)λ − λ b

u1−b

λb/(u1 − b)
+ 1

is feasible. Consequently, the efficiency can be achieved in a decentralized equilibrium
in this case as well. ��

In the case with linear utilities, system optimality can be achieved by a uniform
price that depends on the cost functions and the ratio between the (distinct) marginal
utilities of the highest two users. Note that as opposed to VCG mechanism, our price
mechanism does not require the system designer to identify the users’ identities, and
splitting or combining orders is not profitable for any user. Due to the multiplicity of
Nash equilibria, we cannot follow the approach in Sect. 4 to extend to the network
case.

5.2 Concave utility functions

Now we switch to the case with nonlinear utilities. Given that the efficiency can be
achieved when the users’ utilities are linear, one may conjecture that this continues
to hold even with nonlinear utilities. However, the following example ends the hope.
Suppose that n = 2, the cost functions C(Q) = Q + Q2, and the utilities are respec-
tively

U1(q1) =
{

3q1 − 1
2 q2

1 , q1 ≤ 3,
9
2 , q1 > 3,

U2(q2) =
{

2q2 − 1
2 q2

2 , q2 ≤ 2,

2, q2 > 2.

It can be verified that the centralized solution is (q∗
1 , q∗

2 ) = (2/3, 0). Suppose, on the
contrary, that there exist a pair of nonnegative constants (A, B) such that (2/3, 0) is
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a Nash equilibrium with P(Q) = B + AQ. Then the first-order conditions yield

3 − 2

3
− B − 2

3
A − 2

3
A = 0 and 2 − B − 2

3
A ≤ 0,

which has a unique solution (A, B) = (0, 7/3). But this would imply λ = 0 and
λβ = 7/3, a contradiction.

The above example shows that the efficiency cannot be achieved in all the single-
link problems. The question that remains is whether knowing the users’ preference
profile allows the system designer to achieve a better performance guarantee. We will
show that bounds of coordination ratios can be further improved from 0.686 if utility
functions satisfy the following regularity conditions:

Assumption 2 The set of utility functions {Ui (·)}’s satisfy:

1. U
′
i exists, and maxi∈I U

′
i (0) < ∞.

2. For all positive flow q, U
′
i (q) ≥ U

′
j (q) whenever i ≤ j .

Condition 1 in Assumption 2 guarantees the existence of utilities’ derivatives and
ensures that the marginal utility for any user is bounded. The second condition is usu-
ally referred to as the single-crossing (sorting) condition, or Spence-Mirrlees condi-
tion. This condition is commonly adopted in a variety of literature, including nonlinear
pricing [16], Nash implementation [17], auctions [15], and operations management
[5]. Examples that conform the single-crossing condition include the popular util-
ity functions Ui (q) = log(q + Ci ) for empirical work, where constants Ci ’s satisfy
Ci ≤ C j whenever i ≤ j and Ci > 1,∀i to ensure that the utilities are nonnegative.
Another class is Ui (q) = ui q +G(q), with G(q) being concave in q and nonnegative.
Note that the linear utility Ui (q) = ui q is a special case of this class.

The single-crossing condition is adopted in mechanism design literature to ensure
the possibility of truth-telling mechanism [8], in games with incomplete information
to establish the existence of pure-strategy Nash equilibrium [1], and in Nash imple-
mentation to warrant game forms that Nash implements certain social choice corre-
spondences [17]. As we demonstrate later, here the single-crossing condition helps us
to show that the same user has the highest marginal utility in any Nash equilibrium,
which enables us to design a corresponding price parameter. Without this assumption,
the highest marginal utility in equilibrium can switch among users while varying the
price schemes, and the continuity, a required property for us to establish the upper
bound of price of anarchy, becomes problematic. It is also worth mentioning that our
analysis is significantly different from Nash implementation approach, albeit com-
plete information among agents is required in both settings. Our proposed mechanism
does not implement the centralized solution. On the contrary, we use a simple com-
mon price and guarantee a bound of price of anarchy. Following [17], the canonical
mechanism for Nash implementation requires each agent to report preference profiles
of all agents, and includes a numbering system to achieve incentive compatibility.

Note that Ui (q) should also be nonnegative, increasing, and concave, as discussed
in Sect. 2. From Assumption 1, we obtain that U

′
1(0) > b. when the single-crossing

condition holds. With Assumption 2, we are able to provide structural properties of

123



Design of price mechanisms 357

users’ behavior in equilibrium. Note that the users’ utilities {Ui }’s depend on only
through the flow profiles they select (i.e., {q̄i (λ, β)}’s). We first show that equilibrium
flows can be ordered.

Lemma 6 Consider the single-link problem with concave utilities and quadratic cost
and suppose that Assumption 2 holds. Then for every pair λ > 0 and β ≥ 1, we have
q̄i (λ, β) ≥ q̄ j (λ, β), for all i ≥ j.

Proof From the first-order condition for user i , we have

q̄i (λ, β)[U ′
i (q̄i (λ, β)) − λβ − λaQ̄(λ, β) − λaq̄i (λ, β)] = 0.

Suppose that q̄ j (λ, β) > q̄i (λ, β), i ≤ j . From the concavity and single-crossing
condition, we obtain that U

′
i (q̄i (λ, β)) ≥ U

′
i (q̄ j (λ, β)) > U

′
j (q̄ j (λ, β)). Hence,

U
′
i (q̄i (λ, β))−λβb−λaQ̄(λ, β)−λaq̄i (λ, β) > U

′
j (q̄ j (λ, β)) − λβb − λaQ̄(λ, β)

−λaq̄ j (λ, β) = 0,

because q̄ j (λ, β) > q̄i (λ, β) ≥ 0. But then q̄i (λ, β) cannot be a best response. ��
We now establish the monotonicity of U

′
i (·)’s in equilibrium.

Lemma 7 Consider the single-link problem with concave utilities and quadratic
cost and suppose that Assumption 2 holds. Then for every pair λ > 0 and β ≥ 1,

U
′
i (q̄i (λ, β)) ≥ U

′
j (q̄ j (λ, β)), for all i ≤ j.

Proof Suppose that q̄i (λ, β) > 0. From the first-order conditions, in equilibrium we
have

U
′
j (q̄ j (λ, β)) ≤ λβb + λaQ̄(λ, β) + λaq̄ j (λ, β) ≤ λβb + λaQ̄(λ, β) + λaq̄i (λ, β)

= U
′
i (q̄i (λ, β)).

If q̄i (λ, β) = 0, then q̄ j (λ, β) = 0 by Lemma 6, and Assumption 2 leads to U
′
j (0) ≤

U
′
i (0). ��
Now we state our main result in this section. We propose a price scheme with

coordination ratio 8n(n + 1)/(3n + 1)2, which converges to 8/9 > 4(3 − 2
√

2).

Theorem 4 Consider the single-link problem with concave utilities and quadratic
cost. Suppose that Assumptions 1 and 2 hold and the information of the users’ prefer-
ences is available. We can choose λ = (n − 1)/[4(n + 1)] and β ≥ 1 (which depends
on utilities) such that the coordination ratio is at least 8n(n + 1)/(3n + 1)2.

Proof We first assume that the following equation

λβ − 1 = 2(n + 1)

3n + 1

maxi∈I U
′
i (q̄i (λ, β)) − b

b
(4)
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has a solution β ≥ 1 when λ = (n −1)/[4(n +1)]. If we use linear approximation for
utility functions, i.e., ui = U

′
i (q̄i (λ, β)), from the proof of Lemma 3 we obtain that

�̄(λ, β) ≥ (λβ − 1)b

(
1

λ
Q∗ − b(λβ − 1)

aλ

)

+ a

(

λ − 1

2
+ λ

n − 1

)

×
(

1

λ
Q∗ − b(λβ − 1)

aλ

)2

+
(

2n + 2

n − 1
λ − 1

2

)

aq̄2
1

+
[

− (2n + 2)λ − n + 1

λ(n − 1)
aQ∗ + (λβ − 1)b

(

−1 + 1

λ

(2n + 2)λ − n + 1

n − 1

)]

q̄1.

As we choose λ = (n − 1)/[4(n + 1)] and correspondingly

β = 2(n + 1)

3n + 1

aQ∗

λb
+ 1

λ
,

both the coefficients of q̄1 and q̄2
1 become zero. Moreover,

λβ − 1 = 2(n + 1)

3n + 1

aQ∗

b
,

and therefore the left-over terms on the right-hand side can be combined as a single
term

8n(n + 1)

(3n + 1)2

1

2
aQ∗,

where aQ∗/2 = �∗. Thus, we obtain a lower bound of the aggregate payoff that is
independent of q̄1:

�̄(λ, β) ≥ 8n(n + 1)

(3n + 1)2 �∗.

��
We now prove that (4) indeed has a fixed point when λ = (n −1)/[4(n +1)]. We in

the following provide more general results that work for any λ ∈ (0, 1), and decom-
pose the proof into a sequence of lemmas. Note that Lemma 7 allows us to consider
merely U

′
1(q̄1(λ, β)) = maxi∈I U

′
i (q̄i (λ, β)) in (4) for any Nash equilibrium. We first

establish the continuity of q̄i (λ, β) while varying β.

Lemma 8 Fixed any λ > 0, q̄i (λ, β) is continuous in β, and Q̄(λ, β) is also contin-
uous in β.

Proof We first show that Q̄(λ, β) is decreasing in β. Suppose the claim is not true,
then there must exist β̂ and β such that β̂ > β but Q̄(λ, β̂) > Q̄(λ, β). Consider a
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user i with q̄i (λ, β̂) > 0. The KKT condition for such user i becomes U
′
i (q̄i (λ, β̂)) −

λβb − λaQ̄(λ, β̂) − λaq̄i (λ, β̂) = 0. We obtain that as long as q̄i (λ, β̂) > 0,

U
′
i (0) − [λβb + λaQ̄(λ, β)] > U

′
i (0) − [λβb + λaQ̄(λ, β̂)]

> U
′
i (0) − U

′
i (q̄i (λ, β̂)) + λaq̄i (λ, β̂),

and therefore U
′
i (0) − [λβb + λaQ̄(λ, β)] > 0 from concavity of Ui (·). Hence 0 is

not user i’s best response, i.e., q̄i (λ, β) > 0.
Since q̄i (λ, β) > 0, the associated first-order condition must be binding at β. Hence

as long as q̄i (λ, β̂) > 0,

U
′
i (q̄i (λ, β)) − λaq̄i (λ, β) = λβb + λaQ̄(λ, β) < λβb + λaQ̄(λ, β̂)

= U
′
i (q̄i (λ, β̂) − λaq̄i (λ, β̂).

Thus, by concavity of Ui (·), we have q̄i (λ, β) > q̄i (λ, β̂) as long as q̄i (λ, β̂) > 0.

Summing over i for which q̄i (λ, β̂) > 0 , we have

Q̄(λ, β̂) =
n∑

j=1

q̄ j (λ, β̂) =
∑

i :q̄i (λ,β̂)>0

q̄i (λ, β̂) <
∑

i :q̄i (λ,β̂)>0

q̄i (λ, β)

≤
n∑

j=1

q̄ j (λ, β) = Q̄(λ, β),

which contradicts Q̄(λ, β̂) > Q̄(λ, β).
Now we prove by contradiction that for fixed λ, q̄i (λ, β) is continuous in β ≥ 1.

Suppose that the flow of user i is not continuous at some β ≥ 1, i.e., there exists ε > 0
such that for every δ > 0, we can find β̂ ∈ [β, β + δ) and |q̄i (λ, β̂) − q̄i (λ, β)| > ε,

where we have applied the same notation as above. Choose δ < aε/(nb). Since Q̄
is decreasing, there must exist a user j , such that q̄ j (λ, β̂) < q̄ j (λ, β) − ε/n (If
q̄i (λ, β̂) < q̄i (λ, β) − ε, then choose j = i ; otherwise, there exists another user j
that satisfies it). Now consider the incentive of user j :

U
′
j (q̄ j (λ, β̂)) − λaq̄ j (λ, β̂) − λβb − λaQ̄(λ, β̂)

≥ U
′
j (q̄ j (λ, β)) − λaq̄ j (λ, β) − λβb − λaQ̄(λ, β̂) + λa

ε

n

≥ U
′
j (q̄ j (λ, β)) − λaq̄ j (λ, β) − λβb − λaQ̄(λ, β) + λ

(
a

ε

n
− bδ

)
,

where the first inequality is by concavity of U j (·), and the second inequality follows
from monotonicity of Q̄(λ, β). Thus,

U
′
j (q̄ j (λ, β̂)) − λaq̄ j (λ, β̂) − λβ̂b − λaQ̄(λ, β̂) ≥ λ

(
a

ε

n
− bδ

)
> 0,
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because q̄ j (λ, β) > q̄ j (λ, β̂)+ε/n > 0. This contradicts the fact that q̄i (λ, β̂) is user
i’s best response. The continuity of Q̄(λ, β) follows from Q̄(λ, β) = ∑

i∈I q̄i (λ, β).
��

Recall that our goal is to show the existence of fixed point for (4). Since
maxi∈I U

′
i (q̄i (λ, β)) = U

′
1(q̄1(λ, β)), for every pair λ > 0 and β ≥ 1, we can

rearrange (4) as follows:

β = 2(n + 1)

3n + 1

U
′
1(q̄1(λ, β))

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

. (5)

Define

f (β) = 2(n + 1)

3n + 1

U
′
1(q̄1(λ, β))

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

.

Then it suffices to show that f (β) = β has a solution. Recall that U
′
1(0) > b, and

denote � = U
′
1(0) − b > 0. It is easy to verify that

U
′
1(0)

λb
− 1 − �

λb

(

1 − 2(n + 1)

3n + 1

)

≥ 0.

Now we are ready to prove the following lemma.

Lemma 9 If λ ∈ (0, 1), then for any

β ∈
[

1,
U

′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)]

,

we have

f (β) = 2(n + 1)

3n + 1

λβb + λaQ̄(λ, β) + λaq̄1(λ, β)

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

, (6)

and f (β) is continuous in β.

Proof We first show that if

β ∈
[

1,
U

′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)]

,

then q̄1(λ, β) must be positive. Otherwise, assume q̄1(λ, β) = 0, then by Lemma 6,
q̄i (λ, β) = 0 for all i ∈ I and thus Q̄(λ, β) = 0. However, on the other hand, we
know that

U
′
1(q̄1(λ, β)) − λβb − λaQ̄(λ, β) − λaq̄1(λ, β) ≤ 0.

123



Design of price mechanisms 361

It follows that U
′
1(0) − λβb ≤ 0, which contradicts to the assumption that

β ≤ U
′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)

.

Therefore, it must be the case that q̄1(λ, β) > 0. From the first order condition we
have U

′
1(q̄1(λ, β)) − λβb − λaQ̄(λ, β) − λaq̄1(λ, β) = 0. Rearranging the terms,

we get U
′
1(q̄1(λ, β)) = λβb + λaQ̄(λ, β) + λaq̄1(λ, β). Therefore, (6 ) holds. By

Lemma 8, both q̄1(λ, β) and Q̄(λ, β) are continuous in β. ��
Finally, we prove that (5) has a solution.

Lemma 10 If λ ∈ (0, 1), f (β) has a fixed point β ≥ 1.

Proof For any

β ∈
[

1,
U

′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)]

,

from Lemma 9,

f (β) = 2(n + 1)

3n + 1

λβb + λaQ̄(λ, β) + λaq̄1(λ, β)

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

≥ 2(n + 1)

3n + 1

λβb

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

≥ 2(n + 1)

3n + 1

λb

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

,

and hence

f (β) =
(

1 − 1

λ

)[

1 − 2(n + 1)

3n + 1

]

+ 1 ≥ 1.

On the other hand,

f (β) = 2(n + 1)

3n + 1

U
′
1(q̄1(λ, β))

λb
+ 1

λ

[

1 − 2(n + 1)

3n + 1

]

≤ 2(n + 1)

3n + 1

U
′
1(0)

λb

+1

λ

[

1 − 2(n + 1)

3n + 1

]

≤ 2(n + 1)

3n + 1

U
′
1(0)

λb
+ U

′
1(0) − �

λb

×
[

1 − 2(n + 1)

3n + 1

]

≤ U
′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)

.

Therefore, we have shown that for any

β ∈
[

1,
U

′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)]

,
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f (β) is continuous and

f (β) ∈
[

1,
U

′
1(0)

λb
− �

λb

(

1 − 2(n + 1)

3n + 1

)]

.

Thus, from fixed-point theorem, there exists β such that f (β) = β. ��
Note that λ = 2(n +1)/(3n +1) satisfies the conditions in all of the above lemmas.

Since f (β) = β has a solution when λ = 2(n + 1)/(3n + 1), for any instance Ui (·)’s,
we can find a price mechanism that provides a bound of coordination ratio that is at
least 8n(n + 1)/(3n + 1)2. The proof of Theorem 4 is now complete. ��

Note that albeit λ is a constant, β depends on the utilities. Hence, this price mech-
anism does not fall into the category studied in Sect. 4. The optimal price mechanism
is at least as good as the proposed scheme, and therefore the price of anarchy under
the optimal mechanism shall be between 0 and (n2 − 2n − 1)/(3n + 1)2, where the
latter converges to 1/9 ≈ 11.1% in the limit. Thus, the price of anarchy is further
suppressed from 31.4% to 11.1% when we allow the prices to be contingent on the
users’ preferences.

The case with linear utilities achieves the lower bound when price mechanisms
are restricted to depend only on the cost structures. However, it becomes the best
scenario if users’ preferences are available to the system designer. This strict contrast
demonstrates the value of information in this special case.

6 Conclusion

In this paper, we study the design of price mechanisms for communication network
problems in which the congestion cost exhibits quadratic structure. We investigate
the price mechanisms that are characterized by a set of axioms, and we obtain the
price mechanisms that provide the minimum price of anarchy. We show that, given
the non-decreasing and concave utilities of users and the convex quadratic congestion
costs in each link, if the price mechanism cannot depend on utility functions, the best
achievable price of anarchy is 4(3 − 2

√
2) ≈ 31.4%. Thus, the marginal cost pricing

is nearly optimal, whereas the average cost pricing performs extremely poorly. We
also investigate the scenario in which the price mechanisms can be made contingent
on the users’ preference profile while such information is available.

As a possible extension, when the cost functions are not quadratic, one may need to
look for other potentially more complicated price mechanisms. Whether there exists
a price mechanism that provides a constant performance guarantee is still an open
question, and it remains a research priority.
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